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Abstract—This paper presents generalized rough sets in
approximation spaces based on portions of successor classes
induced by arbitrary binary relations between two universes.
Based on this definition, some interesting properties are in-
vestigated. In semigroup structures, the notions of rough
semigroups, rough ideals and rough completely prime ideals
in approximation spaces induced by preorder and compatible
relations are proposed. Some related results and examples are
discussed and provided. In the end, the relationships between
rough semigroups (resp. rough ideals and rough completely
prime ideals) and their homomorphic images are verified. These
associations are presented in understanding of necessary and
sufficient conditions.

Index Terms—generalized rough set, approximation space,
semigroup, rough semigroup, rough ideal, rough completely
prime ideal, binary relation, preorder relation, compatible
relation.

I. INTRODUCTION

THE Pawlak’s rough set theory is a influential tool for
several assessment and decision problems of uncertain

data in information technology. This classical theory was
introduced by Pawlak [1]. The Pawlak’s rough set has
been regarded as an approximation processing model in
an approximation space induced by an equivalence relation
on the single universe. For a given equivalence relation
on a universal set and given a non-empty subset of the
universal set, the Pawlak’s rough set of the given set is
refered to as a pair of the Pawlak’s upper and Pawlak’s lower
approximations where the difference between the Pawlak’s
upper and Pawlak’s lower approximations (The Pawlak’s
boundary region) is a non-empty set. The Pawlak’s upper
approximation is the union of all the equivalence classes
which have a non-empty intersection with the given set.
The Pawlak’s lower approximation is the union of all the
equivalence classes which are subset of the given set. As
mentioned above, the Pawlak’s rough set model is referred to
as a mathematical tool for an assessment and decision space
in several information systems, including algebraic systems
[2]–[15], expert systems with applications [16], knowledge-
based information systems [17], computers and engineerings
[18], measurements [19], approximate reasonings [20] etc.
under intelligent information fields of artificial intelligence.
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Based on the notion of the Pawlak’s roughness model
induced by an equivalence relation, generalizations of such
the model have been being constructed by many researchers.
Particularly, a generalization of Pawlak’s rough set based on
an arbitrary binary relation (briefly, binary relation) on the
single universe. In 1998, Yao [22] introduced a Yao’s rough
set based on successor neighborhoods induced by a binary
relation [SNθ(u) := {u′ ∈ U : (u, u′) ∈ θ} denotes a
successor neighborhood of u induced by a binary relation
θ on a universal set U where u is an element in U ]. In
2016, Mareay [23] introduced a new rough set by using cores
of successor neighborhoods induced by a binary relation
[CSNθ(u) := {u′ ∈ U : SNθ(u) = SNθ(u

′)} denotes a
core of a successor neighborhood of u induced by a binary
relation θ on a universal set U where u is an element in U ].
Observer that the Yao’s rough set and the Mareay’s rough
set are generalizations of the Pawlak’s rough set whenever
the binary relation is an equivalence relation.

The semigroup structure (see [24]) is an algebraic sys-
tem with respect to wide applications. For employments
of Pawlak’s rough set theory in semigroup, Kuroki [4]
introduced the notions of upper and lower approximation
semigroups (resp. ideals) in semigroups induced by congru-
ence relations, and provided sufficient conditions of upper
and lower approximation semigroups (resp. ideals) in 1997.
In 2006, Xiao and Zhang [7] introduced the notions of
upper and lower approximation completely prime ideals in
semigroups induced by congruence relations, and provided
sufficient conditions of upper and lower approximation com-
pletely prime ideals. They examined the relationship between
upper and lower approximation completely prime ideals
(resp. ideals) and their homomorphic images under homo-
morphism problems. In 2016, Wang and Zhan [13] proposed
the notions of upper and lower approximation semigroups
(resp. ideals and completely prime ideals) induced by specific
congruence relations, and also provided sufficient conditions
of upper and lower approximation semigroups (resp. ideals
and completely prime ideals).

Based on the generalized rough set in sense of Mareay, the
main point of this work is a extended concept, i.e., a general-
ization of the Mareay’s rough set induced by a binary relation
between two universes will be established. Then we apply the
novel rough set in semigroups for approximation processings.
After providing some fundamentals of binary relations and
semigroups in Section II, we propose a generalization of
the Mareay’s rough set in an approximation space of a
universal set based on portions of successor classes induced
by a binary relation between two universes and investigate
some interesting properties in Section III. In Section IV, we
introduce concepts of rough semigroups, rough ideals and
rough completely prime ideals in approximation spaces of
semigroups under preorder and compatible relations. Next,
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we provide sufficient conditions and examples of them. In
Section V, we verify relationships between rough semigroups
(resp. rough ideals and rough completely prime ideals) and
their homomorphic images. Lastly, this paper is concluded
with some remarks and discussions in Section VI.

II. PRELIMINARIES

In this section we reconsider some important definitions
which will be employed in the following sections.

Throughout this paper, U and V denote two non-empty
universe.

Definition 1. [21] Let Ξ(U × V ) be a family of all subsets
of U×V . An element in Ξ(U×V ) is referred to as a binary
relation from U to V . An element in Ξ(U × V ) is called a
binary relation on U if U = V .

Definition 2. [21] Let Λ be a binary relation from U to V .
Λ is called serial if for all u ∈ U , there exists v ∈ V such
that (u, v) ∈ Λ.

Definition 3. [21] Let Λ be a binary relation on U .
(1) Λ is called reflexive if for all u ∈ U , (u, u) ∈ Λ.
(2) Λ is called transitive if for all u1, u2, u3 ∈ U , (u1, u2) ∈

Λ and (u2, u3) ∈ Λ implies (u1, u3) ∈ Λ.
(3) Λ is called symmetric if for all u1, u2 ∈ U , (u1, u2) ∈ Λ

implies (u2, u1) ∈ Λ.
(4) If Λ is reflexive and transitive, then Λ is called a

preorder.
(5) If Λ is reflexive, transitive and symmetric, then Λ is

called an equivalence relation.

A semigroup [24] (S,⊙) is defined as an algebraic system
where S is a non-empty set and ⊙ is an associative binary
operation on S. Throughout this paper, S denotes a semi-
group. A non-empty subset X of S is called a subsemigroup
[25] of S if XX ⊆ X . A non-empty subset X of S is called
a left (right) ideal [25] of S if SX ⊆ X (XS ⊆ X), and
if it is both a left ideal and a right ideal of S, then it is
called an ideal [25]. An ideal X of S is called a completely
prime ideal [25] of S if for all s1, s2 ∈ S, s1s2 ∈ X implies
s1 ∈ X or s2 ∈ X . Let Λ be a binary relation on S. Then,
Λ is called compatible if for all s1, s2, s3 ∈ S, (s1, s2) ∈ Λ
implies (s1s3, s2s3) ∈ Λ and (s3s1, s3s2) ∈ Λ.

III. GENERALIZED ROUGH SETS

In this section we establish a generalization of the
Mareay’s rough set induced by a binary relation between
two universes and provide a real-world example and verify
some appealing properties.

