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Abstract—The quaternion linear canonical transforms
(QLCT) is a nontrivial generalization of the linear canonical
transform (LCT) using quaternion algebra. Due to the non-
commutative property of quaternion multiplication there are
different definitions for the QLCT. We establish the relation-
ships among different types of the QLCTs.

Index Terms—quaternion linear canonical transform, quater-
nion Fourier transform

I. INTRODUCTION

The linear canonical transform (LCT) attracts increasing
research interests recently as new analysis tool in many
field of signal processing, image processing and optics. It
can be regarded as a generalization of many mathematical
transforms such as the Fourier transform, Laplace transform,
the fractional Fourier transform, the Fresnel transform and
the other transforms. With intensive research of the LCT,
many useful properties of this transform have been found
including shift, modulation, convolution, and correlation and
uncertainty principle and so on (see, e.g. [7], [11], [16],
[18], [19], [21], [22], [23]). Therefore, it is worthwhile and
interesting to extend the properties of the LCT to new integral
transform using quaternion algebra. This extension is not
straightforward, mainly due to the inherent property of non-
commutativity of quaternion multiplications. As it is shown
in [2], [5], [14], [15], [24] the LCT has been investigated
within the context of quaternion algebra and is a so-called
the quaternion linear canonical transform (QLCT). Based on
the quaternion Fourier transform (QFT) definitions [3], [4],
[6], [8], [10], [12], [13], there exist different definitions of the
QLCT. Further, they also have been successfully established
several important properties of various types of QLCT such
as shift, modulation, inversion formula and the uncertainty
principle, which are generalizations of the corresponding
properties of the LCT with some modifications. An important
issue regarding the QLCT is to study relations of some
definitions of the QLCT. In [17], the author considered
relationship among various definitions of 2-D quaternion
Fourier transforms (QFTs). As a generalized form of the
QFT, it is possible to obtain relations of various definitions of
the QLCTs using relation between the QFT and the QLCT.
We have in mind to find out in which sense the properties
of various definitions of the QFTs can be established in the
QLCT definitions. In the present paper, our purpose is to
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treat in detail some relationships among different types of
the QLCTs.

The paper is organized as follows: Section II presents
notations and some useful properties of quaternions and
decomposition of quaternion signal. Various definitions of the
QLCT and properties of their kernel functions are presented
in Section III. The relationships among three different defi-
nitions of type I QLCTs are studied in Section IV. Section V
provides the relationships among three different definitions
of type II QLCTs. Some conclusions are drawn in Section
VI.

II. PRELIMINARIES

In the present section we summarize some basic facts
about quaternions and decomposition of quaternion signal,
which will be needed throughout in the paper.

A. Quaternion Algebra

Let H be the set of quaternions over R. Every element of
H can be written in the form

H = {q = q0 + iq1 + jq2 + kq3 ; q0, q1, q2, q3 ∈ R}, (1)

which obeys the following multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (2)

For a quaternion q = q0 + iq1 + jq2 + kq3 ∈ H, q0 is called
the scalar part of q denoted by Sc(q) and iq1 + jq2 +kq3 is
called the vector (or pure) part of q. The vector part of q is
conventionally denoted by q.

Like complex numbers, the quaternion conjugate of q is
given by

q̄ = q0 − iq1 − jq2 − kq3, (3)

and satisfies an anti-involution, i.e.

qp = p̄q̄. (4)

From (3) we obtain the norm or modulus of q ∈ H defined
as

|q| =
√
qq̄ =

√
q20 + q21 + q22 + q23 . (5)

It is not difficult to see that

|qp| = |q||p|, ∀p, q ∈ H. (6)

Applying the conjugate (3) and modulus of q, we obtain the
inverse of q ∈ H \ {0} in the form

q−1 =
q̄

|q|2
. (7)
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A quaternion number q may be defined as a complex
number with complex and imaginary parts.

q = a+ jb, a = q0 + iq1, b = q2 + iq3. (8)

Equation (8) is known as the Cayley-Dickson form.

B. Decomposition of Quaternion Signal

The non-commutativity of quaternion multiplication
causes difficulty in some applications of quaternions. One
of the most effective method of solving this problem is the
decompositions of quaternions which assist in making sim-
plifications. There are many ways to decompose quaternion
signal as described below (see [1], [17]). According to (8)
every 2-D quaternion signal f(x) can be decomposed into a
symplectic form as follows:

f(x) = f0(x) + µ1f1(x) + µ2f2(x) + µ3f3(x)

= (f0(x) + µ1f1(x)) + (f2(x) + µ1f3(x))µ2

= fs(x) + fp(x)µ2, x = (x1, x2) ∈ R2, (9)

where µ3 = µ1µ2 with {µ1, µ2, µ3} being quaternionic roots
of −1(µ2

1 = µ2
2 = µ2

3 = −1). Here fs(x) = f0(x)+µ1f1(x)
is known as the simplex part and fp(x) = f2(x) + µ1f3(x)
is called the perplex part.

Any 2-D quaternion signal f(x) also can be split into even
(e) and odd (o) parts along the x1-and x2-axis as

f(x) = fee(x) + feo(x) + foe(x) + foo(x). (10)

Here fee denotes the part of f that is even with respect to
x1 and x2, foe denotes the part that is odd with respect to x1
and even with respect to x2, and so on. The decomposition
(10) can be written uniquely as

fee(x)

=
1

4
[f(x) + f(−x1, x2) + f(x1,−x2) + f(−x1,−x2)]

feo(x)

=
1

4
[f(x) + f(−x1, x2)− f(x1,−x2)− f(−x1,−x2)]

foe(x)

=
1

4
[f(x)− f(−x1, x2) + f(x1,−x2)− f(−x1,−x2)]

foo(x)

=
1

4
[f(x)− f(−x1, x2)− f(x1,−x2) + f(−x1,−x2)].

