On the Shephard Type Problems for General L_{p}-Projection Bodies

Chao Li and Weidong Wang*

Abstract

The notion of the L_{p}-projection body was introduced by Lutwak, Yang and Zhang. Whereafter, Ludwig proposed the asymmetric L_{p}-projection bodies, Haberl and Schuster introduced the general L_{p}-projection bodies. In this paper, associated with the L_{p}-geominimal surface area, we study the Shephard type problems for the general L_{p}-projection bodies.

Index Terms-Shephard type problem, general L_{p}-projection body, L_{p}-geominimal surface area.

I. Introduction

LET \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \mathbf{R}^{n}. For the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies in \mathbf{R}^{n}, we write \mathcal{K}_{o}^{n} and $\mathcal{K}_{o s}^{n}$, respectively. Let \mathcal{S}_{o}^{n} denote the set of star bodies (about the origin) in \mathbf{R}^{n}. Let S^{n-1} denote the unit sphere and $V(K)$ denote the n dimensional volume of the body K. For the standard unit ball B, its volume is written as $V(B)=\omega_{n}$.

For $K \in \mathcal{K}^{n}$, its support function, $h(K, \cdot): \mathbf{R}^{n} \rightarrow \mathbf{R}$, is defined by (see [3])

$$
\begin{equation*}
h(K, x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbf{R}^{n}, \tag{1.1}
\end{equation*}
$$

where $x \cdot y$ denotes the standard inner product of x and y.
The projection bodies were introduced by Minkowski at the previous century. For each $K \in \mathcal{K}^{n}$, the projection body, ΠK, of K is an origin-symmetric convex body whose support function is defined by (see [3])

$$
h(\Pi K, u)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, v)
$$

for all $u \in S^{n-1}$. Here $S(K, \cdot)$ denotes the surface area measure of K.
Projection body is a central study object in the BrunnMinkowski theory, a great deal of results are gathered in two good books (see [3], [16]). In 1964, Shephard [17] proposed the following problem about the projection bodies.
Problem 1.1 (Shephard problem). Suppose $K, L \in \mathcal{K}^{n}$. If

$$
\Pi K \subseteq \Pi L,
$$

is it true that

$$
V(K) \leq V(L) ?
$$

Manuscript received August 31, 2018; revised November 23, 2018. This work was supported in part by the Research Fund for Excellent Dissertation of China Three Gorges University (No.2019SSPY146) and the Natural Science Foundation of China (No.11371224).

Chao Li is with the Department of Mathematics, China Three Gorges University, Yichang, 443002, China, e-mail: LiChao166298@163.com.
*Weidong Wang is corresponding author with the Department of Mathematics and Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, 443002, China, e-mail: wangwd722@ 163.com.

Remark 1.1. For centrally symmetric convex bodies K and L, Problem 1.1 was solved independently by Petty [12] and Schneider [15], who showed that the answer is affirmative if $n \leq 2$ and negative if $n \geq 3$. They also proved that Problem 1.1 has an affirmative answer if L is a projection body.

In 2000, Lutwak, Yang and Zhang [8] introduced the $L_{p^{-}}$ projection bodies as follows: For $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, the $L_{p^{-}}$ projection body, $\Pi_{p} K$, is an origin-symmetric convex body whose support function is given by

$$
\begin{equation*}
h^{p}\left(\Pi_{p} K, u\right)=\alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}(K, v), \tag{1.2}
\end{equation*}
$$

for all $u \in S^{n-1}$, where $\alpha_{n, p}=1 / n \omega_{n} c_{n-2, p}$ with $c_{n, p}=\omega_{n+p} / \omega_{2} \omega_{n} \omega_{p-1}$, and $S_{p}(K, \cdot)$ is the L_{p}-surface area measure of $K \in \mathcal{K}_{o}^{n}$ (see [6]). In particular, for $p=1$, the convex body $\Pi_{1} K$ is the projection body ΠK of K under the normalization of definition (1.2).

As a fundamental notion of L_{p}-projection body in $L_{p^{-}}$ Brunn-Minkowski theory. In recent years, it has paid considerable attentions (see [9], [11], [14], [19], [20], [21], [22]).
For $p \geq 1$, Ludwig [5] introduced the asymmetric $L_{p^{-}}$ projection bodies: For $K \in \mathcal{K}_{o}^{n}, p \geq 1$, the asymmetric L_{p}-projection body, $\Pi_{p}^{+} K$, of K is defined by

$$
\begin{equation*}
h^{p}\left(\Pi_{p}^{+} K, u\right)=2 \alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d S_{p}(K, v) \tag{1.3}
\end{equation*}
$$

where $(u, v)_{+}=\max \{u \cdot v, 0\}$. Afterwords, Haberl and Schuster [4] defined

$$
\begin{equation*}
\Pi_{p}^{-} K=\Pi_{p}^{+}(-K) \tag{1.4}
\end{equation*}
$$

Moreover, combined with function $\varphi_{\tau}: \mathbf{R} \rightarrow[0,+\infty)$ by $\varphi_{\tau}(t)=|t|+\tau t$ for $\tau \in[-1,1]$, Ludwig [5], Haberl and Schuster [4] introduced general L_{p}-projection bodies as follows: For $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, the general L_{p}-projection body $\Pi_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$ is defined by