Definition 4. Let Λ be a binary relation from U to V . For
an element u ∈ U ,

SΛ(u) := {v ∈ V : (u, v) ∈ Λ}

is called a successor class of u induced by Λ.

Remark 1. If Λ is a serial relation from U to V , then
SΛ(u) ̸= ∅ for all u ∈ U .

Definition 5. Let Λ be a binary relation from U to V . For
an element u1 ∈ U ,

PSΛ(u1) := {u2 ∈ U : SΛ(u2) ⊆ SΛ(u1)}

is called a portion of the successor class of u1 induced by
Λ.

We denote by PSΛ(U) a collection of PSΛ(u) for all
u ∈ U .

Directly from Definition 5, we can obtain to Proposition
1 as the following.

Proposition 1. Let Λ be a binary relation from U to V . Then
the following statements hold.
(1) For all u ∈ U , u ∈ PSΛ(u).
(2) For all u1, u2 ∈ U , u1 ∈ PSΛ(u2) if and only if

PSΛ(u1) ⊆ PSΛ(u2).

Proposition 2. Let Λ be a binary relation on U . Then we
have the following statements.
(1) If Λ is reflexive, then PSΛ(u) ⊆ SΛ(u) for all u ∈ U .
(2) If Λ is transitive, then SΛ(u) ⊆ PSΛ(u) for all u ∈ U .
(3) If Λ is a preorder, then SΛ(u) and PSΛ(u) are identical

classes for all u ∈ U .

Proof: (1) It is clear that PSΛ(u) ⊆ SΛ(u) for all u ∈ U
whenever Λ is reflexive.

(2) Let u1 ∈ U and let u2 ∈ SΛ(u1). Then, (u1, u2) ∈ Λ.
We only need to show that SΛ(u2) ⊆ SΛ(u1). Suppose that
u3 ∈ SΛ(u2). Then, (u2, u3) ∈ Λ. Since Λ is transitive,
we have (u1, u3) ∈ Λ. Thus u3 ∈ SΛ(u1). Hence we get
SΛ(u2) ⊆ SΛ(u1). Therefore, u2 ∈ PSΛ(u1). Consequently,
SΛ(u1) ⊆ PSΛ(u1).

(3) From items (1) and (2), it follows that this statement
holds.

In the following, we give a generalization of the Mareay’s
roughness model induced by a binary relation.

Definition 6. Let Λ be a binary relation from U to V . The
triple (U, V,PSΛ(U)) is referred to as an approximation
space based on PSΛ(U) (briefly, PSΛ(U)-approximation
space). If U = V , then (U, V,PSΘ(U)) is replaced by a
pair (U,PSΘ(U)).

Definition 7. Let (U, V,PSΛ(U)) be an PSΛ(U)-
approximation space. For a non-empty subset X of U , we
define three sets as follows:
Λ(X) := {u ∈ U : PSΛ(u) ∩X is a non-empty set},
Λ(X) := {u ∈ U : PSΛ(u) ⊆ X} and
Λbnd(X) := Λ(X)− Λ(X).

Then
(1) Λ(X) denotes an upper approximation of X in

(U, V,PSΛ(U)) (briefly, PSΛ(U)-upper approximation
of X).

(2) Λ(X) denotes a lower approximation of X in
(U, V,PSΛ(U)) (briefly, PSΛ(U)-lower approximation
of X).

(3) Λbnd(X) denotes a boundary region of X in
(U, V,PSΛ(U)) (briefly, PSΛ(U)-boundary region of
X).

(4) If Λbnd(X) ̸= ∅, then Λ(X) := (Λ(X), Λ(X)) is called
a rough set of X in (U, V,PSΛ(U)) (briefly, PSΛ(U)-
rough set of X).

(5) If Λbnd(X) = ∅, then X is called a definable set in
(U, V,PSΛ(U)) (briefly, PSΛ(U)-definable set).

We give an example as the following.

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_08

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



Example 1. Let U := {u1, u2, u3, u4, u5} be a set of elec-
trical discharge machines (EDM) in an automobile industry
of leading company and let V := {v1, v2, v3, v4} be a set of
components of each elements in U .

Define TABLE I by an information of the damage values
(Bad and Medium) of electrical discharge machines in U
with respect to components in V as the following detail.

TABLE I
THE INFORMATION TABLE OF DAMAGE VALUES

v1 v2 v3 v4
u1 Medium Bad Bad Medium
u2 Medium Bad Bad Medium
u3 Medium Bad Bad Bad
u4 Medium Medium Medium Bad
u5 Bad Bad Medium Medium

For a binary relation Λ ∈ Ξ(U×V ) and elements u ∈ U ,
v ∈ V , a pair (u, v) ∈ Λ is defined as a bad damage
value of the electrical discharge machine u with respect to
the component v under Λ. Then the binary relation Λ is a set
{(u1, v2), (u1, v3), (u2, v2), (u2, v3), (u3, v2), (u3, v3), (u3, v4),
(u4, v4), (u5, v1), (u5, v2)}. Suppose that a measurement
expert committee assign X := {u1, u3, u5} which is a
non-empty set of electrical discharge machines for the
discharge under a global evaluation. Then the assessment
of X in approximation space (U, V,PSΛ(U)) is derived
by a process as the following. According to Definition 4, it
follows that
SΛ(u1) := {v2, v3},
SΛ(u2) := {v2, v3},
SΛ(u3) := {v2, v3, v4},
SΛ(u4) := {v4} and
SΛ(u5) := {v1, v2}.

According to Definition 5, it follows that
PSΛ(u1) := {u1, u2},
PSΛ(u2) := {u1, u2},
PSΛ(u3) := {u1, u2, u3, u4},
PSΛ(u4) := {u4} and
PSΛ(u5) := {u5}.

According to Definition 7, it follows that
Λ(X) := {u1, u2, u3, u5},
Λ(X) := {u5} and
Λbnd(X) := {u1, u2, u3}.

Therefore, Λ(X) := ({u1, u2, u3, u5}, {u5}) is a PSΛ(U)-
rough set of X . As a consequence,

(1) u1, u2, u3 and u5 are possibly electrical discharge ma-
chines for the discharge,

(2) u5 is a certainly electrical discharge machine for the
discharge and

(3) u1, u2 and u3 cannot be determined whether three
machines are electrical discharge machines for the
discharge or not.

The following remark is immediate consequences of Def-
inition 7 and the existence of Example 1 with respect to
Definition 7.

Remark 2. Every Mareay’s rough set in [23] is a rough
set in Definition 7, but the converse is not true in general.
Therefore, the rough set in Definition 7 is considered as a
generalization of the Mareay’s rough set whenever U = V

and the relation “ ⊆ ” is substituted by the equality “ = ”
in Definition 5.

The existence of Example 1 leads to the following defini-
tion.

Definition 8. Let (U, V,PSΛ(U)) be an PSΛ(U)-
approximation space and let X be a non-empty subset of U .
Λ(X) is called a non-empty PSΛ(U)-upper approximation
of X in (U, V,PSΛ(U)) if Λ(X) is a non-empty subset
of U . Analogously, we can define non-empty PSΛ(U)-
lower approximations. The PSΛ(U)-rough set Λ(X) of X in
(U, V,PSΛ(U)) is referred to as a non-empty PSΛ(U)-rough
set if Λ(X) is a non-empty PSΛ(U)-upper approximation
and Λ(X) is a non-empty PSΛ(U)-lower approximation.