(11)

Besides the even and odd parts, any quaternion signal can
be decomposed into sum of the partial even and odd parts
as

f(x) = fe1(x) + fo1(x)

= fe2(x) + fo2(x), (12)

where

fe1(x) = fee(x) + feo(x) =
1

2
[f(x) + f(−x1, x2)]

fo1(x) = foe(x) + foo(x) =
1

2
[f(x)− f(−x1, x2)] (13)

and

fe2(x) = fee(x) + foe(x) =
1

2
[f(x) + f(x1,−x2)]

fo2(x) = feo(x) + foo(x) =
1

2
[f(x)− f(x1,−x2)]. (14)

Here fe1 and fo1 have an even and odd symmetry along
the x1-axis, respectively. Similarly, fe2 and fo2 individually
have an even and odd symmetry along the x2-axis.

III. QUATERNION LINEAR CANONICAL TRANSFORM
(QLCT)

.
In this section we discuss various definitions of the QLCT

and properties of their kernel functions.

A. Various Definitions of QLCT

In [1], the author presents 8 different possible definitions
of the quaternion Fourier transform (QFT). Based on these,
we introduce 6 different definitions of the QLCT. They are
constructed using the QLCT kernel functions.

Definition 1 (Single-axis (type I), Left-sided, Right-sided
and Two-sided QLCTs). Suppose that A1 = (a1, b1, c1, d1)
and A2 = (a2, b2, c2, d2) are real matrix parameters such
that det(A1) = det(A2) = 1. The left-sided, right-sided
and two-sided type I QLCTs of a quaternion signal f ∈
L1(R2;H) are defined by, respectively,

L
I,(l),H
A1,A2

{f}(ω) =

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(x) dx

(15)

L
I,(r),H
A1,A2

{f}(ω) =

∫
R2

f(x)Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2) dx

(16)

L
I,(t),H
A1,A2

{f}(ω) =

∫
R2

Kµ1

A1
(x1, ω1)f(x)Kµ1

A2
(x2, ω2) dx,

(17)

where the kernel functions of the QLCT above are given by

Kµ1

A1
(x1, ω1) =

 1√
2πb1

e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d1
b1
ω2

1−π2
)
, b1 6= 0

√
d1 e

µ1( c1d12 )ω2
1 , b1 = 0,

(18)

and

Kµ2

A2
(x2, ω2) =

 1√
2πb2

e
µ2
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
, b2 6= 0

√
d2 e

µ1( c2d22 )ω2
2 , b2 = 0.

(19)

From the above definition we obtain the following remark:
1) It is noted that for bi = 0 or b1b2 = 0, i = 1, 2 the

QLCT of a signal is essentially a chirp multiplication
and it is of no particular interest for our objective
in this work. Therefore, we shall consider the QLCT
definitions for b1b2 6= 0.

2) As a special case, when A1 = A2 = (ai, bi, ci, di) =
(0, 1,−1, 0) for i = 1, 2, the two-sided QLCT defini-
tion (17) reduces to the two-sided QFT definition. That
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is

L
I,(t),H
A1,A2

{f}(ω)

=

∫
R2

eµ1
π
4

√
2π
eµ1ω1x1 f(x)

eµ1
π
4

√
2π

eµ1ω2x2 dx

=
eµ1

π
4

√
2π
Fq{f}(ω)

eµ1
π
4

√
2π
, (20)

where Fq{f} is the two-sided QFT defined in [8], [13].

Next, from the symplectic decomposition of the 2-D
quaternion signal (9) and the definition of the left-sided type
I QLCT (15) we immediately get

L
I,(l),H
A1,A2

{f}(ω)

=

∫
R2

1√
2πb1

e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d2
b1
ω2

1−π2
)

× 1√
2πb2

e
µ1
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
(fs(x) + fp(x)µ2) dx

=

∫
R2

1√
2πb1

e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d2
b1
ω2

1−π2
)

× 1√
2πb2

e
µ1
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
fs(x) dx

+

∫
R2

1√
2πb1

e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d2
b1
ω2

1−π2
)

× 1√
2πb2

e
µ1
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
fp(x)µ2 dx

= L
I,(l),H
s,A1,A2

{f}(ω) + L
I,(l),H
p,A1,A2

{f}(ω)µ2. (21)

In a similar manner,

L
I,(r),H
A1,A2

{f}(ω) = L
I,(r),H
s,A1,A2

{f}(ω) + µ2L
I,(r),H
p,A1,A2

{f}(ω).

(22)

Definition 2 (Factored (Type II), Left-sided, Right-sided and
Two-sided QLCTs). Let A1 = (a1, b1, c1, d1) and A2 =
(a2, b2, c2, d2) be matrix parameters satisfying det(A1) =
det(A2) = 1. The left-sided, right-sided and two-sided type
II QLCTs of a quaternion signal f ∈ L1(R2;H) are defined
by, respectively,

L
II,(l),H
A1,A2

{f}(ω)

=

∫
R2

Kµ1

A1
(x1, ω1)Kµ2

A2
(x2, ω2)f(x) dx (23)

L
II,(r),H
A1,A2

{f}(ω)

=

∫
R2

f(x)Kµ1

A1
(x1, ω1)Kµ2

A2
(x2, ω2) dx (24)

L
II,(t),H
A1,A2

{f}(ω)

=

∫
R2

Kµ1

A1
(x1, ω1)f(x)Kµ2

A2
(x2, ω2) dx. (25)

B. Useful Properties of QLCT Kernel

The following proposition summarize some useful prop-
erties of the kernel functions KA1

(x1, ω1) and KA2
(x2, ω2)

of the QLCT, which will be used in the next section.