$$
\begin{equation*}
h^{p}\left(\Pi_{p}^{\tau} K, u\right)=\alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p}(K, v) \tag{1.5}
\end{equation*}
$$

where

$$
\alpha_{n, p}(\tau)=\frac{2 \alpha_{n, p}}{(1+\tau)^{p}+(1-\tau)^{p}}
$$

The normalization is chosen such that $\Pi_{p}^{\tau} B=B$. Obviously, $\Pi_{p}^{0} K=\Pi_{p} K$.

From (1.3), (1.4) and (1.5), Haberl and Schuster [4] deduced that for $K \in \mathcal{K}_{o}^{n}, p \geq 1, \tau \in[-1,1]$ and all $u \in S^{n-1}$,

$$
\begin{align*}
& h^{p}\left(\Pi_{p}^{\tau} K, u\right) \\
= & f_{1}(\tau) h^{p}\left(\Pi_{p}^{+} K, u\right)+f_{2}(\tau) h^{p}\left(\Pi_{p}^{-} K, u\right), \tag{1.6}
\end{align*}
$$

that is,

$$
\Pi_{p}^{\tau} K=f_{1}(\tau) \cdot \Pi_{p}^{+} K+{ }_{p} f_{2}(\tau) \cdot \Pi_{p}^{-} K
$$

where $+_{p}$ denotes the L_{p}-Minkowski addition of convex bodies, and

$$
\begin{aligned}
& f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} \\
& f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}
\end{aligned}
$$

From this, we easily know that

$$
\begin{gather*}
f_{1}(-\tau)=f_{2}(\tau), \quad f_{2}(-\tau)=f_{1}(\tau) \\
f_{1}(\tau)+f_{2}(\tau)=1 \tag{1.7}
\end{gather*}
$$

The general L_{p}-projection bodies belong to asymmetric L_{p}-Brunn-Minkowski theory. More results, also see [23], [24], [25]. In particular, Wang and Wan [23] researched the Shephard type problems of general L_{p}-projection bodies for volumes and L_{p}-affine surface areas, respectively.
Theorem 1.A. Let $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $L \in \mathcal{P}_{p}^{\tau, n}$ and $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then for $n>p \geq 1$,

$$
V(K) \leq V(L)
$$

for $n<p$,

$$
V(K) \geq V(L)
$$

In each case, equality holds for $p=1$ if and only if K is a translation of L, and for $p>1$ if and only if $K=L$. Here $\mathcal{P}_{p}^{\tau, n}$ denotes the set of general L_{p}-projection bodies with a parameter τ.
Theorem 1.B. Let $K \in \mathcal{F}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $L \in \mathcal{W}_{p}^{\tau, n}$ and $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then

$$
\Omega_{p}(K) \leq \Omega_{p}(L)
$$

with equality for $p=1$ if and only if K is a translation of L, and for $p>1$ if and only if $K=L$. Here $\mathcal{W}_{p}^{\tau, n}=\left\{Q \in \mathcal{F}_{o}^{n}\right.$: there exists $Z \in \mathcal{P}_{p}^{\tau, n}$ with $\left.f_{p}(Q, \cdot)=h(Z, \cdot)^{-(n+p)}\right\}$, where $f_{p}(Q, \cdot)$ is the L_{p}-curvature function of Q and \mathcal{F}_{o}^{n} denotes the set of convex bodies in \mathcal{K}_{o}^{n} with positive continuous L_{p}-curvature function.

In this article, we will research the Shephard type problems of the general L_{p}-projection bodies for L_{p}-geominimal surface areas. The notion of L_{p}-geominimal surface areas was introduced by Lutwak [7]. For $K \in \mathcal{K}_{o}^{n}, p \geq 1$, the L_{p}-geominimal surface area, $G_{p}(K)$, of K is defined by

$$
\begin{equation*}
\omega_{n}^{\frac{p}{n}} G_{p}(K)=\inf \left\{n V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\} \tag{1.8}
\end{equation*}
$$

where $V_{p}(M, N)$ denotes the L_{p}-mixed volume of $M, N \in$ \mathcal{K}_{o}^{n}. More researches about L_{p}-geominimal surface areas, also see [10], [26], [27], [28], [29], [30].