Proposition 3. Let (U, V,PSΛ(U)) be an PSΛ(U)-
approximation space. If X and Y are non-empty subsets of
U , then we have the following statements.
(1) Λ(U) = U and Λ(U) = U .
(2) Λ(∅) = ∅ and Λ(∅) = ∅.
(3) X ⊆ Λ(X) and Λ(X) ⊆ X .
(4) Λ(X ∪ Y ) = Λ(X) ∪ Λ(Y ) and

Λ(X ∩ Y ) = Λ(X) ∩ Λ(Y ).
(5) Λ(X ∩ Y ) ⊆ Λ(X) ∩ Λ(Y ) and

Λ(X ∪ Y ) ⊇ Λ(X) ∪ Λ(Y ).
(6) If X ⊆ Y , then Λ(X) ⊆ Λ(Y ) and Λ(X) ⊆ Λ(Y ).

Proof: (1)-(3) follow from Proposition 1 (1). The proofs
(4), (5) and (6) are straightforward.

Definition 9. Let (U, V,PSΛ(U)) be an PSΛ(U)-
approximation space and let X be a non-empty subset of
U . If Λ(X) is a non-empty PSΛ(U)-lower approximation
of X in (U, V,PSΛ(U)) and Λ(X) is a proper subset of X ,
then X is called a set over non-empty interior set.

Proposition 4. Let (U, V,PSΛ(U)) be an PSΛ(U)-
approximation space and let X be a non-empty subset of
U . If X is a set over non-empty interior set, then Λ(X) is
a non-empty PSΛ(U)-rough set of X in (U, V,PSΛ(U)).

Proof: Suppose that X is a set over non-empty interior
set. Then we have that Λ(X) is a non-empty PSΛ(U)-lower
approximation and Λ(X) ⊂ X . By Proposition 3 (3), we
obtain that X ⊆ Λ(X). Thus we get Λ(X) is a non-empty
PSΛ(U)-upper approximation. We shall verify that Λbnd(X)
is a non-empty set. Suppose that Λbnd(X) = ∅. Then we
have Λ(X) = Λ(X). From Proposition 3 (3), once again,
it follows that Λ(X) = X , which is a contradiction. Thus
Λbnd(X) is a non-empty set. As a consequence, Λ(X) is a
non-empty PSΛ(U)-rough set of X .

Proposition 5. Let (U,PSΛ(U)) be an PSΛ(U)-
approximation space and let (U,PSΥ (U)) be an PSΥ (U)-
approximation space. If Λ ⊆ Υ where Λ is reflexive and
Υ is transitive, then Λ(X) ⊆ Υ (X) for every non-empty
subset X of U .

Proof: Let X be a non-empty subset of U . Then we
prove that Λ(X) ⊆ Υ (X). Infact, let u1 ∈ Λ(X). Then we
have PSΛ(u1) ∩ X is a non-empty set. Thus there exists
u2 ∈ U such that u2 ∈ PSΛ(u1) ∩ X . Hence SΛ(u2) ⊆
SΛ(u1). Since Λ is reflexive, we have (u2, u2) ∈ Λ. Whence
we get that u2 ∈ SΛ(u2) ⊆ SΛ(u1). Thus (u1, u2) ∈ Λ.
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Since Λ ⊆ Υ , (u1, u2) ∈ Υ . We shall verify that SΥ (u2) ⊆
SΥ (u1). Let now u3 ∈ SΥ (u2). Then, (u2, u3) ∈ Υ . Since
Υ is a transitive relation, we have (u1, u3) ∈ Υ . Thus we
get u3 ∈ SΥ (u1), which yields SΥ (u2) ⊆ SΥ (u1). Hence
u2 ∈ PSΥ (u1). Thus we have u2 ∈ PSΥ (u1) ∩ X . Hence
PSΥ (u1)∩X is a non-empty set, which yields u1 ∈ Υ (X).
This implies that Λ(X) ⊆ Υ (X).

Proposition 6. Let (U,PSΛ(U)) be an PSΛ(U)-
approximation space and let (U,PSΥ (U)) be an PSΥ (U)-
approximation space. If Λ ⊆ Υ where Λ is reflexive and
Υ is transitive, then Υ (X) ⊆ Λ(X) for every non-empty
subset X of U .

Proof: Let X be a non-empty subset of U . Then we
prove that Υ (X) ⊆ Λ(X). Indeed, suppose that u1 ∈ Υ (X).
Then we get that PSΥ (u1) ⊆ X . We shall show that
PSΛ(u1) ⊆ PSΥ (u1). Let u2 ∈ PSΛ(u1). Then we have
SΛ(u2) ⊆ SΛ(u1). Since Λ is a reflexive relation, we
have (u2, u2) ∈ Λ. Hence we get u2 ∈ SΛ(u2), and so
u2 ∈ SΛ(u1). Thus we get (u1, u2) ∈ Λ. By the assumption,
we obtain that (u1, u2) ∈ Υ . Now, we shall prove that
SΥ (u2) ⊆ SΥ (u1). Let u3 ∈ SΥ (u2). Then, (u2, u3) ∈ Υ .
Since Υ is a transitive relation, we have (u1, u3) ∈ Υ .
Whence u3 ∈ SΥ (u1). Hence SΥ (u2) ⊆ SΥ (u1). Thus
u2 ∈ PSΥ (u1). Whence we get PSΛ(u1) ⊆ PSΥ (u1) ⊆ X .
Therefore, u1 ∈ Λ(X). As a consequence, Υ (X) ⊆ Λ(X).

IV. ROUGHNESS IN SEMIGROUPS

In this section we introduce rough semigroups, rough
ideals and rough completely prime ideals in semigroups
induced by preorder and compatible relations. Then we pro-
vide sufficient conditions of them and give some interesting
properties and examples.

Definition 10. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space. (S,PSΛ(S)) is called an PSΛ(S)-
approximation space type PCR if Λ is a preorder and
compatible relation.

Proposition 7. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type PCR. Then,

(PSΛ(s1))(PSΛ(s2)) ⊆ PSΛ(s1s2)

for all s1, s2 ∈ S.

Proof: Let s1 and s2 be two elements in S. Sup-
pose that s3 ∈ (PSΛ(s1))(PSΛ(s2)). Then there exist
s4 ∈ PSΛ(s1), s5 ∈ PSΛ(s2) such that s3 = s4s5.
Thus SΛ(s4) ⊆ SΛ(s1) and SΛ(s5) ⊆ SΛ(s2). Hence
we get that SΛ(s4s5) ⊆ SΛ(s1s2). Indeed, we suppose
that s6 ∈ SΛ(s4s5). Then, (s4s5, s6) ∈ Λ. Since Λ is
reflexive, we have (s4, s4) and (s5, s5) are in Λ, and so
s4 ∈ SΛ(s4) and s5 ∈ SΛ(s5). Whence s4 ∈ SΛ(s1) and
s5 ∈ SΛ(s2). Thus (s1, s4) ∈ Λ and (s2, s5) ∈ Λ. Since
Λ is compatible, we have (s1s2, s4s5) ∈ Λ. Since Λ is
transitive, we have (s1s2, s6) ∈ Λ. Whence we get that
s6 ∈ SΛ(s1s2). Hence we obtain that SΛ(s4s5) ⊆ SΛ(s1s2),
which yields s3 = s4s5 ∈ PSΛ(s1s2). As a consequence,
(PSΛ(s1))(PSΛ(s2)) ⊆ PSΛ(s1s2).