Proposition 1. Let the kernel functions KA1(x1, ω1) and
KA2(x2, ω2) be defined by (18) and (19). Then we get

Kµ1

A1
(−x1, ω1) = Kµ1

A1
(x1,−ω1)

Kµ2

A2
(−x2, ω2) = Kµ2

A2
(x2,−ω2);

Kµ1

A1
(−x1,−ω1) = Kµ1

A1
(x1, ω1)

Kµ2

A2
(−x2,−ω2) = Kµ2

A2
(x2, ω2)

Kµ1

A1
(x1, ω1)Kµ2

A2
(x2, ω2) = Kµ2

A−1
2

(x2, ω2)Kµ1

A−1
1

(x1, ω1).

Proof: The proof of the above proposition follows
directly from the equations (18) and (19). Details are left
to the reader.

We obtain the following important result which hold for
all types of the QLCTs. For simplicity we only consider the
left-sided type I QLCT.

Lemma 1. If quaternion signal f(x) is even or odd, then
its left-sided QLCT is also even or odd, i.e.,

L
I,(l),H
A1,A2,ee

{f}(ω) = L
I,(l),H
A1,A2

{fee}(ω) (26)

L
I,(l),H
A1,A2,oe

{f}(ω) = L
I,(l),H
A1,A2

{foe}(ω) (27)

L
I,(l),H
A1,A2,eo

{f}(ω) = L
I,(l),H
A1,A2

{feo}(ω) (28)

L
I,(l),H
A1,A2,oo

{f}(ω) = L
I,(l),H
A1,A2

{foo}(ω). (29)

Proof: We only prove the first assertion in (26), with
the other being similar. Truly, we have from (11)

L
I,(l),H
A1,A2

{fee}(ω)

=
1

4

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)

×
[
f(x) + f(−x1, x2) + f(x1,−x2) + f(−x1,−x2)

]
dx

=
1

4

[ ∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(x) dx

+

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(−x1, x2) dx

+

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(x1,−x2) dx

+

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(−x1,−x2) dx

]
Applying Proposition 1 we get

L
I,(l),H
A1,A2

{fee}(ω)

=
1

4

[ ∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2, ω2)f(x) dx

+

∫
R2

Kµ1

A1
(x1,−ω1)Kµ1

A2
(x2, ω2)f(x1, x2) dx

+

∫
R2

Kµ1

A1
(x1, ω1)Kµ1

A2
(x2,−ω2)f(x1, x2) dx

+

∫
R2

Kµ1

A1
(x1,−ω1)Kµ1

A2
(x2,−ω2)f(x1, x2) dx

]
=

1

4

[
L
I,(l),H
A1,A2

{f}(ω) + L
I,(l),H
A1,A2

{f}(−ω1, ω2)

+ L
I,(l),H
A1,A2

{f}(ω1,−ω2) + L
I,(l),H
A1,A2

{f}((−ω1,−ω2)

]
= L

I,(l),H
A1,A2,ee

{f}(ω),

where LI,(l),HA1,A2,ee
{f} is even part of the QLCT of f . The

proof is complete.
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TABLE I
RELATIONSHIP BETWEEN LEFT-SIDED AND RIGHT-SIDED TYPE I

QLCTS.

Right-Sided QLCT
Left-Sided QLCT L

I,(l),H
s,A1,A2

{f}(ω) = L
I,(r),H
s,A1,A2

{f}(ω)

µ2L
I,(l),H
p,A1,A2

{f}(ω) = L
I,(r),H
p,A∗

1 ,A
∗
2
{f}(ω)µ2

IV. RELATIONSHIPS AMONG DIFFERENT DEFINITIONS
OF TYPE I QLCTS

In this section we investigate the relationships among three
different definitions of type I QLCTs. We will see that three
QLCTs do not lead to the same results.

A. Relationship Between Left-Sided and Right-Sided Type I
QLCTs

The following result describes the relationship between the
left-sided and right-sided type I QLCTs as follows (see Table
I).

Proposition 2. If quaternion signal f(x) is uniquely decom-
posed into symplectic form, then its type I QLCT satisfies the
following relations:

L
I,(l),H
s,A1,A2

{f}(ω) = L
I,(r),H
s,A1,A2

{f}(ω), (30)

and

µ2L
I,(l),H
p,A1,A2

{f}(ω) = L
I,(r),H
p,A∗

1 ,A
∗
2
{f}(ω)µ2, (31)

where A∗1 = (a1,−b1, c1, d1) and A∗2 = (a2,−b2, c2, d2).

Proof: The proof of (30) is based on the commutativity
of simplex part to kernel of the QLCT, so we omit it. For
(31), simple computations show that

µ2L
I,(r),H
p,A1,A2

{f}(ω)

=

∫
R2

µ2fp(x)
1√

2πb1
e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d1
b1
ω2

1−π2
)

× 1√
2πb2

e
µ1
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
dx

=

∫
R2

1√
2πb1

e
−µ12

(
a1
b1
x2
1− 2

b1
x1ω1+

d1
b1
ω2

1−π2
)

× 1√
2πb2

e
−µ12

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
fp(x)µ2 dx

=

∫
R2

1√
−2πb1

e
−µ12

(
a1
b1
x2
1− 2

b1
x1ω1+

d1
b1
ω2

1+
π
2

)

× 1√
−2πb2

e
−µ12

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2+
π
2

)
fp(x)µ2 dx

= L
I,(l),H
p,A∗

1 ,A
∗
2
{f}(ω)µ2.