In (1.8), if $Q \in \mathcal{P}_{p}^{\tau, n}$, then we define $G_{p}^{o}(K)$ by

$$
\begin{equation*}
\omega_{n}^{\frac{p}{n}} G_{p}^{o}(K)=\inf \left\{n V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{P}_{p}^{\tau, n}\right\} \tag{1.9}
\end{equation*}
$$

Combining with (1.9), we first give an affirmative answer of the Shephard type problem for general L_{p}-projection bodies.
Theorem 1.1. Let $K, L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$ and $\tau \in[-1,1]$. If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then

$$
G_{p}^{o}(K) \leq G_{p}^{o}(L)
$$

with equality when $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.
Let $\mathcal{C}_{p}^{\tau, n}$ denotes the set of all general L_{p}-centroid bodies (see [2]), thus $\mathcal{C}_{p}^{\tau, n} \subseteq \mathcal{K}_{o}^{n}$. If $Q \in \mathcal{C}_{p}^{\tau, n}$ in (1.8), then we write $G_{p}^{\star}(K)$ by

$$
\begin{equation*}
\omega_{n}^{\frac{p}{n}} G_{p}^{\star}(K)=\inf \left\{n V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{C}_{p}^{\tau, n}\right\} \tag{1.10}
\end{equation*}
$$

Based on (1.10), we give the other affirmative form of the Shephard type problems for the general L_{p}-projection bodies. Theorem 1.2. Let $K, L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$ and $\tau \in[-1,1]$. If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then

$$
G_{p}^{\star}(K) \leq G_{p}^{\star}(L)
$$

with equality when $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.
Further, we also give a negative answer as follows:
Theorem 1.3. Let $L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$ and $\tau \in(-1,1)$. If L is not origin-symmetric convex body, then there exists $K \in \mathcal{K}_{o}^{n}\left(\tau=0, K \in \mathcal{K}_{o s}^{n}\right)$, such that

$$
\Pi_{p}^{\tau} K \subset \Pi_{p}^{\tau} L
$$

but

$$
G_{p}(K)>G_{p}(L)
$$

In particular, if $\tau=0$ in Theorem 1.3, the following result is obvious.
Corollary 1.1. Let $L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$. If L is not a origin-symmetric convex body, then there exists $K \in \mathcal{K}_{o s}^{n}$, such that

$$
\Pi_{p} K \subset \Pi_{p} L
$$

but

$$
G_{p}(K)>G_{p}(L)
$$

Corollary 1.1 shows the symmetric negative solutions of the Shephard type problem of L_{p}-projection bodies for the L_{p}-geominimal surface areas. Actually, by the general $L_{p^{-}}$ Blaschke bodies, we find the asymmetric negative solutions in Corollary 1.1, i.e., we generalize the scope of negative solutions in Corollary 1.1 from $\mathcal{K}_{o s}^{n}$ to \mathcal{K}_{o}^{n}.
Theorem 1.4. Let $L \in \mathcal{K}_{o}^{n}$ and $1 \leq p<n$. If L is not origin-symmetric convex body, then there exists $K \in \mathcal{K}_{o}^{n}$, such that

$$
\Pi_{p} K \subset \Pi_{p} L
$$

but

$$
G_{p}(K)>G_{p}(L)
$$

For more investigations of the Shephard type problems, we also see articles [1], [11], [13], [18], [23].

II. Preliminaries

A. Radial Function and Polar Body

If K is a compact star-shaped (about the origin) in \mathbf{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot): \mathbf{R}^{n} \backslash\{0\} \rightarrow[0, \infty)$, is defined by (see [3], [16])

$$
\begin{equation*}
\rho(K, x)=\max \{\lambda \geq 0: \lambda \cdot x \in K\}, \quad x \in \mathbf{R}^{n} \backslash\{0\} \tag{2.1}
\end{equation*}
$$

If $K \in \mathcal{K}_{o}^{n}$, the polar body, K^{*}, of K is defined by (see [3], [16])

$$
K^{*}=\left\{x \in \mathbf{R}^{n}: x \cdot y \leq 1, y \in K\right\} .
$$

From (1.1) and (2.1), it follows that if $K \in \mathcal{K}_{o}^{n}$, then

$$
\begin{equation*}
h\left(K^{*}, \cdot\right)=\frac{1}{\rho(K, \cdot)}, \quad \rho\left(K^{*}, \cdot\right)=\frac{1}{h(K, \cdot)} \tag{2.2}
\end{equation*}
$$

B. L_{p}-Mixed Volume and L_{p}-Dual Mixed Volume

For $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-Minkowski combination, $\lambda \cdot K+{ }_{p} \mu \cdot L$, of K and L is defined by (see [6])

$$
h\left(\lambda \cdot K+{ }_{p} \mu \cdot L, \cdot\right)^{p}=\lambda h(K, \cdot)^{p}+\mu h(L, \cdot)^{p},
$$

where $+_{p}$ denotes the L_{p}-Minkowski addition, $\lambda \cdot K$ denotes the L_{p}-Minkowski scalar multiplication.

