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Abstract—In this paper, we introduced a new class of
derivative called nabla Hukuhara derivative for fuzzy functions
on time scales under Hukuhara difference. We proved the
uniqueness and existence of this derivative and obtain funda-
mental properties. The nabla Hukuhara derivative of scalar
multiplication, sum and product of two fuzzy functions on time
scales are established.

Index Terms—Fuzzy functions, Time scales, Hukuhara dif-
ference, Nabla Hukuhara derivative.

I. INTRODUCTION

An exact description of any real world phenomenon is
virtually impossible due to indeterminacy, which is caused
by the inability to represent a real situation in precise form.
To specify these vague or imprecise notions, Zadeh [25]
introduced the theory of fuzzy sets. Hukuhara [9] introduced
difference between two sets called Hukuhara difference
and developed the theory of derivatives and integrals for
set valued mappings. Later, Puri and Ralescu [19] studied
Hukuhara derivative for fuzzy functions using Hukuhara
difference. Kaleva [15], studied fuzzy differential equations
under Hukuhara differentiability. Further, [24] studied dy-
namical behavior of first-order nonlinear fuzzy difference
equations.

Time scales was initiated by the german mathematician
Stefan Hilger [12]. The important features of time scales are
extension, unification and generalization. The theory of time
scale calculus is applicable to any field in which dynamic
process is described by continuous or discrete time models.
If we take time scales as real numbers, then the derivative of a
function is equal to standard differentiation while, if we take
time scales as integers then it turns to backward difference
operator or forward difference operator. For basic results in
time scale calculus and dynamic equations on time scales
were found in [1], [5], [6]. In some recent studies and appli-
cations in economics [4], production, inventory models [3],
adaptive control [14], neural networks [17] cellular neural
networks [8], BAM neural networks with nabla derivative on
time scales [10] suggested nabla derivative is more preferable
than delta derivative on time scales.

Interval differential equations on time scales and Hukuhara
differentiability of interval valued functions was studied
by Lupulescu [18]. Recently, Fard and Bidgoli [7] intro-
duced and studied delta Hukuhara derivative and Henstock-
Kurzweil integrals of fuzzy valued functions on time scales,
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using generalized Hukuhara difference. Vasavi et. al. [20],
[21], [22], [23] introduced Hukuhara delta derivative, second
type Hukuhara delta derivative and generalized Hukuhara
delta derivatives, using Hukuhara difference and studied
fuzzy dynamic equations on time scales. M.Hu et. al. [11]
studied the Positive Periodic Solutions in Shifts Delta(+/-)
for a Neutral Dynamic Equation on Time Scales. Recently,
we introduced and studied nabla integral for fuzzy functions
on time scales [16]. With the importance and advantages
of nabla derivatives and dynamic equations on time scales
in recent applications, we proposed to develop the theory
of fuzzy nabla dynamic equations on time scales. In this
context, we introduced nabla Hukuhara derivative for fuzzy
functions on time scales and study their properties. The
rest of this paper is organized as follows. In section 2,
we present some definitions, properties basic results relating
to fuzzy sets, calculus of fuzzy functions and time scales
calculus. Section 3 introduces nabla Hukuhara derivative of
fuzzy functions on time scales and established uniqueness,
existence of the derivative and also obtain some properties.

II. PRELIMINARIES

It is important to recall some basic results and definitions
related to fuzzy calculus. Let <k(<n) be the family of all
convex compact nonempty subsets of <n. Denote the set
addition and scalar multiplication in <k(<n) as usual. Then
<k(<n) satisfies the properties of commutative semigroup
[15] under addition with cancellation laws. Further, if α, β ∈
< and S, T ∈ <k(<n), then

α(S + T ) = αS + αT, α(βS) = (αβ)S, 1.S = S,

and if β, α ≥ 0 then (β + α)S = βS + αS. Let S and
T be two bounded nonempty subsets of <n. By using the
Pampeiu-Hausdorff metric we defined the distance between
S and T as follows

dH(S, T ) = max{sup
s∈S

inf
t∈T
‖s− t‖, sup

t∈T
inf
s∈S
‖s− t‖}

here ||.|| is the Euclidean norm in <n. Then (<k(<n), dH)
becomes a seperable and complete metric space [15].

Define

En = {µ : <n → [0, 1]/µ satisfies(a)-(d) below}, where

(a) If ∃ a t ∈ <n such that µ(t) = 1 then µ is said to be
normal,

(b) µ is fuzzy convex,
(c) µ is upper semicontinuous,
(d) the closure of {t ∈ <n/µ(t) > 0} = [µ]0 is compact.

For 0 < λ ≤ 1, denote [µ]λ = {t ∈ <n : µ(t) ≥ λ},
then from the above conditions we have that the λ-level set
[µ]λ ∈ <k(<n).
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We know that [g(s, t)]λ = g([s]λ, [t]λ), for all s, t ∈ En
and g is continuous. The scalar multiplication � and addition
⊕ of s, t ∈ En is defined as

[s⊕ t]λ = [s]λ + [t]λ, [k � s]λ = k[s]λ,

where s, t ∈ En, k ∈ <, 0 ≤ λ ≤ 1.
Theorem 2.1: [15] If µ ∈ En, then

(a) [µ]λ ∈ <k(<n) for all 0 ≤ λ ≤ 1,
(b) [µ]λ2 ⊂ [µ]λ1 for all 0 ≤ λ1 ≤ λ2 ≤ 1,
(c) If λk ∈ [0, 1] and {λk} is a nondecreasing sequence

converging to λ > 0, then

[µ]λ =
⋂
k≥1

[µ]λk .