This proves the proposition.
From Proposition 2 it seems that the simplex part of the

left-sided and right-sided type I QLCTs are the same, while
the perplex parts of the two transforms is not the same. In
this case the matrix parameter Ai = (ai, bi, ci, di) becomes
A∗i = (ai,−bi, ci, di) for i = 1, 2.

B. Relationship Between Left-Sided and Two-Sided QLCTs

In order to study the relationship between left-sided and
two-sided type I QLCTs. We first discuss the even and odd
parts of the left-sided and two-sided type I QLCTs. For a 2-D
quaternion signal f(x) we may define (compare to [17])

L
I,(l),H
A1,A2,ee

{f}(ω)

=
1√

2πb1

∫
R2

cos(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× 1√
2πb2

cos(
a1
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)f(x) dx

= CA1,x1
CA2,x2

(ω) (32)

L
I,(l),H
A1,A2,eo

{f}(ω)

=
µ1√
2πb1

∫
R2

cos(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× 1√
2πb2

sin(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)f(x) dx

= µ1CA1,x1SA2,x2(ω) (33)

L
I,(l),H
A1,A2,oe

{f}(ω)

=
µ1√
2πb1

∫
R2

sin(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× 1√
2πb2

cos(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)f(x) dx

= µ1SA1,x1
CA2,x2

(ω) (34)

L
I,(l),H
A1,A2,oo

{f}(ω)

=
µ1√
2πb1

∫
R2

sin(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× µ1√
2πb2

sin(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)f(x) dx

= −SA1,x1SA2,x2(ω). (35)

Here the symbol CA1,x1
CA1,x2

performs the cosine trans-
forms associated with the LCT in the x1 and x2 directions,
CA1,x1

SA1,x2
denotes the cosine transform associated with

the LCT in the x1 direction and sine transform associated
with the LCT in the x2 direction and so on.

Theorem 1. The relationship between the even and odd parts
of left-sided and two-sided QLCTs is given by

L
I,(l),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω)

L
I,(l),H
A1,A2,oe

{f}(ω) = L
I,(t),H
A1,A2,oe

{f}(ω)

L
I,(t),H
A1,A2,eo

{f}(ω) = −µ1L
I,(l),H
A1,A2,eo

{f}(ω)µ1

L
I,(t),H
A1,A2,oo

{f}(ω) = −µ1L
I,(l),H
A1,A2,oo

{f}(ω)µ1, (36)

Proof: Direct application of Euler’s formula to the
kernel of the left-sided type I QLCT we easily get

L
I,(l),H
A1,A2

{f}(ω)

=

∫
R2

1√
2πb1

e
µ1

(
a1
2b1

x2
1− 1

b1
x1ω1+

d1
2b1

ω2
1−π4

)

× 1√
2πb2

e
µ1

(
a2
2b2

x2
2− 2

2b2
x2ω2+

d2
2b2

ω2
2−π4

)
f(x) dx

=

∫
R2

(
1√

2πb1
cos(

a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

+
µ1√
2πb1

sin(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)
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TABLE II
RELATIONSHIP BETWEEN LEFT-SIDED AND TWO SIDED TYPE I QLCTS.

Two-Sided QLCT
Left-Sided QLCT L

I,(t),H
A1,A2,e2

{f}(ω) = L
I,(l),H
A1,A2,e2

{f}(ω)

L
I,(t),H
A1,A2,o2

{f}(ω) = −µ1LI,(l),H
A1,o2

{f}(ω)µ1

× 1√
2πb2

cos(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)+

+
µ1√
2πb2

sin(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)

)
f(x) dx

Simplifying the above identity yields

L
I,(l),H
A1,A2

{f}(ω) = L
I,(l),H
A1,A2,ee

{f}(ω) + L
I,(l),H
A1,A2,eo

{f}(ω)

+ L
I,(l),H
A1,A2,oe

{f}(ω) + L
I,(l),H
A1,A2,oo

{f}(ω).

Performing similar reasoning as mentioned above, we
obtain the even and odd parts of the two-sided QLCT as
follows.

L
I,(t),H
A1,A2,ee

{f}(ω) = CA1,x1
CA2,x2

(ω) (37)

L
I,(t),H
A1,A2,eo

{f}(ω) = CA1,x1
SA2,x2

(ω)µ1 (38)

L
I,(t),H
A1,A2,oe

{f}(ω) = µ1SA1,x1
CA2,x2

(ω) (39)

L
I,(t),H
A1,A2,oo

{f}(ω) = µ1SA1,x1
SA2,x2

(ω)µ1. (40)

From equations (32), (34), (37) and (39) it is obvious that

L
I,(l),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω),

L
I,(l),H
A1,A2,oe

{f}(ω) = L
I,(t),H
A1,A2,oe

{f}(ω). (41)

If we multiply (33) by −µ1 on the left side and by µ1 on
the right side, we get

−µ1L
I,(l),H
A1,A2,eo

{f}(ω)µ1 = −µ1[µ1CA1,x1SA2,x2(ω)]µ1

= CA1,x1
SA2,x2

(ω)µ1

(38)
= L

I,(t),H
A1,A2,eo

{f}(ω). (42)

Similar to (42) we can easily get

−µ1L
I,(l),H
A1,A2,oo

{f}(ω)(−µ1) = L
I,(t),H
A1,A2,oo

{f}(ω).

