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Abstract—The notion of the Lp-projection body was in-
troduced by Lutwak, Yang and Zhang. Whereafter, Ludwig
proposed the asymmetric Lp-projection bodies, Haberl and
Schuster introduced the general Lp-projection bodies. In this
paper, associated with the Lp-geominimal surface area, we
study the Shephard type problems for the general Lp-projection
bodies.

Index Terms—Shephard type problem, general Lp-projection
body, Lp-geominimal surface area.

I. INTRODUCTION

LET Kn denote the set of convex bodies (compact,
convex subsets with non-empty interiors) in Euclidean

space Rn. For the set of convex bodies containing the origin
in their interiors and the set of origin-symmetric convex
bodies in Rn, we write Kno and Knos, respectively. Let Sno
denote the set of star bodies (about the origin) in Rn.
Let Sn−1 denote the unit sphere and V (K) denote the n-
dimensional volume of the body K. For the standard unit
ball B, its volume is written as V (B) = ωn.

For K ∈ Kn, its support function, h(K, ·) : Rn → R, is
defined by (see [3])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (1.1)

where x · y denotes the standard inner product of x and y.
The projection bodies were introduced by Minkowski at

the previous century. For each K ∈ Kn, the projection
body, ΠK, of K is an origin-symmetric convex body whose
support function is defined by (see [3])

h(ΠK,u) =
1

2

∫
Sn−1

|u · v|dS(K, v),

for all u ∈ Sn−1. Here S(K, ·) denotes the surface area
measure of K.

Projection body is a central study object in the Brunn-
Minkowski theory, a great deal of results are gathered in two
good books (see [3], [16]). In 1964, Shephard [17] proposed
the following problem about the projection bodies.
Problem 1.1 (Shephard problem). Suppose K,L ∈ Kn. If

ΠK ⊆ ΠL,

is it true that
V (K) ≤ V (L)?
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Remark 1.1. For centrally symmetric convex bodies K and
L, Problem 1.1 was solved independently by Petty [12] and
Schneider [15], who showed that the answer is affirmative if
n ≤ 2 and negative if n ≥ 3. They also proved that Problem
1.1 has an affirmative answer if L is a projection body.

In 2000, Lutwak, Yang and Zhang [8] introduced the Lp-
projection bodies as follows: For K ∈ Kno and p ≥ 1, the Lp-
projection body, ΠpK, is an origin-symmetric convex body
whose support function is given by

hp(ΠpK,u) = αn,p

∫
Sn−1

|u · v|pdSp(K, v), (1.2)

for all u ∈ Sn−1, where αn,p = 1/nωncn−2,p with
cn,p = ωn+p/ω2ωnωp−1, and Sp(K, ·) is the Lp-surface area
measure of K ∈ Kno (see [6]). In particular, for p = 1, the
convex body Π1K is the projection body ΠK of K under
the normalization of definition (1.2).

As a fundamental notion of Lp-projection body in Lp-
Brunn-Minkowski theory. In recent years, it has paid consid-
erable attentions (see [9], [11], [14], [19], [20], [21], [22]).

For p ≥ 1, Ludwig [5] introduced the asymmetric Lp-
projection bodies: For K ∈ Kno , p ≥ 1, the asymmetric
Lp-projection body, Π+

pK, of K is defined by

hp(Π+
pK,u) = 2αn,p

∫
Sn−1

(u · v)p+dSp(K, v), (1.3)

where (u, v)+ = max{u · v, 0}. Afterwords, Haberl and
Schuster [4] defined

Π−p K = Π+
p (−K). (1.4)

Moreover, combined with function ϕτ : R → [0,+∞)
by ϕτ (t) = |t| + τt for τ ∈ [−1, 1], Ludwig [5], Haberl
and Schuster [4] introduced general Lp-projection bodies as
follows: For K ∈ Kno , p ≥ 1 and τ ∈ [−1, 1], the general
Lp-projection body Πτ

pK ∈ Kno is defined by

hp(Πτ
pK,u) = αn,p(τ)

∫
Sn−1

ϕτ (u · v)pdSp(K, v), (1.5)

where
αn,p(τ) =

2αn,p
(1 + τ)p + (1− τ)p

.