We give to Example 2 as the following.

Example 2. Let S := {s1, s2, s3, s4, s5} be the semigroup
with multiplication rules defined by the TABLE II.

TABLE II
THE MULTIPLICATION TABLE ON S

· s1 s2 s3 s4 s5
s1 s1 s2 s3 s2 s5
s2 s2 s2 s3 s2 s5
s3 s3 s3 s3 s3 s3
s4 s2 s2 s3 s2 s5
s5 s5 s5 s3 s5 s5

Define Λ := {(s1, s1), (s2, s2), (s2, s5), (s3, s2), (s3, s3),
(s3, s5), (s4, s4), (s5, s2), (s5, s5)}. Then it is easy to check
that Λ is a preorder and compatible relation. Thus successor
classes of each elements in S induced by Λ are as follows:
SΛ(s1) := {s1},
SΛ(s2) := {s2, s5},
SΛ(s3) := {s2, s3, s5},
SΛ(s4) := {s4} and
SΛ(s5) := {s2, s5}.

Hence by Proposition 2 (3), we obtain that
PSΛ(s1) = SΛ(s1),
PSΛ(s2) = SΛ(s2),
PSΛ(s3) = SΛ(s3),
PSΛ(s4) = SΛ(s4) and
PSΛ(s5) = SΛ(s5).

Here it is straightforward to verify that for all s, s′ ∈ S

(PSΛ(s))(PSΛ(s
′)) ⊆ PSΛ(ss

′).

Observe that, in Example 2, it does not holds in general
for an equality case. We consider the following example.

Example 3. Let S := {s1, s2, s3, s4, s5} be the semigroup
with multiplication rules defined by the TABLE III.

TABLE III
THE MULTIPLICATION TABLE ON S

· s1 s2 s3 s4 s5
s1 s1 s1 s3 s1 s5
s2 s1 s2 s3 s1 s5
s3 s3 s3 s3 s3 s3
s4 s1 s1 s3 s4 s5
s5 s5 s5 s3 s5 s5

Define Λ := {(s1, s1), (s1, s2), (s1, s4), (s2, s1), (s2, s2),
(s2, s4), (s3, s3), (s3, s5), (s4, s1), (s4, s2), (s4, s4), (s5, s5)}.
Then it is easy to check that Λ is a preorder and compatible
relation. Thus successor classes of each elements in S
induced by Λ are as follows:
SΛ(s1) := {s1, s2, s4},
SΛ(s2) := {s1, s2, s4},
SΛ(s3) := {s3, s5},
SΛ(s4) := {s1, s2, s4} and
SΛ(s5) := {s5}.

Thus by Proposition 2 (3), we obtain that
PSΛ(s1) = SΛ(s1),
PSΛ(s2) = SΛ(s2),
PSΛ(s3) = SΛ(s3),
PSΛ(s4) = SΛ(s4) and
PSΛ(s5) = SΛ(s5).

Here it is straightforward to check that for all s, s′ ∈ S

(PSΛ(s))(PSΛ(s
′)) = PSΛ(ss

′).
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Considering this point, the property can be considered as a
special case of Proposition 7. This important example leads
to Definition 11 as the following.

Definition 11. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type PCR. The collection PSΛ(S)
is called a complete collection induced by Λ (briefly,
Λ-complete) if for all s1, s2 ∈ S,

(PSΛ(s1))(PSΛ(s2)) = PSΛ(s1s2).

Definition 12. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type PCR. If PSΛ(S) is a complete
collection induced by Λ, then Λ is called a complete
relation. (S,PSΛ(S)) is called an PSΛ(S)-approximation
space type CR if Λ is complete.

Proposition 8. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type PCR. Then,

(Λ(X))(Λ(Y )) ⊆ Λ(XY )

for every non-empty subsets X,Y of S.

Proof: Let X,Y be two non-empty subsets of S and let
s1 ∈ (Λ(X))(Λ(Y )). Then there exists s2 ∈ Λ(X) and exists
s3 ∈ Λ(Y ) such that s1 = s2s3. Thus we get PSΛ(s2) ∩
X and PSΛ(s3) ∩ Y are non-empty sets. Then there exist
s4, s5 ∈ S such that s4 ∈ PSΛ(s2)∩X and s5 ∈ PSΛ(s3)∩
Y . From Proposition 7, it follows that

s4s5 ∈ (PSΛ(s2))(PSΛ(s3)) ⊆ PSΛ(s2s3).

Note that s4s5 ∈ XY . Thus PSΛ(s2s3) ∩ XY is a non-
empty set, which yields s1 = s2s3 ∈ Λ(XY ). Therefore we
get (Λ(X))(Λ(Y )) ⊆ Λ(XY ).

Proposition 9. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type CR. Then,

(Λ(X))(Λ(Y )) ⊆ Λ(XY )

for every non-empty subsets X,Y of S.

Proof: Let X and Y be two non-empty subsets of S
and let s1 ∈ (Λ(X))(Λ(Y )). Then there exist s2 ∈ Λ(X)
and s3 ∈ Λ(Y ) such that s1 = s2s3. Hence we get that
PSΛ(s2) ⊆ X and PSΛ(s3) ⊆ Y . Since Λ is complete,

PSΛ(s2s3) = PSΛ(s2)PSΛ(s3) ⊆ XY.

Whence we obtain PSΛ(s2s3) ⊆ XY . Hence we get that
s1 = s2s3 ∈ Λ(XY ). Therefore, (Λ(X))(Λ(Y )) ⊆ Λ(XY ).

In what follows, a rough set in semigroups will be pro-
posed. We consider to Example 4 as the following.

Example 4. According to Example 3, we let X :=
{s2, s3, s5} be a subset of S. Then we have Λ(X) = S and
Λ(X) := {s3, s5}. Here it is easy to verify that Λ(X) and
Λ(X) are subsemigroups, ideals and completely prime ideals
of S. Moreover, we also have Λbnd(X) is a non-empty set.
Existences of subsemigroups, ideals and completely prime
ideals of S induced by preorder and compatible relations in
this example lead to Definition 13 as the following.