This finishes the proof of the theorem.
Next, we establish the relationship between the partial even

and odd parts of the left-sided and right-sided type I QLCTs
as shown in Table II.

Proposition 3. If 2-D quaternion signal f(x) is split into
the partial even and odd parts, i.e., f(x) = fe2(x)+fo2(x).
The following relations are satisfied:

L
I,(t),H
A1,A2,e2

{f}(ω) = L
I,(l),H
A1,A2,e2

{f}(ω),

L
I,(t),H
A1,A2,o2

{f}(ω) = −µ1L
I,(l),H
A1,o2

{f}(ω)µ1.

Moreover, the two-sided type I QLCT of 2-D quaternion
signal f(x) can be represented using the left-sided type I
QLCT in the form

L
I,(t),H
A1,A2

{f}(ω) = L
I,(l),H
A1,A2,e2

{f}(ω)− µ1L
I,(l),H
A1,A2,o2

{f}(ω)µ1.

(43)

Proof: It follows that

L
I,(l),H
A1,A2

{f}(ω)

= L
I,(l),H
A1,A2

{fe2 + fo2}(ω)

= L
(l),H
A1,A2

{fe2}(ω) + L
I,(l),H
A1,A2

{fo2}(ω)

= L
I,(l),H
A1,A2,e2

{f}(ω) + L
I,(l),H
A1,A2,o2

{f}(ω)

= [L
I,(l),H
A1,A2,ee

{f}(ω) + L
I,(l),H
A1,A2,oe

{f}(ω)]

+ [L
I,(l),H
A1,A2,eo

{f}(ω) + L
I,(l),H
A1,A2,oo

{f}(ω)]

= [CA1,x1
CA1,x2

(ω) + µ1SA1,x1
CA1,x2

(ω)]

+ [µ1CA1,x1
SA1,x2

(ω)− SA1,x1
SA1,x2

(ω)]. (44)

Following the steps of (44) one can conclude that

L
I,(t),H
A1,A2

{f}(ω)

= L
I,(t),H
A1,A2

{fe2 + fo2}(ω)

= L
I,(t),H
A1,A2,e2

{f}(ω) + L
I,(t),H
A1,A2,o2

{f}(ω)

= [CA1,x1
CA1,x2

(ω) + µ1SA1,x1
CA1,x2

(ω)]

+ [CA1,x1
SA1,x2

(ω) + µ1SA1,x1
SA1,x2

(ω)µ1]. (45)

Comparing equation (44) with equation (45), we finally
arrive at

L
I,(t),H
A1,A2,e2

{f}(ω) = L
I,(l),H
A1,A2,e2

{f}(ω)

L
I,(t),H
A1,A2,o2

{f}(ω) = −µ1L
I,(l),H
A1,A2,o2

{f}(ω)µ1.

The proof is complete.
It is worth noting here if f(x) = fe1(x) + fo1(x), then

there is no relationship between left-sided and two-sided type
I QLCTs.

C. Relationship Between Right-Sided and Two-Sided Type I
QLCTs

In section we will present the basic connection between
the right-sided and two-sided type I QLCTs. For the purpose,
we first need define the even and odd parts of the right-sided
type I QLCT of the quaternion signal f(x) as

L
I,(r),H
A1,A2,ee

{f}(ω)

=
1√

2πb1

∫
R2

f(x) cos(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× 1√
2πb2

cos(
a1
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
) dx

= CA1,x1
CA2,x2

(ω) (46)

L
I,(r),H
A1,A2,eo

{f}(ω)

=
1√

2πb1

∫
R2

f(x) cos(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× µ1
1√

2πb2
sin(

a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
) dx

= CA1,x1SA2,x2(ω)µ1 (47)

L
I,(r),H
A1,A2,oe

{f}(ω)

=
1√

2πb1

∫
R2

f(x)µ1 sin(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)

× 1√
2πb2

cos(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
) dx

= SA1,x1
CA2,x2

(ω)µ1 (48)

L
I,(r),H
A1,A2,oo

{f}(ω)

=
−µ1√
2πb1

∫
R2

sin(
a1
2b1

x21 −
1

b1
x1ω1 +

d1
2b1

ω2
1 −

π

4
)
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TABLE III
RELATIONSHIP BETWEEN RIGT-SIDED AND TWO SIDED TYPE I QLCTS.

Two-Sided QLCT
Right-Sided QLCT L

I,(l),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω)

L
I,(l),H
A1,A2,eo

{f}(ω) = L
I,(t),H
A1,A2,eo

{f}(ω)

L
I,(t),H
A1,A2,oe

{f}(ω) = −µ1LI,(r),H
A1,A2,oe

{f}(ω)µ1

L
I,(t),H
A1,A2,oo

{f}(ω) = −µ1LI,(r),H
A1,A2,oo

{f}(ω)µ1

× −µ1√
2πb2

sin(
a2
2b2

x22 −
1

b2
x2ω2 +

d2
2b2

ω2
2 −

π

4
)f(x) dx

= −SA1,x1
SA2,x2

(ω). (49)

This leads to the following result (see Table III).

