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Abstract—In this paper, some transformation properties of
the incomplete Beta function B(z;x, y) are obtained. Based on
the transformation properties, we extend the definitions of the
partial derivatives of the incomplete Beta function Bp,q(z;x, y)
to the whole complex plane on x, y and z. Furthermore, we
give some representations of Bp,q(z;x, y) for complex numbers
x, y, z. Moreover, numerical examples show the transformation
formulas can improve the speed and precision of calculating
B(z;x, y) and Bp,q(z;x, y).

Index Terms—incomplete Beta function, hypergeometric
function, Pochhammer symbol, neutrix limit.

I. INTRODUCTION

THE Beta function was generalized to the incomplete
Beta function by I.S.Gradshteyn et al. in [1]. The

incomplete Beta function B(z;x, y) is defined by

B(z;x, y) =

∫ z

0

tx−1(1− t)y−1dt, x, y > 0; 0 < z < 1.

(1)
where the incomplete Beta function reduces to the usual Beta
function when z = 1, i.e., B(1;x, y) = B(x, y). Some
scholars have considered the partial derivatives of B(x, y)
in [2,3]. In addition, some scholars also considered the
partial derivatives of B(z;x, y). Noted that Bp,q(z;x, y) =
∂p+q

∂xp∂yq B(z;x, y)(p, q = 0, 1, . . . .). For example, the defi-
nition of Bp,q(z;x, y) was extended for negative values of
x and y by E. Őzçaḡ in [4,5]. Furthermore, the authors
showed that Bp,q(z;x, y) existed for p, q = 0, 1, 2, · · · and
all real numbers x,y and 0 < z < 1 in [4]. The authors
also obtained some closed forms of Bp,0(z;−n,m) and
B0,1(z;−n,m) for n,m, p = 0, 1, 2, · · · in [5]. However,
the most effective method of extending the definitions of
Bp,q(x, y) and Bp,q(z;x, y) was referred to use neutrix
calculus in [4-11]. For example, it was proved in [5] that
the neutrix limit

Bp,q(z;x, y) = N− lim
ε→0

∫ z

ε

tx−1(1−t)y−1 lnp t lnq(1−t)dt

(2)
existed for all real numbers x, y and p, q = 0, 1, 2, · · · , 0 <
z < 1. Moreover, the definition of Bp,q(z;x, y) was extended
to 0 < |z| < 1 from 0 < z < 1 in [12].

In this paper, using transformation properties of the incom-
plete Beta function, we extend the definitions of Bp,q(z;x, y)
to the whole complex plane on x, y and z. Furthermore, we
give its representations.
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The structure of this paper is organized as follows. In
Section 2, we obtain the transformation properties of the
incomplete Beta function B(z;x, y) with respect to z on the
entire complex plane. In Section 3, the partial derivatives
of the incomplete Beta function is obtained for all complex
z. In Section 4, numerical examples are given to verify the
results in Section 2 and Section 3. The conclusion is given
in the last section of the paper.

II. TRANSFORMATION PROPERTIES OF THE INCOMPLETE
BETA FUNCTION

In this paper, we assume that x, y, z ∈ C and p, q ∈ N,
where C and N are the complex set and the set of nonnega-
tive integers, respectively. Moreover, (x)n is a Pochhammer
symbol, i.e., (x)n = x(x + 1)(x + 2) · · · (x + n − 1), and
aj,q(x) =

dq

dxq (x)j .
First (1) can be rewritten as

B(z;x, y) = zx
∫ 1

0

tx−1(1− zt)y−1dt. (3)

Since a power function zx is analytic at the point of z on the
set {z|z /∈ (−∞, 0]} and (1− zt)y−1 is analytic at the point
of z on the set {z|z /∈ [ 1t ,∞)} for t ∈ [0, 1], B(z;x, y) is
analytic at the point of z on the set D = {z|Imz ̸= 0} ∪
(0, 1). It is well known that the incomplete Beta function and
the hypergeometric function exist the following relationship:

B(z;x, y) =
zx

x
2F1(1− y, x;x+ 1; z), (4)

where 2F1(a, b; c; z) denotes the hypergeometric function,
which is defined by

2F1(a, b; c; z)

= Γ(c)
Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt

=
∞∑

n=0

(a)n(b)nz
n

(c)nn!
.