Definition 13. Let (S,PSΛ(S)) be an PSΛ(S)-
approximation space type PCR and let X be a non-empty
subset of S. The non-empty PSΛ(S)-upper approximation

Λ(X) of X in (S,PSΛ(S)) is called an PSΛ(S)-upper
approximation semigroup if it is a subsemigroup of S.
The non-empty PSΛ(S)-lower approximation Λ(X) of X
in (S,PSΛ(S)) is called a PSΛ(S)-lower approximation
semigroup if it is a subsemigroup of S. The non-empty
PSΛ(S)-rough set Λ(X) of X in (S,PSΛ(S)) is called
a PSΛ(S)-rough semigroup if Λ(X) is an PSΛ(S)-upper
approximation semigroup and Λ(X) is a PSΛ(S)-lower
approximation semigroup. Similarly, we can define PSΛ(S)-
rough (completely prime) ideals.

Theorem 1. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type PCR. If X is a subsemigroup of S, then Λ(X) is
an PSΛ(S)-upper approximation semigroup.

Proof: Suppose that X is a subsemigroup of S. Then,
XX ⊆ X . By Proposition 3 (3), we obtain that

∅ ̸= X ⊆ Λ(X).

Hence we get Λ(X) is a non-empty PSΛ(S)-upper approx-
imation. From Proposition 3 (6), it follows that Λ(XX) ⊆
Λ(X). By Proposition 8, we get

(Λ(X))(Λ(X)) ⊆ Λ(XX) ⊆ Λ(X).

Hence Λ(X) is a subsemigroup of S. Thus Λ(X) is an
PSΛ(S)-upper approximation semigroup.

Theorem 2. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is a subsemigroup of S with Λ(X) is a
non-empty set, then Λ(X) is a PSΛ(S)-lower approximation
semigroup.

Proof: Suppose that X is a subsemigroup of S. Then,
XX ⊆ X . Obviously, Λ(X) is a non-empty PSΛ(S)-
lower approximation. From Proposition 3 (6), it follows that
Λ(XX) ⊆ Λ(X). By Proposition 9, we obtain that

(Λ(X))(Λ(X)) ⊆ Λ(XX) ⊆ Λ(X).

Thus Λ(X) is a subsemigroup of S. Therefore, Λ(X) is a
PSΛ(S)-lower approximation semigroup.

The following corollary is immediate consequences of
Proposition 4, Theorem 1 and Theorem 2.

Corollary 1. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is a subsemigroup of S over non-empty
interior set, then Λ(X) is a PSΛ(S)-rough semigroup.

Observe that, in Corollary 1, the converse is not true in
general. We present an example as the following.

Example 5. According to Example 3, suppose that X :=
{s2, s4, s5} is a subset of S, then we have that Λ(X) :=
{s1, s2, s4, s5} and Λ(X) := {s5}. Thus Λbnd(X) is a non-
empty set. Hence it is straightforward to check that Λ(X)
is an PSΛ(S)-upper approximation semigroup and Λ(X) is
a PSΛ(S)-lower approximation semigroup. However, X is
not a subsemigroup of S. Consequently, Λ(X) is a PSΛ(S)-
rough semigroup, but X is not a subsemigroup of S.

Theorem 3. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type PCR. If X is an ideal of S, then Λ(X) is an
PSΛ(S)-upper approximation ideal.

Proof: Suppose that X is an ideal of S. Then we have
SX ⊆ X . From Proposition 3 (6), it follows that Λ(SX) ⊆

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_08

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



Λ(X). By Proposition 3 (1), we obtain that Λ(S) = S. From
Proposition 8, it follows that

S(Λ(X)) = (Λ(S))(Λ(X)) ⊆ Λ(SX) ⊆ Λ(X).

Hence Λ(X) is a left ideal of S.
Similarly, we can prove that Λ(X) is a right ideal of S.

Therefore, Λ(X) is an PSΛ(S)-upper approximation ideal.

Theorem 4. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is an ideal of S with Λ(X) is a non-
empty set, then Λ(X) is a PSΛ(S)-lower approximation
ideal.

Proof: Suppose that X is an ideal of S. Then, SX ⊆ X .
From Proposition 3 (6), we get Λ(SX) ⊆ Λ(X). By Propo-
sition 3 (1), we obtain that Λ(S) = S. From Proposition 9,
it follows that

S(Λ(X)) = (Λ(S))(Λ(X)) ⊆ Λ(SX) ⊆ Λ(X).

Thus Λ(X) is a left ideal of S.
Similarly, we can prove that Λ(X) is a right ideal of S.

Thus Λ(X) is a PSΛ(S)-lower approximation ideal.
The following corollary is immediate consequences of

Proposition 4, Theorem 3 and Theorem 4.

Corollary 2. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is an ideal of S over non-empty interior
set, then Λ(X) is a PSΛ(S)-rough ideal.

Observe that, in Corollary 2, the converse is not true in
general. We present an example as the following.

Example 6. According to Example 3, if X := {s3, s4, s5}
is a subset of S, then we have Λ(X) = S and Λ(X) :=
{s3, s5}. Thus we get Λbnd(X) is a non-empty set. Obviously,
Λ(X) is an PSΛ(S)-upper approximation ideal, and it is
straightforward to check that Λ(X) is a PSΛ(S)-lower
approximation ideal. However, X is not an ideal of S.
Consequently, Λ(X) is a PSΛ(S)-rough ideal, but X is not
an ideal of S.

Theorem 5. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is a completely prime ideal of S, then
Λ(X) is an PSΛ(S)-upper approximation completely prime
ideal.

Proof: Suppose that X is a completely prime ideal of
S. Then we prove that Λ(X) is an PSΛ(S)-upper approxi-
mation completely prime ideal. In fact, since X is an ideal
of S, by Theorem 3, we have that Λ(X) is an PSΛ(S)-
upper approximation ideal. Let s1, s2 ∈ S be such that
s1s2 ∈ Λ(X). Then, by the Λ-complete property of PSΛ(S),
we get that

(PSΛ(s1))(PSΛ(s2)) ∩X = PSΛ(s1s2) ∩X

is a non-empty set. Thus there exist s3 ∈ PSΛ(s1), s4 ∈
PSΛ(s2) such that s3s4 ∈ X . Since X is a completely prime
ideal, s3 ∈ X or s4 ∈ X . Thus PSΛ(s1) ∩ X is a non-
empty set or PSΛ(s2) ∩X is a non-empty set. Hence s1 ∈
Λ(X) or s2 ∈ Λ(X). Therefore, Λ(X) is a completely prime
ideal of S. As a consequence, Λ(X) is an PSΛ(S)-upper
approximation completely prime ideal.

Theorem 6. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is a completely prime ideal of S with
Λ(X) is a non-empty set, then Λ(X) is a PSΛ(S)-lower
approximation completely prime ideal.

Proof: Suppose that X is a completely prime ideal of
S with Λ(X) ̸= ∅. Then, X is an ideal of S. Thus by
Theorem 4, we have Λ(X) is a PSΛ(S)-lower approximation
ideal. Let s1, s2 ∈ S be such that s1s2 ∈ Λ(X). Since Λ is
complete, we have

(PSΛ(s1))(PSΛ(s2)) = PSΛ(s1s2) ⊆ X.

Now, we suppose that s1 /∈ Λ(X). Then we have PSΛ(s1)
is not a subset of X . Thus there exists s3 ∈ S such that
s3 ∈ PSΛ(s1) but s3 /∈ X . For each s4 ∈ PSΛ(s2),

s3s4 ∈ (PSΛ(s1))(PSΛ(s2)) ⊆ X.