Conversely, if {Xλ/0 ≤ λ ≤ 1} is a subsets of family of
<n satisfying the above conditions from (a)-(c), then
∃a x ∈ En 3

[µ]λ = Xλ, ∀ λ ∈ (0, 1] and

[µ]0 = cl

 ⋃
0<λ≤1

Xλ

 ⊂ X0,

here cl is the closure of the set
Theorem 2.2: [15] If sequence {Xn} converging to X in

<k(<n) and
d(Xn, X)→ 0 as n→∞ then

X =
⋂
n≥1

cl

 ⋃
m≥n

Xm

 .

Define DH : En × En → [0,∞) by

DH(s, t) = sup
0≤λ≤1

dH([s]λ, [t]λ),

here dH is the Pampeiu Hausdorff metric defined in <k(<n).
Then (En, DH) is a complete metric space [15].

The following theorem extend the properties of addition
and scalar multiplication of fuzzy number valued functions
(<F = E1) to En.

Theorem 2.3: [2]
(a) If 0̃ is the zero element in <F , then 0̂ =

(
0̃, 0̃, . . . , 0̃

)
is

the zero element in En. i.e. s⊕ 0̂ = 0̂⊕s = s ∀s ∈ En;
(b) For any s ∈ En has no inverse with respect to ‘⊕′;
(c) For any β, γ ∈ < with β, γ ≥ 0 or β, γ ≤ 0 and s ∈ En,

then (β + γ)� s = (β � s)⊕ (γ � s);
(d) For any β ∈ < and s, t ∈ En, we have β � (s ⊕ t) =

(β � s)⊕ (β � t);
(e) For any β, γ ∈ < and s ∈ En, we have β � (γ � s) =

(βγ)� s.
Let S, T ∈ En. If ∃ a R ∈ En such that S = T ⊕ R

then we say that R is the H-difference of S and T and is
denoted by S 	h T . For any S, T,R, U ∈ En and α ∈ <,
the following holds
(a) DH(S, T ) = 0⇔ S = T ;
(b) DH(αS, αT ) = |α|DH(S, T );
(c) DH(S ⊕R, T ⊕R) = DH(S, T );
(d) DH(S 	h R, T 	h R) = DH(S, T );
(e) DH(S ⊕ T,R⊕ U) ≤ DH(S,R) +DH(T,U);
(f) DH(S 	h T,R	h U) ≤ DH(S,R) +DH(T,U).

provided the H-differences exists.

Now, we present some fundamental definitions and proper-
ties of Hukuhara derivative of fuzzy functions on the compact
interval I = [a, b], a, b ∈ <.

Definition 2.1: [15] A function G : I → En is H-
differentiable at θ ∈ I , if ∃ a G

′
(θ) ∈ En such that the

limits

lim
~→0+

G(θ + ~)	h G(θ)
~

, lim
~→0+

G(θ)	h G(θ − ~)
~

exist in En and are equal to G
′
(θ). Here we consider the

limits in the metric space (En, DH). At the end points of I ,
we will consider only the one-sided derivatives.

Remark 2.1: [15] A function G is said to be differentiable
if the multivalued mapping Gλ is Hukuhara differentiable for
all λ ∈ [0, 1] and

[Gλ(θ)]
′
= [G

′
(θ)]λ,

where [Gλ]
′

is the H-derivative of Gλ.
Definition 2.2: [15] A mapping G is said to be strongly

measurable if for each λ ∈ [0, 1], the fuzzy function G : I →
<k(<n) defined by Gλ(θ) = [G(θ)]λ is measurable.

Remark 2.2: [15] If {λk} is a nonincreasing sequence
converging to 0 for all x ∈ En, then

lim
k→∞

dH([x]0, [x]λk) = 0.

Now, we present some fundamental definitions and results
of time scales.

Definition 2.3: [5]
(a) Any nonempty closed subset of < is defined as a time

scale which is denoted by T.
(b) ρ : T→ T is the backward jump operator and ν : T→

R+, the graininess operator are defined by

ρ(θ) = sup{θ0 ∈ T : θ0 < θ}, ν(θ) = θ−ρ(θ) for θ ∈ T,

(c) The operator ρ is called left dense if ρ(θ) = θ, otherwise
left scattered.

(d) Tk = T−{m}, if T has a right scattered minimum m.
Otherwise Tk = T.

(e) A mapping gρ : T→ < defined by

gρ(θ) = g(ρ(θ)) for each θ ∈ T,

where g : T→ < is a function.
(f) The interval in time scale T is defined by

T[a,b] = {θ ∈ T : a ≤ θ ≤ b} = [a, b] ∩ T

and

T[a,b]
k =

{
T[a,b], if a is right dense
T[σ(a),b], if a is right scattered.

Definition 2.4: [5] Let g : T → < be a function and θ ∈
Tk. Then g∇(θ) exists as a number provided for any given
ε > 0, ∃ a neighbourhood Nδ of θ (i.e., Nδ = (θ−δ, θ+δ)∩T
for some δ > 0) such that

|[g(ρ(θ))− g(θ0)]− g∇(θ)[ρ(θ)− θ0]| ≤ ε|ρ(θ)− θ0|,

∀ θ0 ∈ Nδ ,
Here, g∇(θ) is called the nabla derivative of g at θ.