(5)

For the hypergeometric function, there exist the following
transformation formulas: z −→ 1−z, 1

z ,
z

z−1 ,
1

1−z ,
z

z−2 . Sim-
ilarly, we also obtain the following transformation formulas
for B(z;x, y).
Theorem 2.1 1) If z satisfies |1− z| < 1, then

B(z;x, y) = B(y, x)−B(1− z; y, x). (6)

2) If z satisfies |z| > 1 and Imz ̸= 0, then

B(z;x, y) = B(x, y)−Hy(y, z)
·
(
B(1− x− y, y)−B( 1z ; 1− x− y, y)

)
,
(7)

where

Hy(y, z) =

{
(−1)−y, Imz > 0,
(−1)y, Imz < 0 or z > 1.

(8)
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3) If z satisfies
∣∣ z−1

z

∣∣ < 1 and Rez > 1 , then

B(z;x, y) = B(x, y)−Hy(y, z)B( z−1
z ; y, 1− x− y).

(9)
4) If z satisfies

∣∣∣ z
z−1

∣∣∣ < 1, then

B(z;x, y) = Hx(x, z)B( z
z−1 ;x, 1− x− y), (10)

where

Hx(x, z) =

{
(−1)−x, Imz < 0,
(−1)x, Imz > 0 or z < −1.

(11)
5) If z satisfies

∣∣∣ 1
1−z

∣∣∣ < 1 , then

B(z;x, y)

= Hx(x, z)
(
B(1− x− y, x)−B( 1

1−z ; 1− x− y, x)
)
.

(12)
Proof. 1) For |1− z| < 1, there is

B(z;x, y) = N− lim
ε→0

∫ z

ε
tx−1(1− t)y−1dt

= N− lim
ε→0

∫ 1−ε

1−z
ty−1(1− t)

x−1
dt

= N− lim
ε→0

∫ 1−ε

ε
ty−1(1− t)

x−1
dt

−N− lim
ε→0

∫ 1−z

ε
ty−1(1− t)

x−1
dt

= B(y, x)−B(1− z; y, x).

(13)

Thus, we can obtain that the formula (6) holds.
2) For |z| > 1, (1) can be rewritten as

B(z;x, y)

=


B(i, x, y) +

∫ z

i
tx−1(1− t)y−1dt, Imz > 0,

B(−i;x, y) +
∫ z

−i
tx−1(1− t)y−1dt, Imz < 0

or z > 1.
(14)

where the path of the second integral in (14) does not across
the real axes.
By using the variable substitution, we have

∫ z

i
tx−1(1− t)y−1dt

= (−1)−y
∫ 1/z

−i
t−x−y(1− t)y−1dt, Imz > 0,∫ z

−i
tx−1(1− t)y−1dt

= (−1)y
∫ 1/z

i
t−x−y(1− t)y−1dt, Imz < 0 or z > 1.

(15)
Substituting (15) to (14), we get

B(z;x, y)

=


(−1)−y

(
B( 1z ; 1− x− y, y)−B(−i, 1− x− y, y)

)
+B(i, x, y), Imz > 0,
(−1)y

(
B( 1z ; 1− x− y, y)−B(i, 1− x− y, y)

)
+B(−i, x, y), Imz < 0 or z > 1.

(16)
Let z → 1 in (16), we have

B(x, y)

=


(−1)−y (B(1− x− y, y)−B(−i, 1− x− y, y))
+B(i, x, y), Imz > 0,
(−1)y (B(1− x− y, y)−B(i, 1− x− y, y))
+B(−i, x, y), Imz < 0 or z > 1.

(17)
By (16) and (17), we obtain that (7) holds.

