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Abstract—This paper focuses on the problem of exponential
stabilization and L2-gain analysis for a class of switched non-
linear systems with time-varying delay. Based on the Lyapunov
stability theory, a novel multi-Lyapunov-Krasovskii functional
dependent on the size of time delay is constructed. Specifically,
the integer terms in the multi-Lyapunov-Krasovskii functional
that taking the bound of upper and lower about delay are
processed with the help of delay decomposition technique.
Moreover, by utilizing the free-weighting matrix and the aver-
age dwell time approach, some sufficient conditions in forms of
linear matrix inequalities are presented to ensure the exponen-
tial stability with weighted L2-gain performance of the switched
nonlinear system. Based on the obtained results, the stabilizing
feedback controllers of switched nonlinear systems are designed
through special operations of matrices and Schur complement.
Finally, two numerical examples and an application example
are carried out to demonstrate the effectiveness of the proposed
method in this paper.

Index Terms—Switched nonlinear systems, Exponential stabi-
lization, L2-gain, Delay decomposition approach, Average dwell
time.

I. INTRODUCTION

IT is well known that hybrid systems are becoming
increasingly important in contemporary society both in

science and technology. Switched system is one of the
special hybrid systems, which is composed of a family of
continuous-time or discrete-time subsystems and a switching
sequence that orchestrates the switching among the sub-
systems to ensure stability. In the last decades, switched
system has attracted extensive attention from domestic and
foreign scientific research due mainly to two aspects. Firstly,
the switched system has been extensively applied in power
systems, engineering systems and physical systems, such
as flight control, artificial intelligence, communication, net-
worked control, power electronic and automatic highway
[1-4]. Secondly, some complex systems can be simplified
into multiple switching subsystems for easy research and
analysis. So far, many important advances and significant
achievements for various types of switched systems have
been studied [5-9].

Most physical systems are nonlinear dynamical systems
with time delay. Time delay and nonlinearity are inevitable
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in some practical systems, which are often the main cause for
instability, oscillation and undesirable system performance of
a dynamical system. Hence, nonlinearity naturally makes the
analysis and control design of nonlinear systems with time
delay more complicated. And as far as the many properties of
dynamical systems are concerned, it is worth mentioning that
stability analysis is one of the fundamental problems. During
the past few decades, many results concerning stability anal-
ysis of systems with time delay and nonlinearity problems
have been reported[10-14]. With respect to those problem, we
just mention here some representative work. [15] investigate
the problems of robust stability and robust stabilization
of uncertain neutral systems with distributed delays, and
new delay-dependent sufficient conditions for robust stability
and robust stabilization are formulated in terms of linear
matrix inequalities(LMIs). By following this idea, robust
guaranteed cost control for a class of uncertain neutral system
with time-varying delays is investigated in [16], and delay-
dependent and delay-independent criteria are proposed for
the stabilization of considered systems, and state feedback
control is considered to stabilize the uncertain neutral system
and upper bounds on the closed-loop cost function are also
given. Based on this approach, in [17], the problem of robust
stability for a class of stochastic interval neural networks with
discrete and distributed time-varying delays is discussed.
Moreover, by using the Itô differential formula and stochas-
tic stability theory, new delay-range-dependent criteria for
stochastic interval neural networks with time-varying delays
are also derived in [17]. And the method therein reduces the
conservativeness of methods involving a fixed model trans-
formation. [18] focuses on the issue of robustly exponential
stability for uncertain neutral systems with mixed time-
varying delays and nonlinear perturbations by applying an
integral inequality. Based on the above discussion, the theory
of time-delay systems can be divided into two classes: delay
independent control and delay dependent control. To the best
of our knowledge, delay-dependent stabilization condition
gives less conservative result than the delay-independent one
as it makes full use of information of the system. Specifically,
switched systems with time-delay and nonlinearity have a
deep engineering background and social applications. How-
ever, results concerning switched systems with time delay
and nonlinearity problems are relatively infrequent. This is
motivated by the need for systematic approach to investigate
switched nonlinear systems with delay.

On the other hand, since exogenous disturbance is en-
countered in various physical and engineering systems and
often result in instability and performance degradation.
The L2-gain problem for a variety of dynamical systems
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has received increasing attention [19-22], which is quite
practical and energy efficient. With the great development
of switched systems, it is noted that some valid results
have appeared to studying L2-gain analysis of nonlinear
switched systems with different performance in the past
few years. For instance, [23] study stability and L2-gain
for a class of switched systems with time-varying delays,
and sufficient conditions with delay-dependent for the ex-
ponential stability and weighted L2-gain are obtained by
a common Lyapunov functional (CLF), which may lead to
certain degree of conservatism. To address this issue, the
problem of exponential stabilization and L2-gain for a class
of uncertain switched nonlinear systems with time-varying
delay is studied in [24] by multiple Lyapunov functional
(MLF) and the dwell time approach. Recently analogous
results are found in [25], finite-time boundedness problem
for switched neural networks subject to L2-gain disturbance
is considered. Moreover, some new delay-dependent criteria
guaranteeing finite-time boundedness and stabilizability with
L2-gain analysis performance are developed by resorting to
the average dwell time approach and Lyapunov-Krasovskii
functional technology. In addition, some improved results
were obtained in [26], since the switching instants of the
controllers lag behind those of the subsystems, [26] consider
the stability and L2-gain analysis problem for a class of
switched linear systems under asynchronous switching. How-
ever, the results mentioned above, the problem of exponential
stabilization and L2-gain analysis for a class of switched
nonlinear systems with time-varying delay has not been well
reported and remains important.

This paper is concerned with the problem of exponential
stabilization and L2-gain analysis for a class of switched
nonlinear systems with time-varying delay. Compared with
the existing results, we mainly consider the following issues
in this paper. Firstly, we consider interval time-varying delay.
It is natural to look for an alternative view to derive a
less conservative condition for exponential stabilization of
nonlinear switched systems with interval time-varying delay.
Therefore, a novel multi-Lyapunov-Krasovskii functional de-
pendent on the size of time delay is constructed based on
the Lyapunov stability theory. Secondly, motivated by delay-
dependent and Jensens Inequality technique, we obtain less
conservative sufficient conditions for exponential stability
and a guaranteed weighted L2-gain disturbance attenuation
performance of the switched nonlinear systems with time-
varying delay under the average dwell time approach. Specif-
ically, we design feedback controller for switched nonlinear
systems with time-varying delay by matrix deformation tech-
nique and Schur compensation.

The remainder of this paper is organized as follows. In
Sections 2, the problem description and preliminaries and
some necessary lemmas are presented. Section 3 is devoted
to derive the results on exponential stabilization L2-gain
analysis for switching signals by the average dwell time
approach and delay-dependent multi-Lyapunov-Krasovskii
functional, and feedback controller was designed of nonlinear
switched nonlinear systems with interval time-varying delay,
which is the main result of this paper. In Section 4, some
examples are carried out to illustrate the effectiveness of the
proposed approach. The paper is concluded in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, a class of switched nonlinear systems
with interval-time-varying delay is considered, which is
represented as follows:

ẋ(t) = A1σ(t) +A2σ(t)x(t− h(t)) + Cσ(t)u(t)

+ ω(t) + f(t, x(t− h(t)))

x(t) = φ(t), t ∈ [−hM , 0],
z(t) = Dσ(t)x(t) + Fσ(t)x(t).