Moreover, g is said to be nabla (or Hilger) differentiable
on Tk, if g∇(θ) exists ∀ θ ∈ Tk. The function g∇ : Tk → <
is then called the nabla derivative of g on Tk.
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Definition 2.5: [5] A mapping g : T → < is said to be
regulated if its left sided limits exist and are finite at all ld-
point (left dense points) in T and its right sided limits exist
and are finite at all rd-points (right dense points) in T

Definition 2.6: [5] Let g : T→ < be a function. g is said
to be ld-continuous, if it is continuous at each ld-point in T
and lim

θ0→θ+
g(θ) exists as a finite number for all rd-points in

T.

III. NABLA HUKUHARA DIFFERENTIABILITY

In this section, first we introduced nabla Hukuhara deriva-
tive of fuzzy functions on time scales. Later, we established
uniqueness and existence of this derivative and obtained
some properties, results on nabla Hukuhara derivative.

Definition 3.1: [20] For any given ε > 0 ∃ a δ > 0, such
that the fuzzy function G : T[a,b] → En has a unique T-
limit P ∈ En at θ ∈ T if DH(G(θ) 	h P, 0̂) ≤ ε, for all
θ ∈ NT(θ, δ) and it is denoted by T− lim

θ→θ0
G(θ).

Here T-limit denotes the limit on time scale in the metric
space (En, DH).

Remark 3.1: From the above definition, we have

T− lim
θ→θ0

G(θ) = P ∈ En ⇐⇒ T− lim
θ→θ0

(G(θ)	h P ) = 0̂,

where 0̂ is the zero element in En.
Definition 3.2: A fuzzy mapping G : T → En is con-

tinuous at θ0 ∈ T, if T − lim
θ→θ0

G(θ) ∈ En exists and

T− lim
θ→θ0

G(θ) = G(θ0), i.e.

T− lim
θ→θ0

(G(θ)	h G(θ0)) = 0̂.

Remark 3.2: If G : T→ En is continuous at θ ∈ T, then
for every ε > 0, ∃ a δ > 0, such that

DH(G(θ)	h G(θ0), 0̂) ≤ ε, for all θ ∈ NT.

Remark 3.3: Let G : T→ En and θ0 ∈ T.

(a) If T − limθ→θ+0
G(θ) = G(θ0), then G is said to be

right continuous at θ0.
(b) If T− limθ→θ−0

G(θ) = G(θ0), then G is said to be left
continuous at θ0.

(c) If T − limθ→θ+0
G(θ) = G(θ0) = T − limθ→θ−0

G(θ),
then G is continuous at θ0.

Definition 3.3: Suppose G : T[a,b] → En is a fuzzy
function and θ ∈ T[a,b]

k . Let G∇h(θ) be an element of En
exists provided for any given ε > 0, ∃ a neighbourhood
NT[a,b] of θ and for some δ > 0 such that

DH [(G(θ + ~)	h G(ρ(θ)), (~+ ν(θ))�G∇h(θ)]

≤ ε|~+ ν(θ)|,
DH [(G(ρ(θ))	h G(θ − ~), (~− ν(θ))�G∇h(θ)]

≤ ε|~− ν(θ)|,

(1)

for all θ − ~, θ + ~ ∈ NT[a,b] with 0 < h < δ where
ν(θ) = θ−ρ(θ). Then G is called nabla Hukuhara (nabla-h)
differentiable at θ and is denoted by G∇h(θ).

or

A fuzzy function G : T[a,b] → En is sasid to be nabla-h
differentiable at θ ∈ T[a,b]

k if ∃ a G∇h(θ) ∈ En such that
the limits

T− lim
~→0+

G(θ + ~)	h G(ρ(θ))
~+ ν(θ)

and
T− lim

~→0+

G(ρ(θ))	h G(θ − ~)
~− ν(θ)

exists and are equal to G∇h(θ).
Moreover, if nabla-h derivative exists for each θ ∈ T[a,b]

k ,
then G is nabla-h differentiable on T[a,b]

k . We consider only
right limit at left scattered points and one-sided limit at the
end points of T[a,b]

k .
Note. If both T-limits exists at left scattered point, then the
nabla-h derivative is in <n (crisp). It will restrict the nabla-h
differentiability of fuzzy functions on time scales having left
scattered points. To avoid this, we considered only right limit
at left scattered points.

Lemma 3.1: If G is nabla-h differentiable at θ then nabla-
h derivative exists and it is unique.

Proof: Suppose that G∇h1(θ) and G∇h2(θ) are ∇h-
derivatives of G at θ. Then

DH [(~+ν(θ))�G∇h1(θ), G(θ+~)	hG(ρ(θ))] ≤
ε

2
|~+ν(θ)|,

DH [(~+ν(θ))�G∇h2(θ), G(θ+~)	hG(ρ(θ))] ≤
ε

2
|~+ν(θ)|.

Consider

DH [G∇h1(θ), G∇h2(θ)]

=
DH [(~+ ν(θ))�G∇h1(θ), (~+ ν(θ))�G∇h2(θ)]

|~+ ν(θ)|

≤
DH

[
(~+ ν(θ))�G∇h1(θ), G(θ + ~)	h G(ρ(θ))

]
|~+ ν(θ)|

+
DH

[
G(θ + ~)	h G(ρ(θ)), (~+ ν(θ))�G∇h2(θ)

]
|~+ ν(θ)|

≤ ε

2
+
ε

2
= ε, ∀ |~+ ν(θ)| 6= 0.