Together with L_{p}-Minkowski combination, Lutwak [6] introduced L_{p} mixed volume as follows: For $K, L \in \mathcal{K}_{o}^{n}$, $\varepsilon>0$ and $p \geq 1$, the L_{p} mixed volume $V_{p}(K, L)$ is defined by

$$
\frac{n}{p} V_{p}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V_{p}\left(K+{ }_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon}
$$

Besides, Lutwak [6] also gave its integral formula:

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u)^{p} d S_{p}(K, u) \tag{2.3}
\end{equation*}
$$

Here $S_{p}(K, \cdot)$ is the L_{p}-surface area measure of K. It turns out that the measure $S_{p}(K, \cdot)$ is absolutely continuous with respect to $S(K, \cdot)$, and has Radon-Nikodym derivative (see [7])

$$
\begin{equation*}
\frac{d S_{p}(K, \cdot)}{d S(K, \cdot)}=h(K, \cdot)^{1-p} \tag{2.4}
\end{equation*}
$$

If $c>0, n \neq p$, according to (2.4), we have

$$
\begin{equation*}
S_{p}(c K, \cdot)=c^{n-p} S_{p}(K, \cdot) \tag{2.5}
\end{equation*}
$$

The L_{p}-dual mixed volume was introduced by Lutwak (see [7]). For $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$, the L_{p}-dual mixed volume, $\widetilde{V}_{-p}(K, L)$, of K and L is defined by (see [7])

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(u) \rho_{L}^{-p}(u) d S(u) \tag{2.6}
\end{equation*}
$$

C. General L_{p}-Blaschke Bodies

According to the existence's theorem of L_{p}-Minkowski problem (see Theorem 9.2.3 in [16]), the L_{p}-Blaschke combinations of convex bodies was stated as follows: For $K, L \in \mathcal{K}_{o}^{n}, 1 \leq p \neq n, \lambda, \mu \geq 0$ (not both zero), the $L_{p^{-}}$ Blaschke combination $\lambda \odot K \mp_{p} \mu \odot L \in \mathcal{K}_{o}^{n}$ of K, L is defined by

$$
\begin{equation*}
S_{p}\left(\lambda \odot K \mp_{p} \mu \odot L, \cdot\right)=\lambda S_{p}(K, \cdot)+\mu S_{p}(L, \cdot) \tag{2.7}
\end{equation*}
$$

where \mp_{p} denotes the L_{p}-Blaschke addition, and $\lambda \odot K$ denotes the L_{p}-Blaschke scalar multiplication.

If $K, L \in \mathcal{K}_{o s}^{n}$, then definition (2.7) is owe to Lutwak [6].
Let $\lambda=f_{1}(\tau), \mu=f_{2}(\tau)$ and $L=-K$ in (2.7), where $f_{1}(\tau)$ and $f_{2}(\tau)$ satisfy (1.7). We define the general $L_{p^{-}}$ Blaschke body, $\nabla_{p}^{\tau} K$, of $K \in \mathcal{K}_{o}^{n}$ by

$$
\begin{equation*}
\nabla_{p}^{\tau} K=f_{1}(\tau) \odot K \mp_{p} f_{2}(\tau) \odot(-K) \tag{2.8}
\end{equation*}
$$

Obviously, by (1.7) and (2.8) we see that if $\tau= \pm 1$, then $\nabla_{p}^{\tau} K=\nabla_{p}^{ \pm} K= \pm K$.

D. General L_{p}-Centroid Bodies

In 2015, Feng et al. [2] introduced the general L_{p}-centroid body as follows: For $K \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, the general L_{p}-centroid body, $\Gamma_{p}^{\tau} K$, of K is a convex body whose support function is defined by

$$
\begin{aligned}
& h_{\Gamma_{p}^{\tau} K}^{p}(u) \\
= & \frac{2}{c_{n, p}(\tau)(n+p) V(K)} \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} \rho_{K}(v)^{n+p} d v
\end{aligned}
$$

where

$$
c_{n, p}(\tau)=c_{n, p}\left[(1+\tau)^{p}+(1-\tau)^{p}\right] .
$$

III. Results and Proofs

In this part, we will give the proofs of Theorems 1.1-1.4. First, in order to prove theorem 1.1, the following lemma is required.
Lemma 3.1 ([24]). If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
V_{p}\left(K, \Pi_{p}^{\tau} L\right)=V_{p}\left(L, \Pi_{p}^{\tau} K\right) \tag{3.1}
\end{equation*}
$$

Proof of Theorem 1.1. Since $K, L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$, if $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then for all $u \in S^{n-1}$,

$$
\begin{equation*}
h\left(\Pi_{p}^{\tau} K, u\right) \leq h\left(\Pi_{p}^{\tau} L, u\right) \tag{3.2}
\end{equation*}
$$

From (2.3), (3.1) and (3.2), we have for any $M \in \mathcal{K}_{o}^{n}$,

$$
\begin{align*}
& V_{p}\left(K, \Pi_{p}^{\tau} M\right) \\
= & V_{p}\left(M, \Pi_{p}^{\tau} K\right) \\
\leq & V_{p}\left(M, \Pi_{p}^{\tau} L\right) \\
= & V_{p}\left(L, \Pi_{p}^{\tau} M\right) . \tag{3.3}
\end{align*}
$$