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the control input, z(t) ∈ Rn is the measured output,
ω(t) ∈ L2[0,∞) is an exogenous disturbance, the switch-
ing signal σ(t) : [0,∞] → L = {1, 2, . . . , l} is a
piecewise continuous (from the right) function, where l
is the number of subsystems. Specifically, denote, σ(t) :
{(t0, σ(t)), · · · , (tk, σ(t)), · · · , k = 0, 1, 2, · · · }, where t0 is
the initial switching instant and tk denotes the kth switching
instant. For any i ∈ M,A1i, A2i, Ci, Di, Fi are constant
matrices. φ(s) ∈ Rn is the initial condition, h(t) denotes the
time-varying delay satisfying 0 ≤ hm ≤ h(t) ≤ hM , ḣ(t) ≤
h < 1. f(t, x(t−h(t))) is an nonlinear perturbation function,
which satisfies

∥fi(t, x(t− h(t)))∥ ≤ |Vix(t− h(t))∥, (2)

where Vi are known real constant matrices.
For system (1), we consider the state feedback given by

u(t) = Kσ(t)x(t). (3)

Combining(1) with (3), the closed-loop system of ith sub-
system with the ith controller can be expressed as

ẋ(t) = (A1i + CiKi)x(t) +A2ix(t− h(t))

+ ω(t) + f(t, x(t− h(t))).
(4)

For convenience of discussion, we denote Ā1i = A1i +
CiKi. Then, we obtain

ẋ(t) = Ā1i +A2ix(t− h(t)) + ω(t) + f(t, x(t− h(t))).
(5)

For the sake of facilitating the description and proofing
the main results, we now introduce the following definitions
and lemmas.

Definition 1.([22]) The equilibrium x∗ = 0 of system
(1) with ω(t) = 0 is said to be exponentially stable under
switching signal σ(t), if there exist constants k ≥ 1, λ > 0
such that every solution x(t) of system(1) satisfies that

∥x(t)∥ ≤ k sup
−HM≤θ≤0

∥x(t0 + θ)∥e−λ(t−t0), ∀t ≥ t0.

Definition 2.([25]) For any T2 > T1 ≥ 0, Nσ(T1, T2) is
the switching number of σ(t) on an interval (T1, T2). If

Nσ(T1, T2) ≤ N0 + (T2 − T1)/τα, (6)

holds for given N0 ≥ 0, τα ≥ 0, then the constant τα is
called the average dwell time and N0 is the chatter bound.
Without loss of generality, we choose N0 = 0 in this paper.

Definition 3.([26]) For α > 0 and γ > 0, the switched
system (1) is said to have weighted L2-gain γ, if under zero
initial condition φ(t) = 0,t ∈ [−hM , 0], it holds that∫ ∞

0

e−αsZT (s)Z(s)ds ≤ γ2
∫ ∞

0

ωT (s)ω(s)ds (7)
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Lemma 1.([13]) For any symmetric and positive definite
constant matrix G ∈ Rl×l and scalar 0 ≤ r(t) ≤ r, if there
exists a vector function χ : [0, r] → Rl such that integrals∫ r(t)

0
χTGχ(s)ds and

∫ r(t)

0
χ(s)ds are well defined, then the

following inequality holds

(

∫ r(t)

0

χ(s)ds)χTG(

∫ r(t)

0

χ(s)ds) ≤ r

∫ r(t)

0

χTGχ(s)ds.

Lemma 2.([27]) Given constant matrices Ω1,Ω2,Ω3,
where Ω1 = ΩT

1 and Ω2 = ΩT
2 > 0, then

Ω1 +ΩT
3 Ω

−1
2 Ω3 < 0 if and only if[

Ω1 ΩT
3

Ω3 −Ω2

]
< 0.

III. MAIN RESULTS

In the section, the sufficient conditions in forms of linear
matrix inequalities is presented to ensure the exponential
stability with weighted L2-gain performance for the switched
nonlinear systems (1).

A. Stability analysis
In the following, applying the average dwell time ap-

proach, we give sufficient conditions for the exponential
stabilization of system (1) with ω(t) = 0.

Theorem 1. For given positive constants α, ε and µ ≥
1, if there exist symmetric and positive definite matrices
Pi, Q1i, Q2i, Q3i, R1i, R2i such that the following matrix
inequalities hold for all i, j ∈M, i ̸= j,

Pi ≤ µPj , Q1i ≤ µQ1j , Q2i ≤ µQ2j ,

Q3i ≤ µQ3j , R1i ≤ µR1j , R2i ≤ µR2j ,
(8)

Ξi =



ϕi11 ϕi12 0 0 Pi 0 0
∗ ϕi22 0 0 0 0 0
∗ ∗ ϕ33i 0 0 0 0
∗ ∗ ∗ ϕ44i 0 0 0
∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ϕi66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ77i


< 0

(9)
where
ϕi11 = ĀT

1iPi + PiĀ1i +Q1i +Q2i +Q3i + hm
2R1i

+ hM
2R2i + αPi,

ϕi12 = PiA2i, ϕi22 = εV T
i Vi − (1− d)e−αhMQ1i,

ϕi33 = −e−αhmQ2i, ϕ
i
44 = −e−αhMQ3i,

ϕi66 = −e−αhmR1i, ϕi77 = −e−αhMR2i,
then system (1) is exponentially stabilizable under the feed-
back control (3) for any switching signal with the average
dwell time satisfying

τa > τ∗a =
lnµ

α
(10)

φ̃11i = ÂT
1iPi + PiÂ1i +Q1i +Q2i +Q3i + δ2Ri

+ αPi + ΓTΓ,

φ̃22i = −(1− d)e−αhMQ1i + ΛTΛ,

φ33i = −e−αhmQ2i, φ44i = −e−αhMQ3i.
Then system (7) is exponentially stabilizable under the feed-
back control (6) for any switching signal with the average

dwell time satisfying

τa > τ∗a =
lnµ

α
. (11)

Proof: We choose the multi-Lyapunov-Krasovskii func-
tional candidate as follows:

V (t) = Vσ(t)(t) =
6∑

s=1

Vjσ(t)(t), (12)

where

V1σ(t)(t) = xT (t)Pσ(t)x(t),

V2σ(t)(t) =

∫ t

t−h(t)

eα(s−t)xT (s)Q1σ(t)x(s)ds,

V3σ(t)(t) =

∫ t

t−hm

eα(s−t)xT (s)Q2σ(t)x(s)ds,

V4σ(t)(t) =

∫ t

t−hM

eα(s−t)xT (s)Q3σ(t)x(s)ds,

V5σ(t)(t) = hm

∫ 0

−hm

∫ t

t+θ

eα(s−t)xT (s)R1ix(s)dsdθ,

V6σ(t)(t) = hM

∫ 0

−hM

∫ t

t+θ

eα(s−t)xT (s)R2ix(s)dsdθ.