Since ε > 0, then DH [G∇h1(θ), G∇h2(θ)] = 0. Therefore,
G∇h1(θ) = G∇h2(θ). Hence nabla-h derivative exists and is
unique.

Theorem 3.1: Let θ ∈ T[a,b]
k and G : T[a,b] → En be a

fuzzy function. Then we have
(a) If G : T[a,b] → En is nabla-h differentiable at θ, then G

is continuous when θ is left dense and right continuous
when θ is left scattered.

(b) If G : T[a,b] → En is right continuous at θ and θ is left
scattered, then G : T[a,b] → En is nabla-h differentiable
at θ with

G∇h(θ) =
G(θ)	h G(ρ(θ))

ν(θ)
,

provided G(θ)	h G(ρ(θ)) exists.
(c) If θ is left dense, then G : T[a,b] → En is nabla-h

differentiable at θ iff the limits

lim
~→0+

G(θ)	h G(θ − ~)
~

, lim
~→0+

G(θ + ~)	h G(θ)
~

exist as a finite number and

lim
~→0+

G(θ)	h G(θ − ~)
~

= lim
~→0+

G(θ + ~)	h G(θ)
~
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= G∇h(θ).

(d) If G : T[a,b] → En is nabla-h differentiable at θ, then

G(ρ(θ)) = G(θ)	h (ν(θ)�G∇h(θ)).

Proof: (a) Suppose G is nabla-h differentiable at θ.
Let ε ∈ (0, 1). Choose ε1 = ε[1 + 2ν(θ) + ‖G∇h(θ)‖]−1.

Clearly, ε1 ∈ (0, 1). Let 0̂ be the zero element in En and
from the definition of DH , we have

DH [p̃, 0̂] = ‖p̃‖.

For any s, t ∈ En, DH [s, t] ≤ ‖s 	h t‖. Since G is nabla-h
differentiable, ∃ NT[a,b] a neighbourhood of θ such that

DH [(G(θ + ~)	h G(ρ(θ)), (~+ ν(θ))�G∇h(θ)]

≤ ε1|~+ν(θ)|, for all 0 < ~ < δ with θ−~, θ+~ ∈ NT[a,b] .
Therefore, for all θ−~, θ+~ ∈ NT[a,b] ∩ (θ− ε1, θ+ ε1) and
0 < ~ < ε1, we have

DH [G(θ + ~), G(θ)] ≤ ‖G(θ + ~)	h G(θ)‖

Now,

DH [G(θ + ~)	h G(θ), 0̂]

≤ DH [(G(θ + ~)	h G(ρ(θ)))	h (G(θ)	h G(ρ(θ)))],

(~+ ν(θ))�G∇h(θ)	h (~+ ν(θ))�G∇h(θ)]

≤ DH [(G(θ + ~)	h G(ρ(θ)), (~+ ν(θ))�G∇h(θ)]

+DH [G(θ)	h G(ρ(θ)), (~+ ν(θ))�G∇h(θ)]

≤ ε1|~+ ν(θ)|+DH [G(θ)	h G(ρ(θ))⊕ 0̂,

ν(θ)�G∇h(θ)⊕ ~�G∇h(θ)]

≤ ε1|~+ ν(θ)|+DH [G(θ)	h G(ρ(θ)), ν(θ)�G∇h(θ)]

+DH [0̂, ~�G∇h(θ)]

≤ ε1(~+ ν(θ)) + ε1ν(θ) + +~DH [0̂, G∇h(θ)]

< ε1(1 + 2ν(θ) + ‖G∇h(θ)‖) = ε.

Therefore, for θ being left dense or left scattered

T− lim
~→0

G(θ + ~) = G(θ).

For left dense point θ, it is easy to prove that

T− lim
~→0

G(θ − ~) = G(θ).

Hence G is continuous at left dense points and right contin-
uous at left scattered points in T[a,b]

k .
(b) Suppose that θ is left scattered. Consider

G∇h(θ) = T− lim
~→0+

G(θ + ~)	h G(ρ(θ))
~+ ν(θ)

.

Since G is right continuous, then

G∇h(θ) =
G(θ)	h G(ρ(θ))

ν(θ)
.

Hence G is nabla-h differentiable at θ.
(c)Suppose that G is nabla-h differentiable at θ and θ is

ld-point. Since G is nabla-h differentiable at θ, for any given
ε > 0, ∃ NT[a,b] a neighbourhood of θ 3

DH [(G(ρ(θ))	hG(θ−~), (~−ν(θ))�G∇h(θ)] ≤ ε|~−ν(θ)|,

DH [G(θ+~)	hG(ρ(θ)), (~+ν(θ))�G∇h(θ)] ≤ ε|~+ν(θ)|,

for all 0 < ~ < δ with θ−~, θ+~ ∈ NT[a,b] . Since ρ(θ) = θ,
i.e. ν(θ) = 0, we have

DH [(G(θ)	h G(θ − ~), ~�G∇h(θ)] ≤ ε~,

DH [(G(θ + ~)	h G(θ), ~�G∇h(θ)] ≤ ε~,

for all 0 < ~ < δ with θ − ~, θ + ~ ∈ NT[a,b] . This implies
that

DH

[
G(θ)	h G(θ − ~)

~
, G∇h(θ)

]
≤ ε,

DH

[
G(θ + ~)	h G(θ)

~
, G∇h(θ)

]
≤ ε,

for all 0 < ~ < δ with θ − ~, θ + ~ ∈ NT[a,b] . since ε is
arbitrary, we have

G∇h(θ) = lim
~→0

G(θ)	h G(θ − ~)
~

= lim
h→0

G(θ + ~)	h G(θ)
~

.