Since $\Pi_{p}^{\tau} M \in \mathcal{P}_{p}^{\tau, n}$, thus by (1.9) and (3.3), we get

$$
\begin{aligned}
& \omega_{n}^{\frac{p}{n}} G_{p}^{o}(K) \\
= & \inf \left\{n V_{p}\left(K, \Pi_{p}^{\tau} M\right) V\left(\Pi_{p}^{\tau, *} M\right)^{\frac{p}{n}}: \Pi_{p}^{\tau} M \in \mathcal{P}_{p}^{\tau, n}\right\} \\
\leq & \inf \left\{n V_{p}\left(L, \Pi_{p}^{\tau} M\right) V\left(\Pi_{p}^{\tau, *} M\right)^{\frac{p}{n}}: \Pi_{p}^{\tau} M \in \mathcal{P}_{p}^{\tau, n}\right\} \\
= & \omega_{n}^{\frac{p}{n}} G_{p}^{o}(L),
\end{aligned}
$$

i.e.,

$$
G_{p}^{o}(K) \leq G_{p}^{o}(L)
$$

Equality holds when $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.
Lemma 3.2 ([8]). If $M \in \mathcal{K}_{o}^{n}, N \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\tau \in$ $[-1,1]$, then

$$
\begin{equation*}
V_{p}\left(M, \Gamma_{p}^{\tau} N\right)=\frac{\omega_{n}}{V(N)} \widetilde{V}_{-p}\left(N, \Pi_{p}^{\tau, *} M\right) \tag{3.4}
\end{equation*}
$$

Proof of Theorem 1.2. Since $K, L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$, if $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then $\Pi_{p}^{\tau, *} K \supseteq \Pi_{p}^{\tau, *} L$. From (2.2), (2.6) and (3.4), for any $N \in \mathcal{S}_{o}^{n}$, we obtain

$$
\begin{align*}
& V_{p}\left(K, \Gamma_{p}^{\tau} N\right) \\
= & \frac{\omega_{n}}{V(N)} \widetilde{V}_{-p}\left(N, \Pi_{p}^{\tau, *} K\right) \\
\leq & \frac{\omega_{n}}{V(N)} \widetilde{V}_{-p}\left(N, \Pi_{p}^{\tau, *} L\right) \\
= & V_{p}\left(L, \Gamma_{p}^{\tau} N\right) \tag{3.5}
\end{align*}
$$

Taking $Q=\Gamma_{p}^{\tau} N, N \in S_{o}^{n}$, thus by (1.10) and (3.5), we have

$$
G_{p}^{\star}(K) \leq G_{p}^{\star}(L)
$$

Equality holds when $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.
Lemma 3.3. If $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
G_{p}\left(\nabla_{p}^{\tau} K\right) \geq G_{p}(K) \tag{3.6}
\end{equation*}
$$

with equality for $\tau \in(-1,1)$ if and only if K is originsymmetric. For $\tau= \pm 1$, (3.6) becomes an equality.

Proof. By (1.8), (2.8), (2.3), (2.7) and (1.7), we have

$$
\omega_{n}^{\frac{p}{n}} G_{p}\left(\nabla_{p}^{\tau} K\right)
$$

$=\inf \left\{n V_{p}\left(\nabla_{p}^{\tau} K, Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\}$
$=\inf \left\{n V_{p}\left(f_{1}(\tau) \odot K \mp_{p} f_{2}(\tau) \odot(-K), Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}:\right.$
$\left.Q \in \mathcal{K}_{o}^{n}\right\}$
$=\inf \left\{n\left(f_{1}(\tau) V_{p}(K, Q)+f_{2}(\tau) V_{p}(-K, Q)\right) V\left(Q^{*}\right)^{\frac{p}{n}}:\right.$
$\left.Q \in \mathcal{K}_{o}^{n}\right\}$
$\geq \inf \left\{n f_{1}(\tau) V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\}$
$+\inf \left\{n f_{2}(\tau) V_{p}(-K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\}$
$=f_{1}(\tau) \inf \left\{n V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\}$
$+f_{2}(\tau) \inf \left\{n V_{p}(K,-Q) V\left((-Q)^{*}\right)^{\frac{p}{n}}:-Q \in \mathcal{K}_{o}^{n}\right\}$
$=\omega_{n}^{\frac{p}{n}}\left(f_{1}(\tau) G_{p}(K)+f_{2}(\tau) G_{p}(K)\right)$
$=\omega_{n}^{\frac{p}{n}} G_{p}(K)$.
For any $Q \in \mathcal{K}_{o}^{n}$ and $\tau \in(-1,1)$, with equality if and only if $f_{1}(\tau) V_{p}(K, Q)$ and $f_{1}(\tau) V_{p}(-K, Q)$ are proportional, i.e., $f_{1}(\tau) S_{p}(K,$.$) and f_{2}(\tau) S_{p}(-K,$.$) are proportional. This$ together with Lutwak's result (see [6]) imples that equality holds in (3.6) if and only if K and $-K$ are dilates, namely, K is origin-symmetric.

Obviously, by $\nabla_{p}^{ \pm 1} K= \pm K$ we see that if $\tau= \pm 1$, then (3.6) is an equality.