We can get the time derivative of Vσ(t) as follows.

V̇1i = 2xT (t)Piẋ(t),

V̇2i = −(1− ḣ(t))e−αh(t)xT (t− h(t))Q1ix(t− h(t))

+xT (t)Q1ix(t)− α
∫ t

t−h(t)
eα(s−t)xT (s)Q1ix(s)ds

≤ −(1− d)e−αhMxT (t− h(t))Q1ix(t− h(t))

+xT (t)Q1ix(t)− α
∫ t

t−h(t)
eα(s−t)xT (s)Q1ix(s)ds,

V̇3i = −e−αhmxT (t− hm)Q2ix(t− hm) + xT (t)Q2ix(t)

−α
∫ t

t−hm
eα(s−t)xT (s)Q2ix(s)ds,

V̇4i = −e−αhMxT (t− hM )Q3ix(t− hM ) + xT (t)Q3ix(t)

−α
∫ t

t−hM
eα(s−t)xT (s)Q3ix(s)ds,

V̇5i = −αhm
∫ 0

−hm

∫ t

t+θ
eα(s−t)xT (s)R1ix(s)dsdθ

−hm
∫ 0

−hm
eαθxT (t+ θ)R1ix(t+ θ)dθ

+h2mx
T (t)R1ix(t)

≤ −αhm
∫ 0

−hm

∫ t

t+θ
eα(s−t)xT (s)R1ix(s)dsdθ

−hm
∫ t

t−hm
e−αhmxT (s)R1ix(s)ds

+h2mx
T (t)R1ix(t),

V̇6i = −αhM
∫ 0

−hM

∫ t

t+θ
eα(s−t)xT (s)R2ix(s)dsdθ

−hM
∫ 0

−hM
e−αhMxT (t+ θ)R2ix(t+ θ)dθ

+h2Mx
T (t)R2ix(t)

≤ −αhM
∫ 0

−hM

∫ t

t+θ
eα(s−t)xT (s)R2ix(s)dsdθ

−hM
∫ t

t−hM
e−αhMxT (s)R2ix(s)ds

+h2Mx
T (t)R2ix(t).

(13)
The inequality (2) can be written as

εxT (t− h(t))V T
i Vix(t− h(t))

− εfT (t, x(t− h(t)))f(t, x(t− h(t))) ≥ 0.
(14)

where ε is known positive constants.
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By Lemma 2, it is clear that

− hm

∫ t

t−hm

e−αhmxT (s)R1ix(s)ds

≤ −e−αhm

[∫ t

t−hm

x(s)ds

]T
R1i

[∫ t

t−hm

x(s)ds

]
,

− hM

∫ t

t−hM

e−αhMxT (s)R2ix(s)ds

≤ −e−αhM

[∫ t

t−hM

x(s)ds

]T
R2i

[∫ t

t−hM

x(s)ds

]
,

(15)

We can obtain the following inequalities by combining (14)
with (15).

V̇ (t) + αV (t)

≤ xT (t)[ĀT
1iPi + PiĀ1i +Q1i +Q2i

+ Q3i + h2mR1i + h2MR2i + αPi]x(t)

+ xT (t− h(t))[εV T
i Vi − (1− d)

× e−αhMQ1i]x(t− h(t))

− e−αhMxT (t− hM )Q3ix(t− hM )

− fT (t, x(t− h(t)))f(t, x(t− h(t)))

+ xT (t)Pif(t, x(t− h(t)))

+ fT (t, x(t− h(t)))Pix(t)

+ xT (t− h(t))AT
2iPix(t)

− e−αhmxT (t− hm)Q2ix(t− hm)

− e−αhm

[∫ t

t−hm

x(s)ds

]T
R1i

[∫ t

t−hm

x(s)ds

]
− e−αhM

[∫ t

t−hM

x(s)ds

]T
R2i

[∫ t

t−hM

x(s)ds

]
,

(16)

Therefore,

V̇i(t) + αVi(t) ≤ ζTi Ξiζi, (17)

where Ξi is given by (9), and

ζi = [xT (t) xT (t− h(t)) xT (t− hm) xT (t− hM )

fT (t, x(t− h(t))) (

∫ t

t−hm

x(s)ds)T (

∫ t

t−hM

x(s)ds)T ]T .

(18)
So we get

V̇i(t) + αVi(t) < 0.

Then,

(eαtVi(t))
′ = αeαtVi(t) + eαtV̇i(t) < 0. (19)

When t ∈ [tk, tk+1), integrating both sides of (19) from tk
to t, we get

Vσ(t)(t) ≤ Vσ(tk)(tk)e
−α(t−tk), tk ≤ t < tk+1. (20)

Using (8), at the switching time tk, we have

Vi(tk) ≤ µVj(tk
−), ∀i, j ∈ N, k = 1, 2, . . . . (21)

Therefore, recalling the relation L = Nσ(t0, t) ≤ (t−t0)/τα,
it follows that

Vσ(t)(t) ≤ µVσ(tk−)(tk
−)e−α(t−tk) ≤ · · ·

≤ µLVσ(t0)(t0)e
−α(t−t0)

≤ e−(t−t0)(α−lnµ/τa)Vσ(t0)(t0)

(22)

Using (12), we get

Vi(t) ≥ a∥x(t)∥2, Vσ(t0)(t0) ≤ b sup
−hM≤θ≤0

∥x(t0 + θ)∥2,

where
a = min

i∈N
λmin(Pi),

b = max
i∈N

λmax(Pi) + hM max
i∈N

λmax(Q1i)

+hm max
i∈N

λmax(Q2i) + hM max
i∈N

λmax(Q3i)

+
h3
m

2 max
i∈N

λmax(R1i) +
h3
M

2 max
i∈N

λmax(R2i).

Hence,

∥x(t)∥ ≤
√
b

a
sup

−hM≤θ≤0
∥x(t0 + θ)∥ e−

1
2 (α−

lnµ
τa

)(t−t0).

(23)
By Definition 1, we know that system (1) is exponentially
stable.

Remark 1. Based on the Lyapunov stability theory, a
novel multi-Lyapunov-Krasovskii functional dependent on
the size of time delay is constructed. It is noticed that
the Lyapunov-Krasovskii functional is delay-dependent.
Furthermore, the important information of hm and hM
are taken into a full consideration, which derive a less
conservative condition of exponential stabilization for
nonlinear switched systems with ω(t) = 0. Moreover, the
exponential stabilization criterion is necessary for the
L2-gain analysis of system (1).

B. L2-gain analysis

In the section, we present the sufficient conditions of
the exponential stabilization with L2-gain property for the
system (1).