Whence s3s4 ∈ X . Since X is a completely prime ideal
and s3 /∈ X , we have s4 ∈ X . Thus we get PSΛ(s2) ⊆ X ,
which yields s2 ∈ Λ(X). Hence we get Λ(X) is a completely
prime ideal of S. Therefore, Λ(X) is a PSΛ(S)-lower
approximation completely prime ideal.

The following corollary is immediate consequences of
Proposition 4, Theorem 5 and Theorem 6.

Corollary 3. Let (S,PSΛ(S)) be an PSΛ(S)-approximation
space type CR. If X is a completely prime ideal of S
over non-empty interior set, then Λ(X) is a PSΛ(S)-rough
completely prime.

Observe that, in Corollary 3, the converse is not true in
general. We present an example as the following.

Example 7. According to Example 3, if X := {s1, s3, s5}
is a subset of S, then we have Λ(X) = S and Λ(X) :=
{s3, s5}. Hence we get Λbnd(X) ̸= ∅. Obviously, Λ(X) is an
PSΛ(S)-upper approximation completely prime ideal, and
it is straightforward to check that Λ(X) is a PSΛ(S)-lower
approximation completely prime ideal. Here we can verify
that X is an ideal of S, but it is not a completely prime
ideal of S since s2s4 = s1 ∈ X but s2 /∈ X and s4 /∈ X . As
a consequence, Λ(X) is a PSΛ(S)-rough completely prime
ideal, but X is not a completely prime ideal of S.

V. HOMOMORPHIC IMAGES OF ROUGHNESS IN
SEMIGROUPS

In this section we verify relationships between rough semi-
groups (resp. rough ideals, rough completely prime ideals)
and their homomorphic images. Throughout this section, we
suppose that T denotes a semigroup.

Proposition 10. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )), where the binary relation
Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. Then the
following statements hold.
(1) For all s1, s2 ∈ S, s1 ∈ PSΛ(s2) if and only if f(s1) ∈

PSΥ (f(s2)).
(2) f(Λ(X)) = Υ (f(X)) for every non-empty subset X of

S.
(3) f(Λ(X)) ⊆ Υ (f(X)) for every non-empty subset X of

S.
(4) If f is injective, then f(Λ(X)) = Υ (f(X)) for every

non-empty subset X of S.
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(5) If Υ is a preorder and compatible relation, then Λ is a
preorder and compatible relation.

Proof: (1) Let s1, s2 ∈ S be such that s1 ∈ PSΛ(s2).
Then, f(s1), f(s2) ∈ T and SΛ(s1) ⊆ SΛ(s2). We shall
prove that SΥ (f(s1)) ⊆ SΥ (f(s2)). Let t1 ∈ SΥ (f(s1)).
Then, (f(s1), t1) ∈ Υ . Since f is surjective, there exists
s3 ∈ S such that f(s3) = t1. Whence (f(s1), f(s3)) ∈ Υ ,
and so (s1, s3) ∈ Λ. Thus s3 ∈ SΛ(s1). Whence we
have s3 ∈ SΛ(s2). Hence we have (s2, s3) ∈ Λ, and
so (f(s2), f(s3)) ∈ Υ . Thus t1 = f(s3) ∈ SΥ (f(s2)).
Then we have SΥ (f(s1)) ⊆ SΥ (f(s2)). Therefore we get
f(s1) ∈ PSΥ (f(s2)).

Conversely, it is easy to verify that s1 ∈ PSΛ(s2)
whenever f(s1) ∈ PSΥ (f(s2)) for all s1, s2 ∈ S.

(2) Let X be a non-empty subset of S. We verify firstly
that f(Λ(X)) = Υ (f(X)). Let t1 ∈ f(Λ(X)). Then
there exists s1 ∈ Λ(X) such that f(s1) = t1. Therefore,
PSΛ(s1) ∩ X ̸= ∅. Thus there exists s2 ∈ S such that
s2 ∈ PSΛ(s1) and s2 ∈ X . By item (1), we obtain
that f(s2) ∈ PSΥ (f(s1)) and f(s2) ∈ f(X). Then,
PSΥ (f(s1)) ∩ f(X) ̸= ∅, and so t1 = f(s1) ∈ Υ (f(X)).
Thus we have f(Λ(X)) ⊆ Υ (f(X)).

On the other hand, we let t2 ∈ Υ (f(X)). Then there
exists s3 ∈ S such that f(s3) = t2. Hence we get that
PSΥ (f(s3))∩f(X) ̸= ∅. Thus there exists s4 ∈ X such that
f(s4) ∈ f(X) and f(s4) ∈ PSΥ (f(s3)). By the argument
(1), we get that s4 ∈ PSΛ(s3), and so PSΛ(s3) ∩ X ̸= ∅.
Hence s3 ∈ Λ(X), and so t2 = f(s3) ∈ f(Λ(X)). Thus
Υ (f(X)) ⊆ f(Λ(X)). Therefore, f(Λ(X)) = Υ (f(X)).

(3) Let X be a non-empty subset of S. Suppose that
t1 ∈ f(Λ(X)). Then there exists s1 ∈ Λ(X) such that
f(s1) = t1. Thus we get PSΛ(s1) ⊆ X . We shall prove that
PSΥ (t1) ⊆ f(X). Let t2 ∈ PSΥ (t1). Then there exist s2 ∈
S such that f(s2) = t2. Thus we have f(s2) ∈ PSΥ (f(s1)).
By the argument (1), we obtain that s2 ∈ PSΛ(s1), and
so s2 ∈ X . Hence t2 = f(s2) ∈ f(X), and thus,
PSΥ (t1) ⊆ f(X). Therefore we have t1 ∈ Υ (f(X)). As
a consequence, f(Λ(X)) ⊆ Υ (f(X)).

(4) Let X be a non-empty subset of S. We only need
to prove that Υ (f(X)) ⊆ f(Λ(X)). Let t1 ∈ Υ (f(X)).
Then there exists s1 ∈ S such that f(s1) = t1. Thus
PSΥ (f(s1)) ⊆ f(X). We shall show that PSΛ(s1) ⊆ X .
Let s2 ∈ PSΛ(s1). Then, by the argument (1), we have
f(s2) ∈ PSΥ (f(s1)). Hence f(s2) ∈ f(X). Thus there
exists s3 ∈ X such that f(s3) = f(s2). By the assumption,
s2 ∈ X , and so PSΛ(s1) ⊆ X . Hence s1 ∈ Λ(X), and so
t1 = f(s1) ∈ f(Λ(X)). Thus Υ (f(X)) ⊆ f(Λ(X)).

By the argument (3), we get f(Λ(X)) ⊆ Υ (f(X)).
Consequently, f(Λ(X)) = Υ (f(X)).

(5) The proof is straightforward, so we omit it.

Proposition 11. Let f be an isomorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )), where the binary relation
Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If Υ is
complete, then Λ is complete.