Conversely, suppose that for all 0 < ~ < δ with θ−~, θ+~ ∈
NT, ∃ a neighbourhood NT of θ and θ is left dense such that

DH

[
G(θ)	h G(θ − ~)

~
, G∇h(θ)

]
≤ ε,

DH

[
G(θ + ~)	h G(θ)

~
, G∇h(θ)

]
≤ ε.

From the above inequalities, G is nabla-h differentiable at θ.
(d) If ρ(θ) = θ, then ν(θ) = 0 and we have,

G(ρ(θ)) = G(θ) = G(θ)	h (ν(θ)�G∇h(θ)).

If ρ(θ) < θ, then by (b)

ν(θ)�G∇h(θ) = G(θ)	h G(ρ(θ))

Therefore, G(ρ(θ)) = G(θ)	h (ν(θ)�G∇h(θ)).
Example 3.1: Let us consider T = < or T = tZ =
{tk : k ∈ Z}.
(a) If T = <, then from Theorem 3.1 (c) G : < → En is

nabla-h differentiable at θ ∈ < iff

G∇h(θ) = lim
~→0

G(θ)	h G(θ − ~)
~

= lim
~→0

G(θ + ~)	h G(θ)
~

= G
′
(θ).

(b) If T = tZ, then every point θ ∈ T is isolated and

ρ(θ) = sup {θ − nt : n ∈ N} = θ − t,

ν(θ) = θ − ρ(θ) = θ − (θ − t) = t.

From Theorem 3.1(b) G : tZ → En is ∇h-differentiable
at θ ∈ tZ and

G∇h(θ) =
G(θ)	h G(ρ(θ))

ν(θ)

=
G(θ)	h G(θ − t)

t

=
1

t
�∇G(θ),

where ∇ is the backward Hukuhara difference operator.
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Theorem 3.2: Denote [G(θ)]λ = Gλ(θ) for each λ ∈
[0, 1], where G : T[a,b] → En be the fuzzy function
and if G is nabla-h differentiable, then Gλ is also nabla-h
differentiable and

[G∇h(θ)]λ = G∇h

λ (θ).

Proof: If θ is left scaterred and G is nabla-h differen-
tiable at θ ∈ T[a,b]

k , then for each λ ∈ [0, 1], from theorem 3.1
(b) we get

[G∇h(θ)]λ =
[G(θ)]λ 	h [G(ρ(θ)]λ

ν(θ)

=
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)
= G∇h

λ (θ).

If G is nabla-h differentiable at θ ∈ T[a,b]
k and θ is left dense,

then for λ ∈ [0, 1], we get

[G(θ)	h G(θ − ~)]λ = [Gλ(θ)	h Gλ(θ − ~)]

dividing by ~ > 0 and taking the limit ~→ 0+, we have

lim
~→0+

1

~
[Gλ(θ)	h Gλ(θ − ~)] = G∇h

λ (θ).

Similarly,

lim
~→0+

1

~
[
Gλ(θ + ~)	h Gλ(θ)

]
= G∇h

λ (θ).

Remark 3.4: The above Theorem 3.2, states that if G is
nabla-h differentiable then the multivalued mapping Gλ is
nabla-h differentiable for all λ ∈ [0, 1], but the converse of
the theorem need not be true. That is the existence of H-
differences of λ-level sets [p]λ 	h [q]λ does not imply the
existence of H-difference of p	h q.
However, for the converse of the theorem we have the
following:

Theorem 3.3: Suppose that G : T[a,b] → En satisfy the
following conditions:
(1) For each θ ∈ T[a,b] and θ is left dense

(a) ∃ a β > 0, 3 the Hukuhara differences G(θ) 	h
G(θ − ~) and G(θ + ~) 	h G(θ) exists, for all
0 < ~ < β and θ − ~, θ + ~ ∈ NT[a,b] ;

(b) the fuzzy mappings Gλ, λ ∈ [0, 1], are uniformly
nabla-h differentiable with derivative G∇h

λ , i.e., to
each θ ∈ T[a,b] and ε > 0 ∃ a δ > 0 such that

DH

{
Gλ(ρ(θ))	h Gλ(θ − ~)

~− ν(θ)
, G∇h

λ (θ)

}
< ε,

DH

{
Gλ(θ + ~)	h Gλ(ρ(θ))

~+ ν(θ)
, G∇h

λ (θ)

}
< ε,

for all 0 < ~ < δ, θ− ~, θ+ ~ ∈ N [a,b]
T , λ ∈ [0, 1].