Theorem 2. For given constants α > 0, γ > 0, ε > 0
and µ ≥ 1, if there exist symmetric and positive definite
matrices Pi, Q1i, Q2i, Q3i, R1i, R2i, such that the following
matrix inequalities hold for all i, j ∈M ,

Pi ≤ µPj , Q1i ≤ µQ1j , Q2i ≤ Q2j ,

Q3i ≤ µQ3j , R1i ≤ µR1j , R2i ≤ µR2j ,
(24)

Ξ̄i =



ϕ̃i11 ϕ̃i12 0 0 Pi ϕ̃i16 0 0

∗ ϕ̃i22 0 0 0 0 0 0

∗ ∗ ϕ̃i33 0 0 0 0 0

∗ ∗ ∗ ϕ̃i44 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ̃i66 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ̃i77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̃i88


< 0

(25)
where

ϕi11 = ĀT
1iPi + PiĀ1i +Q1i +Q2i +Q3i

+ hm
2R1i + hM

2R2i + αPi +DT
i Di

ϕi12 = PiA2i, ϕi16 = Pi +DT
i Fi,

ϕi22 = εV T
i Vi − (1− d)e−αhMQ1i, ϕ

i
33 = −e−αhmQ2i,

ϕi44 = −e−αhMQ3i, ϕi66 = FT
i Fi − γ

2

I,

ϕi77 = −e−αhmR1i, ϕi88 = −e−αhMR2i,
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then the system (1)is exponentially stabilizable and has
weighted L2-gain γ under the feedback control(3) for any
switching signal with the average dwell time defined (10).

Proof: By Theorem 1, the exponential stabilizable of
system (1)with ω(t) = 0 is ensured. To show the weighted
L2-gain, we choose Lyapunov-Krasovskii functional as (12).
We have

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω(t)

≤ xT (t)[ĀT
1iPi + PiĀ1i +Q1i +Q2i +Q3i

+ h2mR1i + h2MR2i + αPi +DT
i Di]x(t)

− e−αhmxT (t− hm)Q2ix(t− hm)

+ xT (t− h(t))[εV T
i Vi − (1− d)e−αhM

× x(t− h(t))− e−αhMxT (t− hM )Q3ix(t− hM )

+ xT (t)(Pi +DT
i Fi)ω(t)

+ xT (t)PiA2ix(t− h(t))

+ ωT (t)(FT
i Di + Pi)x(t)

+ ωT (t)(FT
i Fi − γ2I)ω(t)Q1i]

− fT (t, x(t− h(t)))f(t, x(t− h(t)))

+ xT (t)Pif(t, x(t− h(t)))

+ fT (t, x(t− h(t)))Pix(t)

+ xT (t− h(t))AT
2iPix(t)

− e−αhm

[∫ t

t−hm

x(s)ds

]T
R1i

[∫ t

t−hm

x(s)ds

]
− e−αhM

[∫ t

t−hM

x(s)ds

]T
R2i

[∫ t

t−hM

x(s)ds

]
,

(26)

Considering equations (39),we have

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω(t) ≤ ηT Ξ̄iη(t),
(27)

where

η(t) = [xT (t) xT (t− h(t)) xT (t− hm) xT (t− hM )

fT (t, x(t− h(t))) ωT (t)

(

∫ t

t−hm

x(s)ds)T (

∫ t

t−hM

x(s)ds)T ]T .

(28)
It is easy to get

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω ≤ 0. (29)

When t ∈ [tt, tk+1),integrating both sides of (29)from tk to
t we have

V (t) ≤ e−α(t−tk)V (tk)−
∫ t

tk

e−α(t−s)∆(s)ds, (30)

where ∆(s) = ZT (t)Z(t)− γ2ωTω(t).

Combining (21) and (30), we can get

Vi(t) ≤ µe−α(t−tk)V (t−k )−
∫ t

tk

e−α(t−s)∆(s)ds

≤ µkV (t0)e
−αt − µk

∫ t1

0

e−α(t−s)∆(s)ds

− µk−1

∫ t2

t1

e−α(t−s)∆(s)ds− · · ·

−
∫ t2

t1

e−α(t−s)∆(s)ds

≤ e−αt+Nσ(0,t) lnuV (t0)

−
∫ t

0

e−α(t−s)+Nσ(s,t) lnu∆(s)ds.

(31)

Under zero initial condition, (31) gives

0 ≤ −
∫ t

0

e−α(t−s)+Nσ(s,t) lnu∆(s)ds. (32)

Using e−Nσ(0,t) lnµ to pre-multiply and post-multiply the
left term of (32), we have∫ t

0

e−α(t−s)−Nσ(0,s) lnuZT (s)Z(s)ds

≤
∫ t

0

e−α(t−s)−Nσ(0,s) lnuγ2ωT (s)ω(s)ds.

(33)

We consider that Nσ(0, s) ≤ s
τa

and τa > τ∗a = lnu
α . So

we obtain that Nσ(0, s) lnu ≤ αs holds for any s > 0. It
follows form (33) that∫ t

0

e−α(t−s)−αsZT (s)Z(s)ds

≤
∫ t

0

e−α(t−s)γ2ωT (s)ω(s)ds.

(34)

Then ∫ ∞

0

e−αsZT (s)Z(s)ds ≤
∫ ∞

0

γ2ωT (s)ω(s)ds.

The proof is completed.
Remark 2. If time-varying delay satisfies ḣ(t) = 0,

we can obtain exponential criteria of switched nonlinear
systems with constant delays.

Consider the following switched nonlinear systems with
constant delays.

ẋ(t) = A1σ(t) +A2σ(t)x(t− h) + Cσ(t)u(t)

+ ω(t) + f(t, x(t− h).
(35)

For system (35), we consider the state feedback given by (3).
The following result presents a sufficient condition of

the exponential stabilization with weighted L2-gain for the
switched system (35).

Corollary 1. For given constants α > 0, γ > 0, ε > 0 and
µ ≥ 1, if there exist symmetric and positive definite matrices
Pi, Qi, Ri, such that the following matrix inequalities hold
for all i, j ∈M ,

Pi ≤ µPj , Qi ≤ µQj , Ri ≤ µRj , (36)
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Πi =


ϖi

11 ϖi
12 Pi ϖi

14 0
∗ ϖi

22 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ ϖi

44 0
∗ ∗ ∗ ∗ ϖi

55

 < 0, (37)

where

ϖi
11 = ĀT

1iPi + PiĀ1i +Qi + h2Ri + αPi +DT
i Di,

ϕi14 = Pi +DT
i Fi, ϖ

i
12 = PiA2i, ϕ

i
22 = −e−αhQi,

ϖi
44 = FT

i Fi − γ
2

I , ϖi
55 = −e−αhRi,

then the system (35) is exponentially stabilizable and has
weighted L2-gain γ under the feedback control (3) for any
switching signal with the average dwell time defined (10).

Proof: In order to show the weighted L2-gain, we choose
Lyapunov-Krasovskii functional as follows:

Vσ(t)(t) =x
T (t)Pσ(t)x(t) +

∫ t

t−h

eα(s−t)xT (s)Qσ(t)x(s)ds

+ h

∫ 0

h

∫ t

t+θ

eα(s−t)xT (s)Rσ(t)x(s)dsdθ.