Similarly, the results of 3)-5) in Theorem 2.1 can be
obtained.
Theorem 2.2 1) If z satisfies

∣∣∣ z
z−2

∣∣∣ < 1, then

B(z;x, y) = zx( 2−z
2 )y−1

∞∑
l=0

(1−y)l(
z

z−2 )
l

l! Cl(x), (18)

for x ̸= 0,−1,−2, · · · , where

Cl(x) =
l∑

j=0

(
l
j

)
(−2)j

j+x . (19)

2) If z satisfies
∣∣∣ z
z−2

∣∣∣ < 1 , then

B(z;−m, y)

= − 1
m!

m−1∑
j=0

(m−j−1)!(1−y)jz
j−m

(1−z)1+j−y

+ (1−y)m ln z
m!(1−z)m+1−y − (1−y)m+1

m! z( 2−z
2 )y−1

·

ln z
∞∑
l=0

(1−y)2l(
z

z−2 )
2l

(2l+1)! +
∞∑
l=0

(1−y)l(
z

z−2 )
l

(l+2)!

[ l
2 ]∑

j=0

1
2j+1

 ,

(20)
for m = 0, 1, 2, · · ·.
Proof. 1) By (4) and the following results of [13]

2F1(a, b; c; z)

= (1− z
2 )

−a
∞∑

n=0

(a)n
n! 2

F1(−n, b; c; 2)( z
z−2 )

n,
(21)

we see that formula (18) holds for x ̸= 0,−1,−2, · · · .
2) Repeated using the following recursive formula

B(z;x, y) =
zx(1− z)y−1

x
+

y − 1

x
B(z;x+1, y−1) (22)

we have

B(z;x, y) =
L−1∑
j=0

(−1)j(1−y)j(1−z)y−1−jzx+j

(x)j+1

+ (−1)L(1−y)L
(x)L

B(z;x+ L, y − L).

(23)

By (2), we have

B(z; 0, y) = N− lim
ε→0

∫ z

ε
t−1(1− t)y−1dt

= N− lim
ε→0

[
(1− z)y−1 ln z − (1− ε)y−1 ln ε

]
+N− lim

ε→0

[
(y − 1)

∫ z

ε
(1− t)y−2 ln tdt

]
= (1− z)y−1 ln z + (y − 1)B1,0(z; 1, y − 1)

(24)
Setting x = −m,L = m in (23) and using (24), we obtain

B(z;−m, y) = − 1
m!

m−1∑
j=0

(m−j−1)!(1−y)jz
j−m

(1−z)1+j−y

− (1−y)m+1

m! B1,0(z; 1, y −m− 1)

+ (1−y)m ln z
m!(1−z)m+1−y .

(25)

Moreover, the following formulas hold:
l∑

j=0

(
l
j

)
(−2)j

j+1 = 1−(−1)l+1

2(l+1) , (26)

and
l∑

j=0

(
l
j

)
(−2)j

(j+1)2 = 1
l+1

[ l
2 ]∑

j=0

1
2j+1 .

(27)

Combing (18), (26) and (27), we have

B1,0(z; 1, y)

= z( 2−z
2 )y−1 ln z

∞∑
l=0

(1−y)l(
z

z−2 )
l

l!

l∑
j=0

(
l
j

)
(−2)j

j+1

−z( 2−z
2 )y−1

∞∑
l=0

(1−y)l(
z

z−2 )
l

l!

l∑
j=0

(
l
j

)
(−2)j

(j+1)2

= z( 2−z
2 )y−1 ln z

∞∑
l=0

(1−y)2l(
z

z−2 )
2l

(2l+1)!

−z( 2−z
2 )y−1

∞∑
l=0

(1−y)l(
z

z−2 )
l

(l+1)!

[ l
2 ]∑

j=0

1
2j+1 ,

(28)
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Inserting (28) into (25), we see that (20) holds.
In the following section, we will give the representions of

the partial derivatives of the incomplete Beta function on all
complex z.