Theorem 2. The even and odd parts of the right-sided and
two-sided type I QLCTs is related by

L
I,(l),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω)

L
I,(l),H
A1,A2,eo

{f}(ω) = L
I,(t),H
A1,A2,eo

{f}(ω)

L
I,(t),H
A1,A2,oe

{f}(ω) = −µ1L
I,(r),H
A1,A2,oe

{f}(ω)µ1

L
I,(t),H
A1,A2,oo

{f}(ω) = −µ1L
I,(r),H
A1,A2,oo

{f}(ω)µ1. (50)

Proof:
Comparing equations (37), (38), (46) and (47) yields

L
I,(r),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω),

and

L
I,(r),H
A1,A2,eo

{f}(ω) = L
I,(t),H
A1,A2,eo

{f}(ω).

If we multiply (48) by −µ1 on the left side and by µ1 the
right side, we get

−µ1L
I,(r),H
A1,A2,oe

{f}(ω)µ1 = −µ1[SA1,x1CA2,x2(ω)µ1]µ1

= µ1SA1,x1
CA2,x2

(ω)

= L
I,(t),H
A1,A2,oe

{f}(ω).

Analogously we can get

−µ1L
I,(r),H
A1,A2,oo

{f}(ω)µ1 = L
I,(t),H
A1,A2,oo

{f}(ω).

This finishes the proof of the theorem.

Proposition 4. If 2-D quaternion signal f(x) is split into
the partial even and odd parts, i.e.,

f(x) = fe1(x) + fo1(x) (51)

then the following relations hold:

L
I,(t),H
A1,A2,e2

{f}(ω) = L
I,(r),H
A1,A2,e2

{f}(ω),

and

L
I,(t),H
A1,A2,o2

{f}(ω) = −µ1L
I,(r),H
A1,o2

{f}(ω)µ1.

Furthermore, the two-sided type I QLCT of signal f(x) can
be represented in the partial even and odd parts of the right-
sided type I QLCT as

L
I,(t),H
A1,A2

{f}(ω) = L
I,(r),H
A1,A2,e2

{f}(ω)− µ1L
I,(r),H
A1,A2,o2

{f}(ω)µ1.

(52)

Proof: A straightforward calculation gives

L
I,(r),H
A1,A2

{f}(ω)

= L
I,(r),H
A1,A2

{fe1 + fo1}(ω)

= L
I,(r),H
A1,A2

{fe1}(ω) + L
I,(r),H
A1,A2

{fo1}(ω)

= L
I,(r),H
A1,A2,e1

{f}(ω) + L
I,(r),H
A1,A2,o1

{f}(ω)

= [L
I,(r),H
A1,A2,ee

{f}(ω) + L
I,(r),H
A1,A2,eo

{f}(ω)]

+ [L
I,(r),H
A1,A2,oe

{f}(ω) + L
I,(r),H
A1,A2,oo

{f}(ω)]

= [CA1,x1
CA2,x2

(ω) + CA1,x1
SA2,x2

(ω)µ1]

+ [CA1,x1
SA2,x2

(ω)µ1 − SA1,x1
SA2,x2

(ω)]. (53)

Similar to (53), we easily get

L
I,(t),H
A1,A2

{f}(ω)

= L
I,(t),H
A1,A2

{fe1 + fo1}(ω)

= L
I,(t),H
A1,A2,e1

{f}(ω) + L
I,(t),H
A1,A2,o1

{f}(ω)

= [CA1,x1CA2,x2(ω) + CA1,x1SA2,x2(ω)]

+ [µ1SA1,x1CA2,x2(ω) + µ1SA1,x1SA2,x2(ω)µ1]. (54)

Comparing equation (53) with equation (54), we obtain

L
I,(t),H
A1,A2,e1

{f}(ω) = L
I,(r),H
A1,A2,e1

{f}(ω)

L
I,(t),H
A1,A2,o1

{f}(ω) = −µ1L
I,(r),H
A1,A2,o1

{f}(ω)µ1.

This gives the desired result.
It is not difficult to check that there is no relationship

between the right-sided and two-sided type I QLCTs if
f(x) = fe2(x) + fo2(x).

V. RELATIONSHIPS AMONG DIFFERENT DEFINITIONS OF
TYPE II QLCTS

In this section we study the relationships among three
different definitions of type II QLCTs. For this discussion
we first start by establishing the relationship between the
left-sided and right-sided type II QLCTs.

A. Relationship Between Left-Sided and Right-Sided Type II
QLCTs

The following proposition describes connection between
the left-sided and right-sided type II QLCTs.

Proposition 5. If quaternion signal f(x) is decomposed into
symplectic form, then its left-sided and right-sided type II
QLCTs are related by

L
II,(l),H
s,A1,A2

{f}(ω) = L
II,(r),H
s,A1,A2

{f}(ω), (55)

and

L
II,(l),H
p,A1,A2

{f}(ω) = L
II,(r),H
p,A∗

1 ,A2
{f}(ω), (56)

where A∗1 = (a1,−b1, c1, d1) and A2 = (a2, b2, c2, d2).

Proof: Equation (55) can be proved using the similar
argument as in the first term of (30). Simple computations
show that

µ2L
I,(r),H
p,A1,A2

{f}(ω)

=

∫
R2

µ2fp(x)
1√

2πb1
e
µ1
2

(
a1
b1
x2
1− 2

b1
x1ω1+

d2
b1
ω2

1−π2
)

× 1√
2πb2

e
µ2
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
dx

=

∫
R2

1√
2πb1

e
−µ12

(
a1
b1
x2
1− 2

b1
x1ω1+

d2
b1
ω2

1−π2
)
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× 1√
2πb2

e
µ2
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
fp(x)µ2 dx

=

∫
R2

1√
−2πb1

e
−µ12

(
a1
b1
x2
1− 2

b1
x1ω1+

d1
b1
ω2

1+
π
2

)

× 1√
2πb2

e
µ2
2

(
a2
b2
x2
2− 2

b2
x2ω2+

d2
b2
ω2

2−π2
)
fp(x)µ2 dx

= L
II,(l),H
p,A∗

1 ,A
∗
2
{f}(ω)µ2.