(38)
We have

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω(t)

≤ xT (t)[ĀT
1iPi + PiĀ1i +Qi + h2Ri + αPi

+ DT
i Di]x(t) + xT (Pi +DT

i Fi)ω(t)

+ xT (t)PiA2ix(t− h(t))

+ ωT (t)(FT
i Di + Pi)x(t)

+ ωT (t)(FT
i Fi − γ2I)ω(t)

+ xT (t− h)[εV T
i Vi − e−αhQi]x(t− h)

− fT (t, x(t− h(t)))f(t, x(t− h(t)))

+ fT (t, x(t− h(t)))Pix(t)

+ xT (t− h(t))AT
2iPix(t)

+ xT (t)Pif(t, x(t− h(t)))

− e−αh

[∫ t

t−h

x(s)ds

]T
Ri

[∫ t

t−h

x(s)ds

]
.

(39)

So

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω(t)

≤ ψT (t)Πiψ(t)
(40)

where

ψ(t) = [xT (t) xT (t− h) fT (t, x(t− h))

ωT (t) (

∫ t

t−h

x(s)ds)T ]T .
(41)

So we can get

V̇i(t) + αVi(t) + ZT (t)Z(t)− γ2ωT (t)ω(t) ≤ 0

Therefore,

Vi(t) ≤ µe−α(t−tk)V (t−k )−
∫ t

tk

e−α(t−s)∆(s)ds

≤ µkV (t0)e
−αt − µk

∫ t1

0

e−α(t−s)∆(s)ds

− µk−1

∫ t2

t1

e−α(t−s)∆(s)ds− · · ·

−
∫ t2

t1

e−α(t−s)∆(s)ds

≤ e−αt+Nσ(0,t) lnuV (t0)

−
∫ t

0

e−α(t−s)+Nσ(s,t) lnu∆(s)ds.

(42)

Using the same method in the proof of Theorem 2, we can
get that switched system (35) is exponential stabilization with
weighted L2-gain.

C. Controller design

In the following, the design method of the controllers for
system (1) is shown.

Theorem 3. For given constants α, ε, γ and µ ≥ 1,
if there exist symmetric and positive definite matrices
Xi, T1i, T2i, T3i, O1i, O2i, any matrices Yi satisfying the
following matrix inequalities for i, j ∈M ,

Xj ≤ µXi, T1j ≤ µT1i, T2j ≤ µT2i,
T3j ≤ µT3i, O1j ≤ µO1i, O2j ≤ µO2i, ∀i, j ∈M,

(43)[
Ω1i Ω2i

∗ Ω3i

]
< 0, (44)

where

Ω1i =



ϕ̂i11 ϕ̂i12 0 0 I ϕ̂i16 0 0

∗ ϕ̂i22 0 0 0 0 0 0

∗ ∗ ϕ̂i33 0 0 0 0 0

∗ ∗ ∗ ϕ̂i44 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ̃i66 0 0

∗ ∗ ∗ ∗ ∗ ∗ ϕ̂i77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̂i88


,

Ω2i =



XiD
T
i 0 Xihm XihM Xi Xi Xi

0 XiV
T
i 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Ω3i = diag{−I,−ε−1I,−O1i,−O2i,−T1i,−T2i,−T3i},
ϕ̂i11 = A1iXi + CiYi + (A1iXi + CiYi)

T + αXi,

ϕ̂i33 = e−αhm(T2i − 2Xi), ϕ̂
i
12 = A2iXi,

ϕ̂i22 = (1− d)e−αhM (T1i − 2Xi), ϕ̂i44 = e−αhM (T3i − 2Xi),

ϕ̂i16 = I +XiD
T
i Fi ϕ̂i77 = e−αhm(O1i − 2Xi),

ϕ̂i88 = e−αhM (O2i − 2Xi),

then system (1) is exponentially stabilizable and has weighted
L2-gain γ under the feedback control (3) for any switching
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signal with the average dwell time satisfying (10). Moreover,
the controller gains are constructed by

Ki = YiX
−1
i , i ∈M (45)

Proof: From Tpi > 0(p = 1, 2, 3), Oqi > 0(q = 1, 2), we
can get

(Tpi −Xi)
TTpi

−1(Tpi −Xi) ≥ 0,
(Oqi −Xi)

TOqi
−1(Oqi −Xi) ≥ 0.

Then the following inequality can be obtained:

Tpi − 2Xi ≥ −XiTpi
−1Xi (p = 1, 2, 3),

Oqi − 2Xi ≥ −XiOqi
−1Xi (q = 1, 2).

(46)

Substituting (45) into (43) and using diag{X−1
i , X−1

i ,
X−1

i , X−1
i , I, I,X−1

i , X−1
i , I, I, I, I, I, I, I, I} to pre- and

post- multiply the left term of (43), and the following
inequality is obtained:[

Ω̄1i Ω̄2i

∗ Ω3i

]
< 0, (47)

where

Ω̄1i =



ϕ̄i11 ϕ̄i12 0 0 I ϕ̄i16 0 0
∗ ϕ̄i22 0 0 0 0 0 0
∗ ∗ ϕ̄i33 0 0 0 0 0
∗ ∗ ∗ ϕ̄i44 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0

∗ ∗ ∗ ∗ ∗ ϕ̂i66 0 0
∗ ∗ ∗ ∗ ∗ ∗ ϕ̄i77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ϕ̄i88


,

Ω̄2i =



DT
i 0 hm hM I I I
0 V T

i 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

ϕ̄i11 = X−1
i A1i +X−1

i CiYiX
−1
i + (X−1

i A1i

+X−1
i CiYiX

−1
i )T + αX−1

i ,

ϕ̄i12 = X−1
i A2i, ϕ̄i22 = −(1− d)e−αhMT−1

1i ,

ϕ̄i33 = −eαhmT−1
2i , ϕ̄

i
44 = −e−αhMT−1

3i ,

ϕ̄i16 = X−1
i +DT

i Fi, ϕ̄
i
77 = −e−αhmO−1

1i ,

ϕ̄i88 = −e−αhMO−1
2i ,

Then setting

Yi = KiXi, Xi
−1 = Pi,

Tpi
−1 = Qpi, Oqi

−1 = Rqi.
(48)

and using Lemma 1 in (47), it can be concluded that (25)
holds. This means that (44) implies (25). From (45), the
controller gains are given by (48).

The following result presents the design method of the
controllers for system with constant delays.