III. THE PARTIAL DERIVATIVES OF THE INCOMPLETE
BETA FUNCTION ON ALL COMPLEX z

For Bp,q(z;x, y) on all complex z, we have the following
theorems by Theorem 2.1 and Leibniz derivation rule.
Theorem 3.1 If z satisfies |1− z| < |z| < 1 , then we have
the following result:

Bp,q(z;x, y) = Bq,p(y, x)−Bq,p(1− z; y, x). (29)

Theorem 3.2 1) If z satisfies |z| > 1, then we have the
following results:

Bp,q(z;x, y)

= Bp,q(x, y)−
q∑

k=0

(
q
k

)
Hyq−k(y, z)

·
k∑

v=0

(
k
v

)
(−1)p−v

·
(
Bp+v,k−v(1− x− y, y)−Bp+v,k−v(

1
z ; 1− x− y, y)

)
,

(30)
where

Hyq(y, z) =

{
(−1)−y (−πi)

q
, Imz > 0 or z < −1,

(−1)y (πi)
q
, Imz < 0 or z > 1.

(31)
2) If z satisfies

∣∣ z−1
z

∣∣ < 1 , then we have the following
result:

Bp,q(z;x, y) = Bp,q(x, y)−
q∑

k=0

(
q
k

)
·Hyq−k(y, z)

k∑
u=0

(
k
u

)
(−1)p−u

·Bk−u,p+u(
z−1
z ; y, 1− x− y),

(32)

where Hyq(y, z) is defined by (31).
Theorem 3.3 1) If z satisfies

∣∣∣ z
z−1

∣∣∣ < 1, then we have the
following result:

Bp,q(z;x, y) =
p∑

k=0

(
p
k

)
Hxp−k(x, z)

k∑
u=0

(
k
u

)
·(−1)q−uBk−u,q+u(

z
z−1 ;x, 1− x− y),

(33)
where

Hxp(x, z) =

{
(−1)−x (−πi)

p
, Imz < 0 or z > 0,

(−1)x (πi)
p
, Imz > 0 or z < 0.

(34)
2) If z satisfies

∣∣∣ 1
1−z

∣∣∣ < 1, then we have the following result:

Bp,q(z;x, y)

=
p∑

k=0

(
p
k

)
Hxp−k(x, z)

k∑
u=0

(
k
u

)
(−1)q−u

·(Bq+u,k−u(1− x− y, x)
−Bq+u,k−u(

1
1−z ; 1− x− y, x)),

(35)

where Hxp(x, z) is defined by (34).
In the following, we obtain the following theorem by

Theorem 2.2 and Leibniz derivation rule.

Theorem 3.4 1)If z satisfies
∣∣∣ z
z−2

∣∣∣ < 1 , we have the
following result:

Bp,q(z;x, y) = zx( 2−z
2 )y−1

∞∑
l=0

( z
z−2 )

lQq(z,y,l)

l!

·
p∑

k=0

(
p
k

)
C

(k)
l (x) lnp−k z

(36)

for x ̸= 0,−1,−2, · · · , where

Qq(z, y, l) =

q∑
j=0

(
q
j

)
(−1)jal,j(1− y) lnq−j 2− z

2
,

(37)
and

Cl(x) = C
(0)
l (x) =

l∑
j=0

(
l
j

)
(−2)j

j+x , (38)

C
(k)
l (x) = (−1)kk!

l∑
j=0

(
l
j

)
(−2)j

(j + x)k+1
. (39)

2) If z satisfies
∣∣∣ z
z−2

∣∣∣ < 1, then we have the following result:

Bp,q(z;−m, y)

= (−2)m lnp+1 z
p+1 z−m( 2−z

2 )y−1
∞∑

l=m

(
l
m

)
· (

z
z−2 )

lQq(z,y,l)

l! + z−m( 2−z
2 )y−1

∞∑
l=0

( z
z−2 )

lQq(z,y,l)

l!

·
p∑

k=0

(
p
k

)
lnp−k zC

(k)
l (−m).

(40)

for m = 0, 1, 2, · · ·, where

C
(k)
l (−m) = (−1)kk!

l∑
j=0,j ̸=m

(
l
j

)
(−2)j

(j −m)k+1
. (41)

and Qq(z, y, l) is defined by (37).
Proof. 1) By Leibniz derivation rule for (18), we obtain

that (36) holds.
2) By the neutrix limit for (36), we obtain

Bp,q(z;−m, y)

= N− lim
ε→0

zε−m( 2−z
2 )y−1

∞∑
l=0

( z
z−2 )

lQq(z,y,l)

l!