(2) for each θ ∈ T[a,b] and θ is left scattered
(a) there exists a β > 0, 3 the Hukuhara differences

G(θ)	h G(ρ(θ)) exists and;
(b) the fuzzy mappings Gλ, λ ∈ [0, 1], are uniformly

nabla-h differentiable with derivative G∇h

λ , i.e., to
each θ ∈ T[a,b] and ε > 0 ∃ a δ > 0 such that

DH

{
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)
, G∇h

λ (θ)

}
< ε. (2)

Then G is nabla-h differentiable and its derivative is
given by G∇h

λ (θ) = [G∇h(θ)]λ.

Proof: Case(1): For left dense points and θ ∈ T[a,b]

then the proof is obvious from Theorem 5.1 [15].
Case(2): For left scattered points and θ ∈ T[a,b] Consider,

{G∇h

λ (θ), λ ∈ [0, 1]}, where G∇h

λ (θ) is convex, compact and
nonempty subset of <n. If λ1 ≤ λ2 then by our supposition
(a), we have

Gλ1
(θ)	h Gλ1

(ρ(θ)) ⊃ Gλ2
(θ)	h Gλ2

(ρ(θ)) (3)

For 0 < ~ < β, we have G∇h

λ1
(θ) ⊃ G∇h

λ2
(θ).

Let {λn} be a nondecreasing sequence coverges to λ > 0.
For ε > 0 choose ~ > 0 3 the equation (2) holds.
Now, let us consider

DH(G∇h

λ (θ), G∇h

λn
(θ))

≤ DH

(
G∇h

λ (θ),
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)

)
+DH

(
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)
, G∇h

λn
(θ)

)
< ε+

DH [Gλ(θ)	h Gλ(ρ(θ)), Gλn
(θ)	h Gλn

(ρ(θ))]

ν(θ)

+
DH [Gλn

(θ)	h Gλn
(ρ(θ)), ν(θ)G∇h

λn
(θ)]

ν(θ)

< 2ε+
1

ν(θ)
DH [Gλ(θ)	h Gλ(ρ(θ)),

Gλn(θ)	h Gλn(ρ(θ))].

By our supposition (a), the rightmost term converges to zero
as n→∞ and hence

lim
n→∞

DH(G∇h

λ (θ), G∇h

λn
(θ)) = 0.

From Theorem 2.1 and (3) we have

G∇h

λ (θ) =
⋂
n≥1

cl

 ⋃
m≥n

G∇h

λm
(θ)

 .

If λ = 0, we can write it as

lim
n→∞

DH(G∇h
0 (θ),∇hG∇h

λn
(θ)) = 0,

where the nondecreasing sequence {λn} tends to zero , and
as a result of this

G∇h
0 (θ) = cl

⋃
n≥1

G∇h

λn
(θ)

 .

Then from Theorem 2.1, ∃ an element ũ ∈ En such that

[ũ]λ = G∇h

λ (θ), λ ∈ [0, 1].

Let θ ∈ T[a,b], ε > 0, δ > 0 and θ − ~, θ + ~ ∈ NT be as in
supposition (b) then, we have

DH

(
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)
, ũλ
)

= DH

(
Gλ(θ)	h Gλ(ρ(θ))

ν(θ)
, G∇h

λ (θ)

)
< ε

Thus G is nabla-h differentiable.
Theorem 3.4: Let G : T[a,b] → En defined by G(θ) =

g(θ)�u for all θ ∈ T[a,b], where u ∈ En and g : T[a,b] → T+

is nabla differentiable at θ0 ∈ T[a,b] . If g∇(θ0) > 0, then G
is nabla-h differentiable at θ0 with G∇h(θ0) = g∇(θ0)� u.
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Proof: Since g is nabla differentiable at θ0, then g is
continuous at θ0.

Case(i): If θ0 is left scattered then we have

g∇(θ0) =
g(θ0)− g(ρ(θ0))

ν(θ0)
.

Since g∇(θ0) > 0, then

g(θ0)− g(ρ(θ0)) = g∇(θ0)ν(θ0) > 0.

It implies that

g(θ0) = g(ρ(θ0)) + g∇(θ0)ν(θ0).

Since g(θ0) > 0, g(ρ(θ0)) > 0, g∇(θ0)ν(θ0) > 0 and from
Theorem 2.3(c), by multiplying the above equation with u ∈
En on both sides, we get

g(θ0)� u = [g(ρ(θ0))� u]⊕
[
g∇(θ0)ν(θ0)� u

]
.

It implies that

[g(θ0)� u]	h [g(ρ(θ0))� u] = [g∇(θ0)ν(θ0)]� u

and then

G(θ0)	h G(ρ(θ0)) = [g∇(θ0)ν(θ0)]� u.

Multiplying by
1

ν(θ0)
and using Theorem 2.3 (e), we get

G(θ0)	h G(ρ(θ0))
ν(θ0)

= [g∇(θ0)]� u

and hence
G∇h(θ0) = g∇(θ0)� u.

Case(ii): If θ0 is left dense, then

g∇(θ0) = g
′
(θ0) > 0

and
g
′
(θ0) = lim

~→0

g(θ0)− g(θ0 − ~)
~

.

It follows that for h > 0 sufficiently small, we have

g(θ0)− g(θ0 − ~) = φ(θ0, ~) > 0,

it implies
g(θ0) = g(θ0 − ~) + φ(θ0, ~).

Since g(θ0) > 0, g(θ0 − ~) > 0, φ(θ0, ~) > 0 and from
Theorem 2.3(c), by multiplying the above equation with u ∈
En on both sides, we get

g(θ0)� u = [g(θ0 − ~)� u]⊕ [φ(θ0, ~)� u] .