This proves the proposition.

B. Relationship Between Left-Sided and Two-Sided Type II
QLCTs

In this subsection we discuss the even and odd parts of
the left-sided and two-sided type II QLCTs. Using the same
steps in the previous section we get for a 2-D quaternion
signal f(x)

L
II,(l),H
A1,A2,ee

{f}(ω) = CA1,x1
CA2,x2

(ω) (57)

L
II,(l),H
A1,A2,eo

{f}(ω) = µ2CA1,x1
SA2,x2

(ω) (58)

L
II,(l),H
A1,A2,oe

{f}(ω) = µ1SA1,x1
CA2,x2

(ω) (59)

L
II,(l),H
A1,A2,oo

{f}(ω) = µ3SA1,x1
SA2,x2

(ω). (60)

Proposition 6. The relationship between the even and odd
parts of the left-sided and two-sided type II QLCTs is given
by

L
II,(l),H
A1,A2,ee

{f}(ω) = L
II,(t),H
A1,A2,ee

{f}(ω)

L
II,(l),H
A1,A2,oe

{f}(ω) = L
II,(t),H
A1,A2,oe

{f}(ω)

L
II,(t),H
A1,A2,eo

{f}(ω) = −µ1L
II,(l),H
A1,A2,eo

{f}(ω)µ1

L
II,(t),H
A1,A2,oo

{f}(ω) = µ2L
II,(l),H
A1,A2,oo

{f}(ω)µ2. (61)

Proof: We first observe that

L
II,(t),H
A1,A2,ee

{f}(ω) = CA1,x1
CA2,x2

(ω) (62)

L
II,(t),H
A1,A2,eo

{f}(ω) = CA1,x1
SA2,x2

(ω)µ2 (63)

L
II,(t),H
A1,A2,oe

{f}(ω) = µ1SA1,x1
CA2,x2

(ω) (64)

L
II,(t),H
A1,A2,oo

{f}(ω) = µ1SA1,x1
SA2,x2

(ω)µ2. (65)

From equations (57), (59), (62) and (64) it is obvious that

L
II,(l),H
A1,A2,ee

{f}(ω) = L
I,(t),H
A1,A2,ee

{f}(ω)

L
II,(l),H
A1,A2,oe

{f}(ω) = L
I,(t),H
A1,A2,oe

{f}(ω). (66)

Multiplying (58) by −µ2 on the left side and by µ2 on the
right side yields

−µ2L
II,(l),H
A1,A2,eo

{f}(ω)µ1 = −µ2[µ2CA1,x1
SA2,x2

(ω)]µ2

= CA1,x1SA2,x2(ω)µ2

(63)
= L

II,(t),H
A1,A2,eo

{f}(ω). (67)

From (60) we get

µ2L
II,(l),H
A1,A2,oo

{f}(ω)µ1 = µ2[µ3SA1,x1
SA2,x2

(ω)]µ2

= L
II,(t),H
A1,A2,oo

{f}(ω).

This finishes the proof of the proposition.

Proposition 7. If 2-D quaternion signal f(x) is split into
the partial even and odd parts, i.e., f(x) = fe2(x)+fo2(x).
The following relations are satisfied:

L
II,(t),H
A1,A2,e2

{f}(ω) = L
II,(l),H
A1,A2,e2

{f}(ω),

L
II,(t),H
A1,A2,o2

{f}(ω) = −µ1L
II,(l),H
A1,o2

{f}(ω)µ1.

Moreover, the two-sided type II QLCT of 2-D quaternion
signal f(x) can be represented using the left-sided Type II
QLCT in the form

L
II,(t),H
A1,A2

{f}(ω)

= L
II,(l),H
A1,A2,e2

{f}(ω)− µ2L
II,(l),H
A1,A2,o2

{f}(ω)µ2. (68)

Proof: It follows that

L
II,(l),H
A1,A2

{f}(ω)

= L
II,(l),H
A1,A2

{fe2 + fo2}(ω)

= L
II,(l),H
A1,A2,e2

{f}(ω) + L
II,(l),H
A1,A2,o2

{f}(ω)

= [L
II,(l),H
A1,A2,ee

{f}(ω) + L
II,(l),H
A1,A2,oe

{f}(ω)]

+ [L
II,(l),H
A1,A2,eo

{f}(ω) + L
II,(l),H
A1,A2,oo

{f}(ω)]

= [CA1,x1
CA2,x2

(ω) + µ1SA1,x1
CA2,x2

(ω)]

+ [µ2CA1,x1
SA2,x2

(ω) + µ3SA1,x1
SA2,x2

(ω)]. (69)

Analogously we get

L
II,(t),H
A1,A2

{f}(ω)

= L
II,(t),H
A1,A2

{fe2 + fo2}(ω)

= L
II,(t),H
A1,A2,e2

{f}(ω) + L
II,(t),H
A1,A2,o2

{f}(ω)

= [CA1,x1
CA2,x2

(ω) + µ1SA1,x1
CA2,x2

(ω)]

+ [CA1,x1
SA2,x2

(ω)µ2 + µ1SA1,x1
SA2,x2

(ω)µ2]. (70)

Comparing (69) with (70) gives

L
II,(t),H
A1,A2,e2

{f}(ω) = L
II,(l),H
A1,A2,e2

{f}(ω)

L
II,(t),H
A1,A2,o2

{f}(ω) = −µ2L
II,(l),H
A1,A2,o2

{f}(ω)µ2.