Lemma 3.4. If $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in(-1,1)$, then

$$
\begin{equation*}
\Pi_{p}^{+} \nabla_{p}^{\tau} K=\Pi_{p}^{\tau} K \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{p}^{-} \nabla_{p}^{\tau} K=\Pi_{p}^{-\tau} K \tag{3.8}
\end{equation*}
$$

Proof. By (1.3), (2.8), (2.7), (1.4) and (1.6), we get for all $u \in S^{n-1}$,

$$
\begin{aligned}
& h^{p}\left(\Pi_{p}^{+} \nabla_{p}^{\tau} K, u\right) \\
= & 2 \alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d S_{p}\left(\nabla_{p}^{\tau} K, v\right) \\
= & 2 \alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d S_{p}\left(f_{1}(\tau) \odot K \mp_{p} f_{2}(\tau) \odot(-K), v\right) \\
= & 2 \alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d\left[f_{1}(\tau) S_{p}(K, v)+f_{2}(\tau) S_{p}((-K), v)\right] \\
= & f_{1}(\tau) h^{p}\left(\Pi_{p}^{+} K, u\right)+f_{2}(\tau) h^{p}\left(\Pi_{p}^{+}(-K), u\right) \\
= & f_{1}(\tau) h^{p}\left(\Pi_{p}^{+} K, u\right)+f_{2}(\tau) h^{p}\left(\Pi_{p}^{-} K, u\right) \\
= & h^{p}\left(\Pi_{p}^{\tau} K, u\right) .
\end{aligned}
$$

This immediately gives (3.7).
Similarly, we have for all $u \in S^{n-1}$,

$$
h^{p}\left(\Pi_{p}^{-} \nabla_{p}^{\tau} K, u\right)=h^{p}\left(\Pi_{p}^{-\tau} K, u\right) .
$$

This yields (3.8).
Lemma 3.5. Let $L \in \mathcal{K}_{o}^{n}, 1 \leq p<n$ and $\tau \in(-1,1)$. If L is not origin-symmetric convex body, then there exists $K \in \mathcal{K}_{o}^{n}\left(\tau=0, K \in \mathcal{K}_{o s}^{n}\right)$, such that

$$
\Pi_{p}^{+} K \subset \Pi_{p}^{\tau} L, \quad \Pi_{p}^{-} K \subset \Pi_{p}^{-\tau} L
$$

but

$$
G_{p}(K)>G_{p}(L)
$$

Proof. Since L is not origin-symmetric and $\tau \in(-1,1)$, thus by Lemma 3.3, we know $G_{p}\left(\nabla_{p}^{\tau} L\right)>G_{p}(L)$. Choose $\varepsilon>0$, such that $1-\varepsilon>0$, and $K=(1-\varepsilon) \nabla_{p}^{\tau} L \in \mathcal{K}_{o}^{n}$ satisfies

$$
G_{p}(K)=G_{p}\left((1-\varepsilon) \nabla_{p}^{\tau} L\right)>G_{p}(L) .
$$

But by (1.5) and (2.5), we have

$$
\begin{equation*}
\Pi_{p}^{\tau} c K=c^{n-p} \Pi_{p}^{\tau} K, \quad(c>0) \tag{3.9}
\end{equation*}
$$

Therefore, for $n>p$, by (3.7), (3.8) and (3.9), we respectively have

$$
\begin{aligned}
\Pi_{p}^{+} K & =\Pi_{p}^{+}\left[(1-\varepsilon) \nabla_{p}^{\tau} L\right]=(1-\varepsilon)^{n-p} \Pi_{p}^{+} \nabla_{p}^{\tau} L \\
& =(1-\varepsilon)^{n-p} \Pi_{p}^{\tau} L \subset \Pi_{p}^{\tau} L
\end{aligned}
$$

and

$$
\begin{aligned}
\Pi_{p}^{-} K & =\Pi_{p}^{-}\left[(1-\varepsilon) \nabla_{p}^{\tau} L\right]=(1-\varepsilon)^{n-p} \Pi_{p}^{-} \nabla_{p}^{\tau} L \\
& =(1-\varepsilon)^{n-p} \Pi_{p}^{-\tau} L \subset \Pi_{p}^{-\tau} L
\end{aligned}
$$

This obtains the desired result.
Proof of Theorem 1.3. Since L is not origin-symmetric and $\tau \in(-1,1)$, thus by Lemma 3.5, there exists $K \in \mathcal{K}_{o}^{n}$, such that

$$
\Pi_{p}^{+} K \subset \Pi_{p}^{\tau} L, \quad \Pi_{p}^{-} K \subset \Pi_{p}^{-\tau} L
$$

but

$$
G_{p}(K)>G_{p}(L)
$$

Because $\tau \in(-1,1)$ is equivalent to $-\tau \in(-1,1)$, we have $\Pi_{p}^{+} K \subset \Pi_{p}^{\tau} L, \Pi_{p}^{-} K \subset \Pi_{p}^{-\tau} L$, these imply

$$
\Pi_{p}^{+} K \subset \Pi_{p}^{\tau} L, \quad \Pi_{p}^{-} K \subset \Pi_{p}^{\tau} L
$$