·
p∑

k=0

(
p
k

)
lnp−k zC

(k)
l (ε−m)

= z−m( 2−z
2 )y−1

∞∑
l=0

( z
z−2 )

lQq(z,y,l)

l!

·
p∑

k=0

(
p
k

)
lnp−k zC

(k)
l (−m)

+(−2
z )m( 2−z

2 )y−1
∞∑

l=m

(
l
m

)
( z
z−2 )

lQq(z,y,l)

l!

·
p∑

k=0

(
p
k

)
(−1)kk! lnp−k zN− lim

ε→0

zε

εk+1 ,

(42)

Since

N− lim
ε→0

zε

εk+1
=

lnk+1 z

(k + 1)!
(43)

and
p∑

k=0

(
p
k

)
(−1)kk! lnp−k z

lnk+1 z

(k + 1)!
=

lnp+1 z

p+ 1
(44)

Substituting (43) and (44) into (42), we obtain that (40)
holds.
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Remark 3.1 From Theorem 3.4, we notice that the com-
putation of aj,q(x) and C

(k)
l (x) are important in process

of computing Bp,q(z;x, y). an,l(x) = dl

dxl (x)n can be
calculated by the following formulas:

an,l(x) = (x+ n− 1)an−1,l(x) + lan−1,l−1(x), (45)

and
an,0(x) = (x)n, an,l(x) =

{
0, n < l,
l!, n = l,

. (46)

for n, l = 1, 2, . . . .
Moreover, Cl(x) and C

(k)
l (x) can be calculated by the

following recursive formulas:

Cl+1(x) =
l

l+1+xCl−1(x) +
1−x

l+1+xCl(x), (47)

C
(k)
l+1(x) = l

l+1+xC
(k)
l−1(x) +

1−x
l+1+xC

(k)
l (x)

− k
l+1+x

(
C

(k−1)
l (x) + C

(k−1)
l+1 (x)

)
,

(48)

and

C
(0)
−1 (x) = C−1(x) = 0, C

(0)
0 (x) = C0(x) =

1
x ,

C
(k)
−1 (x) = 0, C

(k)
0 (x) = (−1)kk!

xk+1 .
(49)

for x ̸= 0,−1,−2, . . ..
For C(k)

l (−m), we have the following formulas:

C
(k)
l+1(−m) = C

(k)
l (−m)− 2C

(k)
l (1−m),

C
(k)
0 (−m) =

{
(−1)kk!
(−m)k+1 , m = 1, 2, . . . ,

0, m = 0,
,

C
(k)
l (0) = (−1)kk!

l∑
j=1

(
l
j

)
(−2)j

jk+1 .

(50)

for l,m = 0, 1, 2, . . ..
Moreover, (40) has also a different representation. In fact,

by Leibniz derivation rule for (23), we have

Bp,q(z;x, y)

=
L−1∑
j=0

(−1)j(1− z)y−1−jzx+jQ(q, z, y, j)

·
p∑

k=0

(
p
k

)
Aj+1,k(x) ln

p−k z

+(−1)L
q∑

u=0

(
q
u

)
(−1)uaL,u(1− y)

·
p∑

k=0

(
p
k

)
AL,k(x)Bp−k,q−u(z;x+ L, y − L).