The proof is complete.

C. Relationship Between Right-Sided and Two-Sided Type II
QLCTs

In section we will derive the relationship between the
right-sided and two-sided type II QLCTs. For a 2-D quater-
nion signal f(x) we get the even and odd parts of the right-
sided type II QLCT as

L
II,(r),H
A1,A2,ee

{f}(ω) = CA1,x1CA2,x2(ω) (71)

L
II,(r),H
A1,A2,eo

{f}(ω) = CA1,x1
SA2,x2

(ω)µ2 (72)

L
(r),H
A1,A2,oe

{f}(ω) = SA1,x1
CA2,x2

(ω)µ1 (73)

L
II,(r),H
A1,A2,oo

{f}(ω) = SA1,x1
SA2,x2

(ω)µ3. (74)

This gives the following result.

Proposition 8. The even and odd parts of right-sided and
two-sided type II QLCTs is related by

L
II,,(r),H
A1,A2,ee

{f}(ω) = L
II,,(t),H
A1,A2,ee

{f}(ω)

L
II,(r),H
A1,A2,eo

{f}(ω) = L
II,(t),H
A1,A2,eo

{f}(ω)

L
II,(t),H
A1,A2,oe

{f}(ω) = −µ1L
II,(r),H
A1,A2,oe

{f}(ω)µ1

L
II,(t),H
A1,A2,oo

{f}(ω) = −µ1L
II,(r),H
A1,A2,oo

{f}(ω)µ1. (75)

Proof:
From equations (62),(63), (71) and (72) we get

L
I,(r),H
A1,A2,ee

{f}(ω) = L
II,(t),H
A1,A2,ee

{f}(ω)
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L
II,(r),H
A1,A2,eo

{f}(ω) = L
II,(t),H
A1,A2,eo

{f}(ω).

If we multiply (73) by −µ1 on the left side and by µ1 the
right side, we get

−µ1L
II,(r),H
A1,A2,oe

{f}(ω)µ1 = −µ1[SA1,x1
CA2,x2

(ω)µ1]µ1

= µ1SA1,x1
CA2,x2

(ω)

= L
II,(t),H
A1,A2,oe

{f}(ω).

Analogously we can get

L
II,(t),H
A1,A2,oo

{f}(ω) = −µ1L
II,(r),H
A1,A2,oo

{f}(ω)µ1.

This finishes the proof of the theorem.

Proposition 9. If 2-D quaternion signal f(x) is split into
the partial even and odd parts, i.e.,

f(x) = fe1(x) + fo1(x) (76)

then the following relations hold:

L
II,(t),H
A1,A2,e2

{f}(ω) = L
II,(r),H
A1,A2,e2

{f}(ω)

L
II,(t),H
A1,A2,o2

{f}(ω) = −µ1L
II,(r),H
A1,o2

{f}(ω)µ1.

Furthermore, the two-sided type II QLCT of signal f(x) can
be represented in the partial even and odd parts of the right-
sided type II QLCT as

L
II,(t),H
A1,A2

{f}(ω)

= L
II,(r),H
A1,A2,e2

{f}(ω)− µ1L
II,(r),H
A1,A2,o2

{f}(ω)µ1. (77)

Proof: A straightforward calculation gives

L
II,(r),H
A1,A2

{f}(ω)

= L
II,(r),H
A1,A2

{fe1 + fo1}(ω)

= L
II,(r),H
A1,A2,e1

{f}(ω) + L
II,(r),H
A1,A2,o1

{f}(ω)

= [L
II,(r),H
A1,A2,ee

{f}(ω) + L
II,(r),H
A1,A2,eo

{f}(ω)]

+ [L
II,(r),H
A1,A2,oe

{f}(ω) + L
II,(r),H
A1,A2,oo

{f}(ω)]

= [CA1,x1
CA2,x2

(ω) + CA1,x1
SA2,x2

(ω)µ2]

+ [CA1,x1
SA2,x2

(ω)µ1 + SA1,x1
SA2,x2

(ω)µ3]. (78)

In the same way,

L
II,(t),H
A1,A2

{f}(ω)

= L
II,(t),H
A1,A2

{fe1 + fo1}(ω)

= L
II,(t),H
A1,A2,e1

{f}(ω) + L
II,(t),H
A1,A2,o1

{f}(ω)

= [CA1,x1
CA2,x2

(ω) + CA1,x1
SA2,x2

(ω)µ2]

+ [µ1SA1,x1
CA2,x2

(ω) + µ1SA1,x1
SA2,x2

(ω)µ2]. (79)

Making a comparison between (78) and (79) we obtain

L
I,(t),H
A1,A2,e1

{f}(ω) = L
II,(r),H
A1,A2,e1

{f}(ω)

L
II,(t),H
A1,A2,o1

{f}(ω) = −µ1L
I,(r),H
A1,A2,o1

{f}(ω)µ1.

This gives the desired result.

VI. CONCLUSION

Due to the non-commutative property of quaternion mul-
tiplication, there are different definitions of the QLCT. They
are constructed using the QLCT kernel function. In this work,
we have discussed that the simplex part of the left-sided and
right-sided type I QLCTs are the same, while the perplex
parts of the two transform are not the same.
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