Corollary 2. For given constants α > 0, ε > 0, γ > 0 and
µ ≥ 1, if there exist symmetric and positive definite matrices
Xi, Ti,Li, and any matrices Yi satisfying the following
matrix inequalities for i, j ∈M ,

Xj ≤ µXi, Tj ≤ µTi, Oj ≤ µOi, ∀i, j ∈M, (49)



ϑi11 ϑ
i
12 Xi ϑi14 0 XiD

T 0 hXi Xi

∗ ϑi22 0 0 0 0 XiV
T
i 0 0

∗ ∗ −εI 0 0 0 0 0 0
∗ ∗ ∗ ϑi44 0 0 0 0
∗ ∗ ∗ ∗ ϑi55 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ 0 −ε−1I 0 0
∗ ∗ ∗ ∗ ∗ 0 0 −Li 0
∗ ∗ ∗ ∗ ∗ 0 0 0 −Ti


< 0,

(50)

where

ϑi11 = A1iXi + CiYi + (A1iXi + CiYi)
T + αXi,

ϑi12 = A2iXi, ϑi22 = e−αh(Ti − 2Xi),

ϑi14 = I +XiD
T
i Fi, ϑi44 = FT

i Fi − γ2I,

ϑi55 = e−αh(Oi − 2Xi),

then system (35) is exponentially stabilizable and has weight-
ed L2-gain γ under the feedback control (3) for any switching
signal with the average dwell time satisfying (10). Moreover,
the controller gains are constructed by

Ki = YiX
−1
i , i ∈M (51)

Proof: From Ti > 0, Oi > 0, we can get

(Ti −Xi)
TTi

−1(Ti −Xi) ≥ 0,
(Oi −Xi)

TOi
−1(Oi −Xi) ≥ 0.

Then
Ti − 2Xi ≥ −XiTi

−1Xi,

Oi − 2Xi ≥ −XiOi
−1Xi.

(52)

Substituting (52) into (50) and using
diag{X−1

i , X−1
i , I, I,X−1

i , I, I, I, I}to pre- and post-
multiply the left term of (38), and the following inequality
is obtained:

ϑ̃i11 ϑ̃
i
12 X

−1
i ϑ̃i14 0 DT

i 0 h I

∗ ϑ̃i22 0 0 0 0 V T
i 0 0

∗ ∗ −I 0 0 0 0 0 0

∗ ∗ ∗ ϑ̃i44 0 0 0 0

∗ ∗ ∗ ∗ ϑ̃i55 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ 0 −ε−1I 0 0
∗ ∗ ∗ ∗ ∗ 0 0 −Oi 0
∗ ∗ ∗ ∗ ∗ 0 0 0 −Ti


< 0,

(53)

where

ϑ̃i11 = X−1
i A1i +X−1

i CiYiX
−1
i

+ (X−1
i A1i +X−1

i CiYiX
−1
i )T + αXi

−1,

ϑ̃i12 = X−1
i A2i, ϑ̃i22 = −e−αhT−1

i ,

ϑ̃i14 = X−1
i +DT

i Fi, ϑ̃
i
44 = FT

i Fi − γ2I,

ϑ̃i55 = −e−αhOi,

Then setting

Yi = KiXi, Xi
−1 = Pi,

Ti
−1 = Qi, Oi

−1 = Ri.
(54)
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Using the same method in the proof of Theorem 3. the
controller gains are given by (54).

Remark 3. In terms of switched systems, a common
Lyapunov function for all subsystems is often employed
to characterize stability in some literature. For instance,
in [23], stability and L2-gain for a class of switched
linear system with time varying delays have been studied
based on the common Lyapunov Krasovskii function for
all subsystems. To the best of our knowledge, a common
Lyapunov function may not exist or be too conservative
and it is reasonable that each subsystem has its own
Lyapunov function. Thus, multiple storage functions to
describe stability for switched systems are developed
naturally. In this paper, we investigate the problem of
exponential stabilization and L2-gain analysis for a class
of switched nonlinear systems with time-varying delay by
multi-Lyapunov-Krasovskii functional. Compared with [23],
the conservativeness of our results is lower.

Remark 4. In [11], a feedback stabilization problem
for switched linear systems with time-delay in detection of
switching signal is formulated. We understand that time
delay is constant delay and nonlinear disturbance is not
involve in [11]. Specifically, [11] can be seen as a special
case of this paper. Therefore, this paper has a greater
advantage when dealing with complex systems in practice.

IV. NUMERICAL EXAMPLES

In this section, two examples are presented to confirm the
effectiveness of the proposed approach.

Example 1. Consider system (1) composed of two sub-
systems with the following parameters:

A11 =

[
−0.8 0.2
0 −0.8

]
, A21 =

[
−0.8 0
0.2 −0.6

]
,

A12 =

[
−0.9 0
0.1 −0.8

]
, A22 =

[
−0.8 0.1
0 −0.7

]
,

D1 =

[
−0.9 0.2
0 −0.8

]
, D2 =

[
−0.8 0.1
0.2 −0.9

]
,

F1 =

[
−0.6 0
0.2 −0.7

]
, F2 =

[
−0.7 0.1
0.2 −0.1

]
,

V1 =

[
−0.8 0
0.2 −0.6

]
, V2 =

[
−0.7 0.3
0.1 −0.9

]
,

B1 =

[
0.2
0.3

]
, B2 =

[
0.2
0.4

]
.

Choose α = 0.4, µ = 1.6, hm = 0.2, hM = 0.9, ε =
0.6, γ = 0.3, ω1(t) = 0.3t−1, ω2(t) = 0.2t, h(t) =

0.01sin(t), ω(t) =
[
ω1(t), ω2(t)

]T
,

f(t, x(t− h(t))) =

[
0.01cos(x1(t− h(t)))

0.02sin(x2(t))

]
,

Then the average dwell time is

τa > τ∗a =
lnµ

α
= 1.1750.

By solving (43) and (44), we can get

X1 =

[
0.2002 0.0976
0.0976 0.2302

]
, X2 =

[
0.1840 0.0148
0.0148 0.1746

]
,

T11 =

[
1.5883 0.7756
0.7756 1.5841

]
, T12 =

[
1.6834 0.6260
0.6260 1.7008

]
,

T21 =

[
0.3162 0.1064
0.1064 0.2822

]
, T22 =

[
0.3359 0.1465
0.1465 0.5197

]
,

T31 =

[
0.7078 0.8384
0.8384 0.6949

]
, T32 =

[
1.2852 0.4559
0.4559 1.3509

]
,

L11 =

[
1.8520 0.1304
0.1304 0.1536

]
, L12 =

[
0.2041 0.1780
0.1780 0.3763

]
,

L21 =

[
1.1103 0.5333
0.5333 1.0969

]
, L22 =

[
1.1193 0.5550
0.5550 1.1919

]
,

Y1 =
[
0.1338 0.2071

]
, Y2 =

[
0.6072 0.6299

]
.

Then the controller gains constructed by (51) are

K1 =
[
0.2896 0.7769

]
, K2 =

[
3.0305 3.3508

]
.

According to Theorem 3, we can get that the system (1)
is exponentially stabilizable for any switching signal under
the feedback control and has weighted L2-gain γ. Switching
signal and state response diagrams are shown in Figs.1 and
2 with the initial state is x(0) = (0, 1)T , respectively. The
effectiveness of the results obtained by Fig 2
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Fig. 1: The switching law.