(51)

where

Q(q, z, y, j) =
q∑

l=0

(
q
l

)
(−1)laj,l(1− y) lnq−l(1− z),

(52)
and

Aj,k(x) =
dk

dxk

[
1

(x)j

]
. (53)

Using the neutrix limit, we obtain

Bp,q(z; 0, y)
= N− lim

ε→0

∫ z

ε
t−1(1− t)y−1 lnp t lnq(1− t)dt

= N− lim
ε→0

(1−z)y−1 lnp+1 z lnq(1−z)
p+1

−N− lim
ε→0

(1−ε)y−1 lnp+1 ε lnq(1−ε)
p+1

+N− lim
ε→0

y−1
p+1

∫ z

ε
(1− t)y−2 lnp+1 t lnq(1− t)dt

+N− lim
ε→0

q
p+1

∫ z

ε
(1− t)y−2 lnp+1 t lnq−1(1− t)dt

= (1−z)y−1 lnp+1 z lnq(1−z)
p+1 + y−1

p+1Bp,q(z; 1, y − 1)

+ q
p+1Bp,q−1(z; 1, y − 1)

(54)

Setting x = −m,L = m in (51) and using (54), we can
obtain the following theorem.
Theorem 3.5 If z satisfies

∣∣∣ z
z−2

∣∣∣ < 1, then we have the
following result

Bp,q(z;−m, y)

=
m−1∑
j=0

(−1)jzj−mQ(q,z,y,j)
(1−z)1+j−y

p∑
k=0

Aj+1,k(−m) lnp+1−k z

+ (−1)mQ(q,z,y,m)
(p+1)(1−z)m+1−y

p∑
k=0

(
p+ 1
k

)
Am,k(−m)

− (−1)m(1−y)m+1

p+1

p∑
k=0

(
p+ 1
k

)
Am,k(−m)

·Bp−k+1,q(z; 1, y −m− 1) +
p∑

k=0

(
p
k

)
Am,k(−m)
p+1−k

·
q∑

l=1

(
q
l

)
(−1)l−mBp−k+1,q−l(z; 1, y −m− 1)

·
(
(y −m− 1)am,l(1− y)− lam,l+1(1− y)

)
,

(55)
for m = 0, 1, 2, · · ·, where Bp,q(z; 1, y−m−1) is calculated
by (36), An,p(x) =

dp

dxp

[
1

(x)n

]
is calculated by the recursive

formulas:

An,p(x) =
1

x+ n− 1
(An−1,p(x)− pAn,p−1(x)) ,

and

An,0(x) =
1

(x)n

In the following section, we give some numerical examples
to verify the results of Section 2 and Section 3.

IV. NUMERICAL EXAMPLES

Using the following transformation formulas

z −→ 1− z,
1

z
,

z

z − 1
,

1

1− z
,

z

z − 2

we can obtain high precision and fast calculation for the
hypergeometric function 2F1(a, b; c; z). By (4), B(z, x, y)
can be directly calculated by using the hypergeometric
function 2F1(a, b; c; z). However, using transform formulas
of Theorem 2.1 and 2.2, B(z, x, y) can be calculated more
effectively. Some mathematical softwares have internal func-
tions for calculating B(z;x, y). For example, we illustrate
the validity of the numerical calculation by the following
numerical results of Table I and Table II in Mathematica.

Table I The comparison of numerical results
for B(z, x, y)(1)

z, x, y algorithm T16, r16

23
24 + i

20 ,
1
2 ,

−12
7

sys1
sys2
(6)

0.0625, 1.3 × 10−15

0.0156, 0.0 × 10−16

0.0, 0.0 × 10−21

22
3 + 5i

4 , 52 ,
−17
5

sys1
sys2
(9)

0.0937, 4.0 × 10−15

0.0156, 0.0 × 10−16

0.0, 2.0 × 10−19

−7
6 + i

9 ,
16
3 ,−22

5

sys1
sys2
(10)

0.0625, 6.9 × 10−11

0.0156, 0.0 × 10−16

0.0, 0.0 × 10−20

1
2 +

√
3i
2 , 57 ,

−14
5

sys1
sys2
(18)

0.0625, 1.9 × 10−14

0.0156, 0.0 × 10−16

0.0, 4.0 × 10−17
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and
Table II The comparison of numerical results

for B(z, x, y)(2)
z, x, y algorithm T32, r32

23
24 + i

20 ,
1
2 ,

−12
7

sys1
sys2
(6)

0.2968, 0.0 × 10−32

0.0156, 0.0 × 10−32

0.0156, 0.0 × 10−41

22
3 + 5i

4 , 52 ,
−17
5

sys1
sys2
(9)