Proof: Let s1, s2 be two elements in S. Suppose that
s3 ∈ PSΛ(s1s2). Then, by Proposition 10 (1), we get that
f(s3) ∈ PSΥ (f(s1s2)). Since f is a homomorphism and Υ

is complete, we have

f(s3) ∈ PSΥ (f(s1s2))

= PSΥ (f(s1)f(s2))

= (PSΥ (f(s1)))(PSΥ (f(s2))).

Thus there exist t1 ∈ PSΥ (f(s1)), t2 ∈ PSΥ (f(s2)) such
that f(s3) = t1t2. Since f is surjective, there exist s4, s5 ∈ S
such that f(s4) = t1 and f(s5) = t2. Since

f(s4)f(s5) =f(s3) ∈ (PSΥ (f(s1)))(PSΥ (f(s2))),

we have f(s4) ∈ PSΥ (f(s1)) and f(s5) ∈ PSΥ (f(s2)). By
Proposition 10 (1), s4 ∈ PSΛ(s1) and s5 ∈ PSΛ(s2). Since f
is a homomorphism, f(s3) = f(s4)f(s5) = f(s4s5). By the
assumption, we obtain that s3 = s4s5. Thus we get that s3 ∈
PSΛ(s1)PSΛ(s2). Therefore we obtain that PSΛ(s1s2) ⊆
PSΛ(s1)PSΛ(s2).

On the other hand, by Propositions 7 and 10 (5),
we obtain that PSΛ(s1)PSΛ(s2) ⊆ PSΛ(s1s2). Thus
PSΛ(s1)PSΛ(s2) = PSΛ(s1s2). Hence we get PSΛ(S) is
Λ-complete. Thus Λ is complete.

Theorem 7. Let f be an epimorphism from S in (S,PSΛ(S))
to T in (T,PSΥ (T )) type PCR, where the binary relation
Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If X is
a non-empty subset of S and f is injective, then Λ(X) is
an PSΛ(S)-upper approximation semigroup if and only if
Υ (f(X)) is an PSΥ (T )-upper approximation semigroup.

Proof: Suppose that Λ(X) is an PSΛ(S)-upper approx-
imation semigroup. Then, by Proposition 10 (2), we obtain
that

(Υ (f(X)))(Υ (f(X))) =(f(Λ(X)))(f(Λ(X)))

=f((Λ(X))(Λ(X)))

⊆f(Λ(X))

=Υ (f(X)).

Hence Υ (f(X)) is a subsemigroup of T . Thus we get
Υ (f(X)) is an PSΥ (T )-upper approximation semigroup.

Conversely, we suppose that s1 ∈ (Λ(X))(Λ(X)). From
Proposition 10 (2), it follows that

f(s1) ∈f((Λ(X))(Λ(X)))

=(f(Λ(X)))(f(Λ(X)))

=(Υ (f(X)))(Υ (f(X)))

⊆Υ (f(X))

=f(Λ(X)).

Thus there exists s2 ∈ Λ(X) such that f(s1) = f(s2).
Hence we have PSΛ(s2) ∩X ̸= ∅. By the assumption, we
obtain that PSΛ(s1) ∩ X ̸= ∅, and so s1 ∈ Λ(X). Hence
(Λ(X))(Λ(X)) ⊆ Λ(X). Thus Λ(X) is a subsemigroup
of S. Therefore, Λ(X) is an PSΛ(S)-upper approximation
semigroup.

Theorem 8. Let f be an epimorphism from S in (S,PSΛ(S))
to T in (T,PSΥ (T )) type PCR, where the binary relation
Λ := {(s1, s2) ∈ S×S : (f(s1), f(s2)) ∈ Υ}. If X is a non-
empty subset of S and f is injective, then Λ(X) is a PSΛ(S)-
lower approximation semigroup if and only if Υ (f(X)) is a
PSΥ (T )-lower approximation semigroup.
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Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 7, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 7 and 8.

Corollary 4. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type PCR, where the bi-
nary relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}.
If X is a non-empty subset of S and f is injective, then Λ(X)
is a PSΛ(S)-rough semigroup if and only if Υ (f(X)) is a
PSΥ (T )-rough semigroup.

Theorem 9. Let f be an epimorphism from S in (S,PSΛ(S))
to T in (T,PSΥ (T )) type PCR, where the binary relation
Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If X is a
non-empty subset of S and f is injective, then Λ(X) is an
PSΛ(S)-upper approximation ideal if and only if Υ (f(X))
is an PSΥ (T )-upper approximation ideal.

Proof: Suppose that Λ(X) is an PSΛ(S)-upper approx-
imation ideal. Then we have SΛ(X) ⊆ Λ(X). Whence we
have f(SΛ(X)) ⊆ f(Λ(X)). By Proposition 10 (2), we
obtain that

TΥ (f(X)) = f(SΛ(X)) ⊆ f(Λ(X)) = Υ (f(X)).

Hence Υ (f(X)) is a left ideal of T . Similarly, we can prove
that Υ (f(X)) is a right ideal of T . Thus Υ (f(X)) is an
PSΥ (T )-upper approximation ideal.

Conversely, we suppose that Υ (f(X)) is an PSΥ (T )-
upper approximation ideal. Then, TΥ (f(X)) ⊆ Υ (f(X)).
Now, let s1 ∈ SΛ(X). From Proposition 10 (2), it follows
that

f(s1) ∈ f(SΛ(X)) = TΥ (f(X)) ⊆ Υ (f(X)) = f(Λ(X)).

Thus there exists s2 ∈ Λ(X) such that f(s1) = f(s2), and
so PSΛ(s2) ∩ X ̸= ∅. By the assumption, we have that
PSΛ(s1)∩X ̸= ∅, and so s1 ∈ Λ(X). Thus we get SΛ(X) ⊆
Λ(X). Then, Λ(X) is a left ideal of S. Similarly, we can
check that Λ(X) is a right ideal of S. Therefore, Λ(X) is
an PSΛ(S)-upper approximation ideal.

Theorem 10. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type PCR, where the bi-
nary relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}.
If X is a non-empty subset of S and f is injective, then
Λ(X) is a PSΛ(S)-lower approximation ideal if and only if
Υ (f(X)) is a PSΥ (T )-lower approximation ideal.

Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 9, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 9 and 10.

Corollary 5. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type PCR, where the bi-
nary relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}.
If X is a non-empty subset of S and f is injective, then
Λ(X) is a PSΛ(S)-rough ideal if and only if Υ (f(X)) is a
PSΥ (T )-rough ideal.

Theorem 11. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type CR, where the binary

relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If
X is a non-empty subset of S and f is injective, then Λ(X)
is an PSΛ(S)-upper approximation completely prime ideal
if and only if Υ (f(X)) is an PSΥ (T )-upper approximation
completely prime ideal.

Proof: Assume that Λ(X) is an PSΛ(S)-upper ap-
proximation completely prime ideal. Let t1, t2 ∈ T be
such that t1t2 ∈ Υ (f(X)). Thus there exist s1, s2 ∈ S
such that f(s1) = t1 and f(s2) = t2. Hence we have
PSΥ (f(s1)f(s2)) ∩ f(X) ̸= ∅. Since Υ is complete,

(PSΥ (f(s1)))(PSΥ (f(s2))) ∩ f(X) ̸= ∅.