Example 2. Consider system (35) composed of two sub-
systems with the following parameters:

A11 =

[
−0.7 0.1
0 −1

]
, A21 =

[
−0.6 0
0.2 −0.9

]
,

A12 =

[
−1 0
0.1 −0.7

]
, A22 =

[
−1.2 0.1
0 −0.8

]
,

D1 =

[
−0.7 0.2
0 −0.6

]
, D2 =

[
−0.8 0.1
0.2 −0.7

]
,

F1 =

[
−0.9 0
0.2 −0.9

]
, F2 =

[
−0.7 0.1
0.2 −0.6

]
,

V1 =

[
−0.6 0
0.2 −0.8

]
, V2 =

[
−0.8 0.2
0.1 −0.8

]
,

B1 =

[
0.1
0.4

]
, B2 =

[
0.3
0.5

]
.

Choose α = 0.5, µ = 1.6, h = 0.4, ε = 0.4, γ = 0.5, then
the average dwell time is

τa > τ∗a =
lnµ

α
= 0.9400.
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x2

x1

Fig. 2: State response of the closed-loop system.

By solving (43) and (44), we can get

X1 =

[
0.1862 0.0163
0.0163 0.0421

]
, X2 =

[
0.1451 0.3641
0.3641 0.2330

]
,

T1 =

[
0.4116 0.0150
0.0150 0.6258

]
, T2 =

[
0.7188 0.3459
0.3459 0.7857

]
,

L1 =

[
0.4368 0.0075
0.0075 0.6286

]
, L2 =

[
0.7188 0.3459
0.3459 0.7857

]
,

Y1 =
[
0.5869 0.0576

]
, Y2 =

[
0.3676 0.6315

]
.

Then the controller gains constructed by (51) are

K1 =
[
3.1386 0.1530

]
, K2 =

[
1.4609 0.4274

]
.

According to corollary 2, we can get that the system (35) is
exponentially stabilizable for any switching signal under the
feedback control.

Example 3. Water pollution is a huge challenge facing
today’s society. The design of water pollution control system
is of great significance for sustainable development. In the
following, an example of applying this system to water
pollution control systems will be demonstrated.

In order to facilitate the simulation in a reach of a polluted
river, we record m(t) and p(t) as the concentrations per
unit volume of biochemical oxygen demand and dissolved
oxygen, respectively. Specifically, let m∗ and p∗ indicate
the desired steady values of m(t) and p(t) in a reach of
a polluted river, respectively. Moreover, we take m∗ and p∗

as corresponding to some measure of water quality standards.
The following definitions are given:

x1(t) = m(t)−m∗, x2(t) = p(t)−p∗, x(t) =
[
xT1 (t) x

T
2 (t)]

T

As a result, the dynamic equation for x(t) can be expressed
as:

ẋ(t) = A1x(t) +A2x(t− h(t)) +Bu(t) + ω(t), (55)

where
A1 =

[
−l1 − ε1 − ε2 0

−l3 −l2 − ε1 − ε2

]
,

A2 =

[
ε2 0
0 ε2

]
, B =

[
ε1
1

]
,

li(i = 1, 2, 3), ε1 and ε2 are known constants, and ω(t)
is the external disturbance of dynamic system. Moreover,
u(t) =

[
uT1 (t) u

T
2 (t)]

T is the control variable of river

pollution system. The physical meaning of the parameters
mentioned above is easy to find in [27].

This paper assumes that system actuators have good per-
formance or failure, and according to the actual situation,
we know that at least one actuator can ensure the normal
operation of the river pollution system. In addition, for
simulation of our purposes, we do not consider the nonlinear
perturbation term, and the nonlinear perturbation term is not
also considered in [1]. As a consequence, the river pollution
system (55) can be modeled as a switched system consisting
of two subsystems:

ẋ(t) =


A11(t)x(t) +A21(t)x(t− h(t)) +B1u(t) + ω(t),

no failures occur

A12(t)x(t) +A22(t)x(t− h(t)) +B2u(t) + ω(t),

failures occur
(56)

In order to get the simulation results, we choose l1 =
1.3, l2 = 0.8, l3 = 1.2, ε1 = 0.6, ε2 = 0.5, and get that

A1 =

[
−2.4 0
−1.2 −1.9

]
, A2 =

[
0.5 0
0 0.5

]
, B =

[
0.6
1

]
.

Let h(t) = 0.02sin(t), ω(t) = [ω1(t) ω2(t)]
T , ω1(t) =

0.2t−0.05, ω1(t) = 0.1t. Therefore, we can obtain a set
of switching sequences to stabilize the system (55) by the
parameters in Theorem 1. By (43) and (44), we have

X1 =

[
0.2734 0.0523
0.0523 0.2587

]
,

X2 =

[
0.3104 0.0182
0.0182 0.3241

]
,

T11 =

[
1.2713 0.2132
0.2132 1.8151

]
,

T12 =

[
2.3127 0.2781
0.2781 2.0128

]
,

T21 =

[
2.5615 0.0237
0.0237 1.0342

]
,

T22 =

[
1.0129 0.2108
0.2108 0.8654

]
,

T31 =

[
2.1264 0.8525
0.8525 2.0213

]
,

T32 =

[
1.8353 0.3289
0.3289 0.9713

]
,

L1 =

[
1.4328 0.2197
0.2197 1.2785

]
,

L2 =

[
1.6782 0.5234
0.5234 1.2713

]
,

Y1 =
[
0.7741 0.9326

]
,

Y2 =
[
0.3276 0.0356

]
.

Then the controller gains constructed by (27) are

K1 =
[
2.2279 3.1545

]
,K2 =

[
1.0524 0.0507

]
.

Fig.3 and 4 describe state response of the subsystem 1
and 2 with the initial condition x(0) = (−1, 1)T for the
system (55), respectively. Through the designed switching
signal and our approach, we can get that the system (55)
with the initial condition x(0) = (0, 1)T is exponential
stability with weighted L2-gain performance of the switched
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Fig. 3: State response of the subsystem 1
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Fig. 4: State response of the subsystem 2

nonlinear system form Fig.5. As a consequence, this verifies
the effectiveness of our results in the control of river pollution
process.

V. CONCLUSIONS

In this paper, we have investigated the problem of ex-
ponential stabilization and L2-gain analysis for a class of
switched nonlinear systems with time-varying delay. Firstly,
interval time-varying delay is considered and a novel multi-
Lyapunov-Krasovskii functional dependent on the size of
time delay is also constructed. Based on the matrix in-
equality technique and the average dwell time approach.
The exponential stabilization criteria and weighted L2-gain
disturbance attenuation performance for nonlinear switched
systems with interval time-varying delay are obtained. Then,
the proposed approach is extended to design state feedback
controller for switched nonlinear systems by special op-
erations of matrices and Schur complement. Finally, three
numerical examples illustrates the effectiveness of the theo-
retical results.

Through the research of this paper, it is important to derive
a less conservative condition for exponential stabilization and
L2-gain disturbance attenuation performance for nonlinear
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Fig. 5: State response of the system (55)

switched systems with interval time-varying delay. Hence,
we take the bound of upper and lower about delay are
processed with the help of delay decomposition technique.
Compared with the existing results, our results are more
practical and less conservative. In order to better study the
issue of switched systems with time delay[28,29], our future
work will focus on extending the proposed method to delay-
dependent robust dissipative problem for a class of nonlinear
switched system with mixed delays, and expand theoretical
to other fields[30,31].