0.3593, 1.3 × 10−32

0.0156, 0.0 × 10−32

0.0156, 2.0 × 10−38

−7
6 + i

9 ,
16
3 ,−22

5

sys1
sys2
(10)

0.1093, 0.0 × 10−32

0.0156, 0.0 × 10−32

0.0, 0.0 × 10−40

1
2 +

√
3i
2 , 57 ,

−14
5

sys1
sys2
(18)

0.1718, 0 × 10−32

0.0156, 0.0 × 10−32

0.0156, 0.0 × 10−36

Where sys1 represents the call of numerical integral
function of Mathematica to calculate the formula (1) for
x > 0, sys2 represents the call of internal Beta function
of Mathematica to calculate the formula (1). In this section,
TP and rp represent the running time(unit:second) and the
error with the precision P , respectively.

Seen from Table I and Table II , the calculation accuracy of
using the formulas (6), (9), (10) and (18) is best. Moreover,
sys2 and formulas (6),(9),(10),(18) have almost the same
computation speed. According to Theorem 2.1 and 2.2,
the internal functions of calculating B(z;x, y) are written,
calculation efficiency will be better.

In the following, we consider the calculation of
Bp,q(z;x, y). Due to there is no specific command which
is used to calculate Bp,q(z;x, y) in the mathematical soft-
ware. The symbol derivation of function B(z;x, y) seems
to be able to get Bp,q(z;x, y). However, it is rather time
consuming. Especially, when p+ q is bigger, it cannot give
calculation of Bp,q(z;x, y). When (2) is integrable, it is the
integral representation of Bp,q(z;x, y). Thus, the transform
formulas of Theorem 3.1-3.4 can be compared with the
numerical integration of (2). Here, we give the comparison
of numerical results for Bp,q(z;x, y)(p = 2, q = 2) in Table
III and Table IV.

Table III The comparison of numerical results
for B2,2(z; x, y)(1)

z, x, y algorithm T16, r16

115+6i
120 , −3

2 , −12
7

sys3
(29)

0.0937, 7.5 × 10−15

0.0156, 0.0 × 10−16

88+15i
12 , −3

2 , −17
5

sys3
(30)

0.1562, 4.5 × 10−14

0.0468, 0.0 × 10−15

2i−21
18 , −5

3 , −22
5

sys3
(33)

0.0781, 7.0 × 10−16

0.0312, 4.8 × 10−15

1+
√

3i
2 , −12

7 , −14
5

sys3
(36)

0.0781, 7.0 × 10−15

0.0468, 6.0 × 10−14

and
Table IV The comparison of numerical results

for B2,2(z; x, y)(2)
z, x, y algorithm T32, r32

115+6i
120 , −3

2 , −12
7

sys3
(29)

0.5468, 0.0 × 10−32

0.0156, 0.0 × 10−36

88+15i
12 , −3

2 , −17
5

sys3
(30)

0.7812, 0.0 × 10−32

0.0468, 0.0 × 10−35

2i−21
18 , −5

3 , −22
5

sys3
(33)

0.1562, 0.0 × 10−32

0.0312, 6.8 × 10−37

1+
√

3i
2 , −12

7 , −14
5

sys3
(36)

0.3593, 0.0 × 10−32

0.0781, 0.0 × 10−35

Where sys3 is used to represent numerical integral func-
tion of (2) for x > −q in Mathematica.

Seen from the Table III and Table IV, the speed and
precision of calculating B2,2(z;x, y) is high by using
(29),(30),(33) and (36). Especially with the improvement of
specific precision, more obvious advantage can be seen.

V. CONCLUSION

In this paper, some transformation properties of the incom-
plete Beta function are obtained. Based on the transformation
properties, we extend the definitions of the partial derivatives
of the incomplete Beta function Bp,q(z;x, y) to the whole
complex plane on x, y and z. Furthermore, we give some
representations of Bp,q(z;x, y). Finally, numerical examples
show the transformation formulas of Section 2 and Section 3
can improve the speed and precision of calculating B(z;x, y)
and Bp,q(z;x, y).
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