It implies

G(θ0) = G(θ0 − ~)⊕ [(φ(θ0, ~)� u].

Therefore, G(θ0) 	h G(θ0 − h) exists and hence G is left
nabla-h differentiable at θ0. Similarly, we can prove G is
right nabla-h differentiable at θ0.
It follows that, G is nabla-h differentiable at θ0 with

G∇h(θ0) = g∇(θ0)� u.

Example 3.2: Let us define G(θ) = θ2 � u , ∀ θ ∈ T[1,5],
G : T[1,5] → E1 is a fuzzy function and u = (2, 3, 4) is the
triangular fuzzy number. From Theorem 3.4, since g(θ) = θ2

and g∇(θ) = θ+ρ(θ) > 0 ,∀ θ ∈ T[1,5], then G(θ) is nabla-
h differentiable and G∇(θ) = (θ + ρ(θ))� u ,∀ θ ∈ T[1,5].

Theorem 3.5: Let [G(θ)]λ = [gλ(θ), hλ(θ)], λ ∈ [0, 1] and
G : T[a,b] → E1 be nabla-h differentiable on T[a,b] . Then
gλ and hλ are nabla differentiable on T[a,b] and

[G∇h(θ)]λ = [g∇λ (θ), h
∇
λ (θ)].

Proof: If G is nabla-h differentiable at θ ∈ T[a,b]
k and θ

is left scaterred, then for any λ ∈ [0, 1],

[G(θ)	hG(ρ(θ))]λ = [gλ(θ)−gλ(ρ(θ)), hλ(θ)−hλ(ρ(θ))].

Multiplying by
1

ν(θ)
, we get

1

ν(θ)
� [G(θ)	h G(ρ(θ))]λ

=
1

ν(θ)
� ([gλ(θ)), hλ(θ)]	 [gλ(ρ(θ)), hλ(ρ(θ))])

=

[
gλ(θ)− gλ(ρ(θ))

ν(θ)
,
hλ(θ)− hλ(ρ(θ))

ν(θ)

]
=
[
g∇λ (θ), h

∇
λ (θ)

]
.

If G is nabla-h differentiable at θ ∈ T[a,b]
k and θ is ld-point,

then for any λ ∈ [0, 1].

[G(ρ(θ))	hG(θ−~)]λ = [gλ(θ)−gλ(θ−~), hλ(θ)−hλ(θ−~)].

Dividing by ~ > 0 and taking limit as ~→ 0+, we get

lim
~→0+

1

~
[G(θ)	h G(θ − ~)]λ

=

[
lim

~→0+

gλ(θ)− gλ(θ − ~)
~

, lim
~→0+

hλ(θ)− hλ(θ − ~)
~

]
= [g∇h

λ (θ), h∇h

λ (θ)].

Similarly, we can prove

lim
~→0+

1

~
[G(θ + ~)	h G(ρ(θ)]λ

= [g∇h

λ (θ), h∇h

λ (θ)].

Thus, gλ and hλ are nabla differentiable on T[a,b] and

[G∇h(θ)]λ = [g∇λ (θ), h
∇
λ (θ)].

Example 3.3: Consider the fuzzy function G(θ) as in
Example 3.2. Then uλ = [2 + λ, 4− λ] is λ-level set of u
and

[G(θ)]λ = [gλ(θ), hλ(θ)]

= θ2 � [2 + λ, 4− λ]
= [θ2(2 + λ), θ2(4− λ)].

From Example 3.2, G(θ) is nabla-h differentiable and
G∇h(θ) = (θ + ρ(θ)) � u. Clearly, g∇λ (θ), h

∇
λ (θ) are nabla

differentiable and g∇λ (θ) = (θ + ρ(θ))(2 + λ), h∇λ (θ) =
(θ + ρ(θ))(4− λ). From Theorem 3.5, we have

[G∇h(θ)]λ =
[
g∇λ (θ), h

∇
λ (θ)

]
= [(θ + ρ(θ))(2 + λ), (θ + ρ(θ))(4− λ)]
= (θ + ρ(θ))� [2 + λ, 4− λ]
= (θ + ρ(θ))� uλ.
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If T = R, then ρ(θ) = θ and

G∇h(θ) = (θ + ρ(θ))� uλ = 2θ � uλ.

If T = qN, then ρ(θ) = θ
q and

G∇h(θ) = (θ + ρ(θ))� uλ

= (θ +
θ

q
)� uλ.

Now, we obtain the nabla-h derivatives of addition, scalar
multiplication and product of fuzzy nabla Hukuhara differ-
entiable (nabla-h differentiable) functions on time scales.

Theorem 3.6: Let G,H : T[a,b] → En be nabla-h differ-
entiable at θ ∈ T[a,b]

k . Then
(a) If G ⊕ H : T[a,b] → En is nabla-h differentiable at

θ ∈ T[a,b]
k , then

(G⊕H)∇h(θ) = G∇h(θ)⊕H∇h(θ).

(b) For any scalar γ ≥ 0, γ � G : T[a,b] → En is nabla-h
differentiable at θ with

(γ �G)∇h(θ) = γ �G∇h(θ).

(c) If GH : T[a,b] → En is nabla-h differentiable at θ ∈
T[a,b]
k , then

(GH)∇h(θ) = G(ρ(θ))H∇h(θ)⊕H(θ)G∇h(θ)

= G(θ)H∇h(θ)⊕H(ρ(θ))G∇h(θ).