Then there exists f(s3) ∈ PSΥ (f(s1)) and exists f(s4) ∈
PSΥ (f(s2)) such that f(s3)f(s4) ∈ f(X), and so
f(s3s4) ∈ f(X). Then there exists s5 ∈ X such that
f(s3s4) = f(s5). By Proposition 10 (1), we obtain that
s3 ∈ PSΛ(s1) and s4 ∈ PSΛ(s2). From Proposition 7
and Proposition 10 (5), it follows that s3s4 ∈ PSΛ(s1s2).
By the assumption, we get that s5 = s3s4 = PSΛ(s1s2).
Thus PSΛ(s1s2) ∩ X ̸= ∅, and so s1s2 ∈ Λ(X). Since
Λ(X) is a completely prime ideal of S, we have that
s1 ∈ Λ(X) or s2 ∈ Λ(X). Hence we have f(s1) ∈ f(Λ(X))
or f(s2) ∈ f(Λ(X)). From Proposition 10 (2), we get
f(s1) ∈ Υ (f(X)) or f(s2) ∈ Υ (f(X)), which yields
t1 ∈ Υ (f(X)) or t2 ∈ Υ (f(X)). Thus Υ (f(X)) is a
completely prime ideal of T . Therefore, Υ (f(X)) is an
PSΥ (T )-upper approximation completely prime ideal.

Conversely, we suppose that Υ (f(X)) is an PSΛ(S)-
upper approximation completely prime ideal. Let s6, s7
be two elements in S such that s6s7 ∈ Λ(X). Then,
f(s6s7) ∈ f(Λ(X)). By Proposition 10 (2), we obtain that

f(s6)f(s7) = f(s6s7) ∈ f(Λ(X)) = Υ (f(X)).

Thus f(s6) ∈ Υ (f(X)) or f(s7) ∈ Υ (f(X)). Now, we
consider the following two cases.

Case 1. If f(s6) ∈ Υ (f(X)), then we have that
f(s6) ∈ f(Λ(X)) since Proposition 10 (2). Thus there
exists s8 ∈ Λ(X) such that f(s6) = f(s8). Whence we
get PSΛ(s8) ∩ X ̸= ∅. Thus PSΛ(s6) ∩ X ̸= ∅ since f is
injective. Therefore, s6 ∈ Λ(X).

Case 2. If f(s7) ∈ Υ (f(X)), then s7 ∈ Λ(X) since the
proof is similar to that the first case.

Consequently, Λ(X) is an PSΛ(S)-upper approximation
completely prime ideal.

Theorem 12. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type CR, where the binary
relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If
X is a non-empty subset of S and f is injective, then Λ(X)
is a PSΛ(S)-lower approximation completely prime ideal
if and only if Υ (f(X)) is a PSΥ (T )-lower approximation
completely prime ideal.

Proof: By Proposition 10 (4) and using the similar
method in the proof of Theorem 11, we can prove that the
statement holds.

The following corollary is immediate consequences of
Theorems 11 and 12.

Corollary 6. Let f be an epimorphism from S in
(S,PSΛ(S)) to T in (T,PSΥ (T )) type CR, where the binary
relation Λ := {(s1, s2) ∈ S × S : (f(s1), f(s2)) ∈ Υ}. If
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X is a non-empty subset of S and f is injective, then Λ(X)
is a PSΛ(S)-rough completely prime ideal if and only if
Υ (f(X)) is a PSΥ (T )-rough completely prime ideal.

VI. DISCUSSIONS AND CONCLUSIONS

In this section we discuss approximation forms of this
research and models in [1], [4], [7], [13], [23].

Firstly, concepts of generalizations of rough sets in general
have been established as the following the diagram.

[1] [23] Our rough sets- -

Based on this point, if the equivalence property of a relation
is put in the Mareay’s rough set [23], then the Mareay’s
rough set is a generalization of the Pawlak’s rough set [1].
Moreover, if our rough set is considered under the single
universe and the equal condition in Definition 5, then such
the rough set is a generalization of the Mareay’s rough set.

Secondly, we discuss main results in a semigroup of this
work (Sections IV and V), Kuroki [4], Xiao and Zhang [7],
and Wang and Zhan [13] by using TABLES IV, V and VI
below.

In the following TABLES IV, V and VI, the symbol X
denotes two statements as the following.
(1) The sufficient condition (briefly, SC) of an upper ap-

proximation semigroup (briefly, UAS) (resp. a lower
approximation semigroup (briefly, LAS) and a rough
semigroup (briefly, RS)) is provided in [4], [7], [13],
or this work. Similarly, if sufficient conditions of an
upper approximation ideal (briefly, UAI) (resp. a lower
approximation ideal (briefly, LAI) and a rough ideal
(briefly, RI)) and an upper approximation completely
prime ideal (briefly, UAC) (resp. a lower approximation
completely prime ideal (briefly, LAC) and a rough
completely prime ideal (briefly, RC)) are provided.

(2) The relationship between the UAS (resp. LAS and RS)
and the homomorphic image of the UAS (resp. LAS and
RS) is demonstrated under homomorphism problems
(briefly, HP) in [4], [7], [13], or this work. Similarly,
if UAI (resp. LAI and RI) and UAC (resp. LAC and
RC) are examined under HP.

TABLE IV
THE RESULTS OF UPPER APPROXIMATIONS IN SEMIGROUPS

[4] [7] [13] Our Model
UAS (SC) X X X
UAI (SC) X X X
UAC (SC) X X X
UAS (HP) X
UAI (HP) X X
UAC (HP) X X

TABLE V
THE RESULTS OF LOWER APPROXIMATIONS IN SEMIGROUPS

[4] [7] [13] Our Model
LAS (SC) X X X
LAI (SC) X X X
LAC (SC) X X X
LAS (HP) X
LAI (HP) X X
LAC (HP) X X

TABLE VI
THE RESULTS OF ROUGH SETS IN SEMIGROUPS

[4] [7] [13] Our Model
RS (SC) X
RI (SC) X
RC (SC) X
RS (HP) X
RI (HP) X
RC (HP) X

From TABLES IV, V and VI, we observe that sufficient
conditions are completely obtained in this research (Section
IV). Furthermore, connections under homomorphism prob-
lems are entirely verified in this work (Section V).

From the Mareay’s rough set induced by a binary relation
on the single universe, a generalization of the Mareay’s
rough set was constructed in an approximation space based
on portions of successor classes induced by a binary rela-
tion between two universes, and a corresponding example
was gave. Moreover, interesting algebraic properties were
investigated. Under a preorder and compatible relation, ap-
proximation processings in semigroups were applied from
the novel generalized rough set. As discussed above, it
indicates that sufficient conditions of rough semigroups,
rough ideals and rough completely prime ideals are fully
obtained, and associations under homomorphism problems
are ideally checked. The novel generalized rough set can be
applied in a semigroup. However, when we consider other
algebraic systems, the corresponding issues need to be further
examined.
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