REFERENCES

[1] D. Jeon, M. Tomizuka, ”Learning hybrid force and position control of
robot manipulators,” IEEE T Robotic Automat., vol.9, no.4, pp.423-431,
1993.

[2] C. Yin, Y. Cheng, S. M. Zhong, et al. ”Fractional−order switching
type control law design for adaptive sliding mode technique of 3D
fractional−order nonlinear systems,” Complexity, vol.21, no.6, pp.363-
373, 2016.

[3] M. Athans, Command and control theory: A challenge to control
science. IEEE Transaction on Automatic Control, vol.32, no.4, pp.86-
292, 1987.

[4] S. Engell, S. Kowalewski, C. Schulz, Continuous-discrete interactions
in chemical processing plants. Proceedings of the IEEE, vol.88, no.7,
pp.1050-1068, 2000.

[5] S. Li, Z. Xiang, ”Stabilisation of a class of positive switched nonlinear
systems under asynchronous switching,” Int J Syst Sci., vol.48, no.7,
pp.1537-1547, 2017.

[6] J. Zhao, D. J. Hill, ”Dissipativity theory for switched systems,” IEEE
T Automat Contr., vol.53, no.4, pp.941-953, 2008.

[7] H. Chen, P. Shi, and C. C. Lim, ”Stability of neutral stochastic switched
time delay systems: An average dwell time approach,” Int J Robust
Nonlin, vol.27, no.3, pp.512-532, 2017.

[8] Z. Sun, ”Sampling and control of switched linear systems,” J Franklin
I., vol.341, no.7, pp.657-674, 2004.

[9] W. Xiang, H. D. Tran, T. T. Johnson, ”Robust Exponential Stability
and Disturbance Attenuation for Discrete-Time Switched Systems under
Arbitrary Switching,” IEEE T Automat Contr.,vol.99, pp.1450-1456,
2018.

[10] H. Ma, Y. Jia, ”Stability analysis for stochastic differential equations
with infinite Markovian switchings,” J Math Anal Appl., vol.435, no.1,
pp.593-605, 2016.

[11] D. Xie, Y. Wu, ”Sability of switched linear systems with time-varying
delay in the detection of switching signals,” IET control theory A., vol.3,
no.4, pp.404-410, 2009.

[12] A. Aleksandrov, E. Aleksandrova, ”Asymptotic stability conditions for
a class of hybrid mechanical systems with switched nonlinear positional
forces,” Nonlinear Dynam., vol.83, no.4, pp.2427-2434, 2016.

[13] L. Liu, X. Cao, Z. Fu, et al. ”Input-output Finite-time Control of
Uncertain Positive Impulsive Switched Systems with Time-varying and
Distributed Delays,” Int J Control Auto, vol.20, pp.1-12, 2017.

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_13

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



[14] R. Wang, J. Zhao, ”Exponential stability analysis for discrete-time
switched linear systems with time-delay,” Int J Innov I., vol.3, no.6,
pp. 1557-1564, 2007.

[15] W. H. Chen, W. X. Zheng, ”Delay-dependent robust stabilization for
uncertain neutral systems with distributed delay”, Automatica, vol.43,
no.1, pp.95-104, 2007.

[16] C. Lien, Delay-dependent and delay-independent guaranteed cost
control for uncertain neutral systems with time-varying delays via LMI
approach, Chaos Solitons & Fractals, vol.33, no.3, pp.1017-1027, 2007.

[17] H. Li, K. C. Cheung, J. Lam, et al. ”Robust Stability for Interval
Stochastic Neural Networks with Time-Varying Discrete and Distributed
Delays,” Differential Equations & Dynamical Systems, vol.19, no.1-2,
pp.97-118, 2011.

[18] F. Qiu, B. Cui, Y. Ji, ”Further results on robust stability of neutral
system with mixed time-varying delays and nonlinear perturbations,”
Nonlinear Analysis: Real World Applications, vol.11, no.2, pp.895-906,
2010.

[19] L. Zhang, P. Shi, ”Stability, L2-Gain and Asynchronous H∞ Control
of Discrete-Time Switched Systems With Average Dwell Time,” IEEE
T Automat Contr., vol.54, no.9, pp.2192-2199, 2009.

[20] J. Dai, G. Guo, ”Delay-Dependent Stability and H∞, Control for
2−D Markovian Jump Delay Systems with Missing Measurements and
Sensor Nonlinearities,” Circ Syst Signal Pr., vol.36, no.1, pp.25-48,
2017.

[21] M. S. Mahmoud, P. Shi, ”Robust stability, stabilization and H∞
control of time delay systems with Markovian jump parameters,” Int
J Robust Nonlin, vol.13, no.8, pp.755-784, 2003.

[22] H. Shen, X. Song, F. Li, et. al. ”Finite-time L2−L∞ filter design for
networked Markov switched singular systems: a unified method,” Appl
Math and Comput., vol.321, no.15, pp.450-462, 2018.

[23] X. M. Sun, J. Zhao, D. J. Hill, ”Stability and L2-gain analysis
for switched delay systems: A delay-dependent method,” Automatica,
vol.42, no.10, pp.1769-1774, 2006.

[24] Y. Dong, T. Li, S. Mei, ”Exponential stabilization and L2−gain
for uncertain switched nonlinear systems with interval time−varying
delay,” Math Method Appl Sci., vol.39, no.13, pp.3836-3854, 2016.

[25] M, S. Ali, S. Saravanan, ”Finite-time L2-gain analysis for switched
neural networks with time-varying delay,” Neural Comput App., vol.29,
no.4, pp.975-984, 2018.

[26] Y. Wang, B. Wu, C. Wu, ”Stability and L2-gain analysis of switched
input delay system with unstable modes under asynchronous,” Journal
of the Franklin Institute, vol.354, no.111, pp.4481-4497, 2016.

[27] F. Zheng, Q. G. Wang, and T. H. Lee, ”Adaptive robust control of
uncertain time delay systems,” Automatica., vol.41, no.8, pp.1375-1383,
2005.

[28] G. Liu, Y. Luo, L. Shu, ”Asymptotic Synchronization of Complex
Dynamical Networks with Time-Varying Delays on Time Scales,”
Engineering Letters, vol.26, no.2, pp.210-215, 2018.

[29] W. Du, J. Zhang, Y. Li, et al. ”Balance Analysis of Two Layers
Coupled Public Traffic Network with Dual Time-varying Delays,”
Engineering Letters, vol.26, no.1, pp.100-106, 2018.

[30] H. T. Kong, J. B. You, ”A Study on the Control of Carrying Robots
Using SFC Programs,” IAENG International Journal of Computer
Science, vol.45, no.1, pp.12-16, 2018.

[31] K. Sirisantisamrid, N. Wongvanich, S. Gulpanich, et al. ”LQR/PID
Controller Design of PLC-based Inverted Pendulum,” Proceedings of
the International MultiConference of Engineers and Computer Scien-
tists, vol.1, pp.1-6, 2018.

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_13

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 