Proof: Let G and H be nabla-h differentiable at θ ∈
T[a,b]
k .

(a) If θ is left dense and G,H are nabla-h differentiable at
θ then from Theorem 3.1(c), we have

lim
~→0

G(θ + ~)	h G(θ)
~

= lim
~→0

G(θ)	h G(θ − ~)
~

= G∇h(θ)

and

lim
~→0

H(θ + ~)	h H(θ)

~
= lim

~→0

H(θ)	h H(θ − ~)
~

= H∇h(θ).

Now, we consider

lim
~→0

(G⊕H)(θ + ~)	h (G⊕H)(θ)

~

= lim
~→0

1

~
� [(G(θ + ~)	h G(θ))

⊕ (H(θ + ~)	h H(θ))]

= lim
~→0

G(θ + ~)	h G(θ)
~

⊕ lim
~→0

H(θ + ~)	h H(θ)

~
= G∇h(θ)⊕H∇h(θ).

Similarly, we can prove

lim
~→0

(G⊕H)(θ)	h (G⊕H)(θ − ~)
~

= G∇h(θ)⊕H∇h(θ).

Therefore, from Theorem 3.1(c) G ⊕ H is nabla-h
differentiable at θ and

(G⊕H)∇h(θ) = G∇h(θ)⊕H∇h(θ).

If θ is left scattered and G,H are nabla-h differentiable
at θ, then from theorem 3.1(a) & (b), we have

G(θ)	h G(ρ(θ))
ν(θ)

= G∇h(θ)

and
H(θ)	h H(ρ(θ))

ν(θ)
= H∇h(θ).

Clearly, G ⊕ H is right continuous at θ and from
Theorem 3.1(b), we have

(G⊕H)∇h(θ) =
(G⊕H)(θ)	h (G⊕H)(ρ(θ))

ν(θ)

=
(G(θ)	h G(ρ(θ))⊕ (H(θ)	h H(ρ(θ)))

ν(θ)

=
G(θ)	h G(ρ(θ))

ν(θ)
⊕ H(θ)	h H(ρ(θ))

ν(θ)

= G∇h(θ)⊕H∇h(θ).

(b) For γ = 0, the result is obvious. Now let us assume that
γ > 0, since G is nabla-h differentiable at θ ∈ T[a,b]

k

and θ is left dense then from Theorem 3.1(c),

lim
~→0

γ �G(θ + ~)	h γ �G(θ)
~

= γ � lim
~→0

G(θ + ~)	h G(θ)
~

= γ �G∇h(θ).

Similarly, we can prove

lim
~→0

γ �G(θ)	h γ �G(θ − ~)
~

= γ �G∇h(θ).

If θ is left scattered, then from Theorem 3.1(a) & (b),
γ �G is right continuous at θ and

(γ �G)∇h(θ) =
(γ �G)(θ)	h (γ �G)(ρ(θ))

ν(θ)

=
γ �G(θ)	h γ �G(ρ(θ))

ν(θ)

= γ � G(θ)	h G(ρ(θ))
ν(θ)

= γ �G∇h(θ).

(c) Since G,H are nabla-h differentiable and if θ is left
dense, then from Theorem 3.1(c), we have

lim
~→0

GH(θ)	h GH(θ − ~)
~

= lim
~→0

1

~
� [G(θ)[(H(θ)	h H(θ − ~)]

⊕[G(θ)	h G(θ − ~)]H(θ)]

= G(θ) lim
~→0

H(θ)	h H(θ − ~)
~

⊕H(θ) lim
~→0

G(θ)	h G(θ − ~)
~

= G(θ)H∇h(θ)⊕G∇h(θ)H(θ).

Similarly, we get

lim
~→0

(GH)(θ + ~)	h (GH)(θ)

~
= G(θ)H∇h(θ)⊕G∇h(θ)H(θ).

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_15

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



Fig. 1. Graphical representation of level sets G(θ) and G∇(θ) for Example 3.3

If θ is left scattered then from Theorem 3.1(a) & (b),
GH is right continuous at θ and

(GH)∇h(θ) =
(GH)(θ)	h (GH)(ρ(θ))

ν(θ)

=
G(θ)H(θ)	h G(ρ(θ))H(ρ(θ))

ν(θ)

⊕ G(θ)H(ρ(θ))	h G(θ)H(ρ(θ))

ν(θ)

= G(θ)

[
H(θ)	h H(ρ(θ))

ν(θ)

]
⊕H(ρ(θ))

[
G(θ)	h G(ρ(θ))

ν(θ)

]
= G(θ)H∇h(θ)⊕H(ρ(θ))G∇h(θ).

Thus (GH)∇h(θ) = G(θ)H∇h(θ) ⊕ H(ρ(θ))G∇h(θ)
holds at θ. Similarly, we get the another product rule in
(c) by interchanging G and H and which follows from
the last equation.

IV. CONCLUSIONS

In this paper, we developed nabla Hukuhara derivative for
fuzzy functions on time scales using Hukuhara difference and
studied its properties. We propose to study generalizations of
nabla Hukuhara differentials and integrals for fuzzy functions
on time scales in our future work. Further, these concepts
can be applied to study the fuzzy nabla dynamic equations
on time scales.
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