From these and together with (1.6) and (1.7), we obtain for any $u \in S^{n-1}$,

$$
\begin{aligned}
& h\left(\Pi_{p}^{\tau} K, u\right)^{p} \\
= & f_{1}(\tau) h\left(\Pi_{p}^{+} K, u\right)^{p}+f_{2}(\tau) h\left(\Pi_{p}^{-} K, u\right)^{p} \\
< & f_{1}(\tau) h\left(\Pi_{p}^{\tau} L, u\right)^{p}+f_{2}(\tau) h\left(\Pi_{p}^{\tau} L, u\right)^{p} \\
= & h\left(\Pi_{p}^{\tau} L, u\right)^{p}, \\
& \Pi_{p}^{\tau} K \subset \Pi_{p}^{\tau} L .
\end{aligned}
$$

This yields desired result.
Lemma 3.6. Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\Pi_{p}\left(\nabla_{p}^{\tau} K\right)=\Pi_{p} K \tag{3.10}
\end{equation*}
$$

Proof. By (1.2), (2.8) and (2.7), we obtain for any $u \in$ S^{n-1},

$$
\begin{aligned}
& h^{p}\left(\Pi_{p}\left(\nabla_{p}^{\tau} K\right), u\right) \\
= & \alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}\left(\nabla_{p}^{\tau} K, v\right) \\
= & \alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}\left(f_{1}(\tau) \odot K \mp_{p} f_{2}(\tau) \odot(-K), v\right) \\
= & \alpha_{n, p} \int_{S^{n-1}}|u \cdot v|^{p} d\left[f_{1}(\tau) S_{p}(K, v)+f_{2}(\tau) S_{p}((-K), v)\right] \\
= & f_{1}(\tau) h^{p}\left(\Pi_{p} K, u\right)+f_{2}(\tau) h^{p}\left(\Pi_{p}(-K), u\right) .
\end{aligned}
$$

Note that $\Pi_{p} K=\Pi_{p}(-K)$, thus

$$
h^{p}\left(\Pi_{p}\left(\nabla_{p}^{\tau} K\right), u\right)=h^{p}\left(\Pi_{p} K, u\right)
$$

i.e.,

$$
\Pi_{p}\left(\nabla_{p}^{\tau} K\right)=\Pi_{p} K
$$

This yields (3.10). Proof of Theorem 1.4. Since L is not origin-symmetric, from Lemma 3.3, we know for $\tau \in$ $(-1,1)$,

$$
G_{p}\left(\nabla_{p}^{\tau} L\right)>G_{p}(L)
$$

Choose $0<\varepsilon<1$, such that

$$
G_{p}\left((1-\varepsilon) \nabla_{p}^{\tau} L\right)>G_{p}(L)
$$

Let $K=(1-\varepsilon) \nabla_{p}^{\tau} L$, then $K \in \mathcal{K}_{o}^{n}$ (for $\tau \neq 0, K \in$ $\mathcal{K}_{o}^{n} \backslash \mathcal{K}_{o s}^{n}$; for $\tau=0, K \in \mathcal{K}_{o s}^{n}$) and

$$
G_{p}(K)>G_{p}(L)
$$

But by (1.2) and (2.5), we have

$$
\begin{equation*}
\Pi_{p} c K=c^{n-p} \Pi_{p} K, \quad(c>0) \tag{3.11}
\end{equation*}
$$

Hence, for $n>p$, (3.10) and (3.11) mean that

$$
\begin{aligned}
\Pi_{p} K & =\Pi_{p}\left((1-\varepsilon) \nabla_{p}^{\tau} L\right)=(1-\varepsilon)^{n-p} \Pi_{p} \nabla_{p}^{\tau} L \\
& =(1-\varepsilon)^{n-p} \Pi_{p} L \subset \Pi_{p} L
\end{aligned}
$$

This obtains the desired result.

AcKNOWLEDGMENT

The authors want to express earnest thankfulness for the referees who provided extremely precious and helpful comments and suggestions.

References

[1] Y. B. Feng and W. D. Wang, "Shephard type problems for L_{p}-centroid bodies," Mathematical Inequalities \& Applications, vol. 17, no.3, pp. 865-977, 2014.
[2] Y. B. Feng, W. D. Wang and F. H. Lu, "Some inequalities on general L_{p}-centroid bodies," Mathematical Inequalities \& Applications, vol. 18, no. 1, pp. 39-49, 2015.
[3] R. J. Gardner, "Geometric Tomography," 2nd edn, Cambridge University Press, Cambridge, 2006.
[4] C. Haberl and F. Schuster, "General L_{p} affine isoperimetric inequalities," Journal of Differential Geometry, vol. 83, no. 1, pp. 1-26, 2009.
[5] M. Ludwig, "Minkowski valuations," Transactions of the American Mathematical, vol. 357, no. 10, pp. 4191-4213, 2005.
[6] E. Lutwak, "The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem," Journal of Differential Geometry, vol. 38, no. 1, pp. 131-150, 1993.
[7] E. Lutwak, "The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas," Advances in Mathematics, vol. 118, no. 2, pp. 244294, 1996.
[8] E. Lutwak, D. Yang and G. Y. Zhang, " L_{p}-affine isoperimetric inequalities," Journal of Differential Geometry, vol. 2000, no. 56, pp. 111-132, 2000.
[9] S. J. Lv and G. S. Leng, "The L_{p}-curvature images of convex bodies and L_{p}-projection bodies," Proceedings of the Indian Academy of Science, vol. 118, no. 3, pp. 413-424, 2008.
[10] T. Y. Ma and Y. B. Feng, "Some inequalities for p-geominimal surface area and related results," IAENG International Journal of Applied Mathematics, vol. 46, no. 1, pp. 92-96, 2016.
[11] T. Y. Ma and W. D. Wang, "On the analog of Shephard problem for the L_{p}-projection body," Mathematical Inequalities \& Applications, vol. 14, no.1, pp. 181-192, 2011.
[12] C. M. Petty, "Isoperimetric problems," Proceedings of the Conference on Convexity and Combinatorial Geometry (University of Oklahoma, 1971), University of Oklahoma, pp. 26-41, 1972.
[13] Y. N. Pei and W. D. Wang, "Shephard type problems for general $L_{p^{-}}$ centroid bodies," Journal of Inequalities and Applications, vol. 2015, pp. 1-9, 2015.
[14] D. Ryabogin and A. Zvavitch, "The Fourier transform and Firey projections of convex bodies," Indiana University Mathematics Journal, vol. 53, pp. 667-682, 2004.
[15] R. Schneider, "Zu einem problem von Shephard über die projectionen konvexer korper," Mathematische Zeitschrift, vol. 101, no. 1, pp. 71-82, 1967.
[16] R. Schneider, "Convex Bodies: The Brunn-Minkowski Theory," 2nd edn, Cambridge University Press, Cambridge, 2014.
[17] G. C. Shephard, "Shadow systems of convex bodies," Israel Journal Mathematics, vol. 2, no. 4, pp. 229-236, 1964.
[18] X. Y. Wan and W. D. Wang. "Shephard type problems for the new geometric body $\Gamma_{-p} K$," Mathematical Inequalities \& Applications, vol. 3, no. 12, pp. 645-654, 2012.
[19] W. D. Wang, F. H. Lu and G. S. Leng, "A type of monotonicityon the L_{p}-centroid body and L_{p}-projection body," Mathematical Inequalities \& Applications, vol.8, no. 4, pp. 635-742, 2005.
[20] W. D. Wang and G. S. Leng, "The Petty projection inequality for L_{p} mixed projection bodies," Acta Mathematica Sinica, English Series., vol. 23, no. 8, pp. 1485-1494, 2007.
[21] W. D. Wang and G. S. Leng, "On the L_{p}-versions of the Pettys conjectured projection inequalityand applications," Taiwanese Journal of Mathematics, vol. 12, no. 5, pp. 1067-1086, 2008.
[22] W. D. Wang and G. S. Leng, "Some affine isoperimetric inequalities associated with L_{p}-affine surface area," Houston Journal of Mathematics, vol. 34, no. 2, pp. 443-453, 2008.
[23] W. D. Wang and X. Y. Wan, "Shephard type problems for general L_{p}-projection bodies," Taiwanese Journal of Mathematics, vol. 16, no. 5, pp. 1749-1762, 2012.
[24] W. D. Wang and Y. B. Feng, "A general L_{p}-version of Petty's affine projection inequality," Taiwanese Journal of Mathematics, vol. 17, no. 2, pp. 517-528, 2013.
[25] W. D. Wang and J. Y. Wang, "Extremum of geometric functionals involving general L_{p}-projection bodies," Journal of Inequalities and Applications, vol. 2016, pp. 1-16, 2016.
[26] D. P. Ye, " L_{p}-geominimal surface areas and their inequalities," International Mathematics Research Notices, vol. 2015, no. 1, pp. 24652498, 2015.
[27] D. P. Ye, B. C. Zhu and J. Z. Zhou, "The mixed L_{p} geominimal surface areas for multiple convex bodies," Indiana University Mathematics Journal, vol. 64, no. 5, pp. 1513-1552, 2015.
[28] B. C. Zhu, N. Li and J. Z. Zhou, "Isoperimetric inequalities for L_{p} geominimal surface area," Glasgow Mathematical Journal, vol. 53, no. 3, pp. 717-726, 2011.
[29] B. C. Zhu, J. Z. Zhou and W. X. Xu, "Affine isoperimetric inequalities for L_{p} geominimal surface area," Real and Complex Submanifolds, vol. 106, pp. 167-176, 2014.
[30] B. C. Zhu, J. Z. Zhou and W. X. Xu, " L_{p}-mixed geominimal surface area," Journal of Mathematical Analysis and Applications, vol. 422, no. 2, pp. 1247-1263, 2015.