The normalization is chosen such that Πτ
pB = B. Obviously,

Π0
pK = ΠpK.
From (1.3), (1.4) and (1.5), Haberl and Schuster [4]

deduced that for K ∈ Kno , p ≥ 1, τ ∈ [−1, 1] and all
u ∈ Sn−1,

hp(Πτ
pK,u)

= f1(τ)hp(Π+
pK,u) + f2(τ)hp(Π−p K,u), (1.6)

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_16

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



that is,

Πτ
pK = f1(τ) ·Π+

pK +p f2(τ) ·Π−p K,

where +p denotes the Lp-Minkowski addition of convex
bodies, and

f1(τ) =
(1 + τ)p

(1 + τ)p + (1− τ)p
,

f2(τ) =
(1− τ)p

(1 + τ)p + (1− τ)p
.

From this, we easily know that

f1(−τ) = f2(τ), f2(−τ) = f1(τ),

f1(τ) + f2(τ) = 1. (1.7)

The general Lp-projection bodies belong to asymmetric
Lp-Brunn-Minkowski theory. More results, also see [23],
[24], [25]. In particular, Wang and Wan [23] researched the
Shephard type problems of general Lp-projection bodies for
volumes and Lp-affine surface areas, respectively.
Theorem 1.A. Let K ∈ Kno , p ≥ 1 and τ ∈ [−1, 1]. If
L ∈ Pτ,np and Πτ

pK ⊆ Πτ
pL, then for n > p ≥ 1,

V (K) ≤ V (L);

for n < p,
V (K) ≥ V (L).

In each case, equality holds for p = 1 if and only if K is a
translation of L, and for p > 1 if and only if K = L. Here
Pτ,np denotes the set of general Lp-projection bodies with a
parameter τ .
Theorem 1.B. Let K ∈ Fno , p ≥ 1 and τ ∈ [−1, 1]. If
L ∈ Wτ,n

p and Πτ
pK ⊆ Πτ

pL, then

Ωp(K) ≤ Ωp(L),

with equality for p = 1 if and only if K is a translation of L,
and for p > 1 if and only if K = L. HereWτ,n

p = {Q ∈ Fno :

there exists Z ∈ Pτ,np with fp(Q, ·) = h(Z, ·)−(n+p)},
where fp(Q, ·) is the Lp-curvature function of Q and Fno
denotes the set of convex bodies in Kno with positive contin-
uous Lp-curvature function.

In this article, we will research the Shephard type prob-
lems of the general Lp-projection bodies for Lp-geominimal
surface areas. The notion of Lp-geominimal surface areas
was introduced by Lutwak [7]. For K ∈ Kno , p ≥ 1, the
Lp-geominimal surface area, Gp(K), of K is defined by

ω
p
n
n Gp(K) = inf{nVp(K,Q)V (Q∗)

p
n : Q ∈ Kno }, (1.8)

where Vp(M,N) denotes the Lp-mixed volume of M,N ∈
Kno . More researches about Lp-geominimal surface areas,
also see [10], [26], [27], [28], [29], [30].

In (1.8), if Q ∈ Pτ,np , then we define Gop(K) by

ω
p
n
n G

o
p(K) = inf{nVp(K,Q)V (Q∗)

p
n : Q ∈ Pτ,np }. (1.9)

Combining with (1.9), we first give an affirmative answer
of the Shephard type problem for general Lp-projection
bodies.
Theorem 1.1. Let K,L ∈ Kno , 1 ≤ p < n and τ ∈ [−1, 1].
If Πτ

pK ⊆ Πτ
pL, then

Gop(K) ≤ Gop(L),

with equality when Πτ
pK = Πτ

pL.
Let Cτ,np denotes the set of all general Lp-centroid bodies

(see [2]), thus Cτ,np ⊆ Kno . If Q ∈ Cτ,np in (1.8), then we
write G?p(K) by

ω
p
n
n G

?
p(K) = inf{nVp(K,Q)V (Q∗)

p
n : Q ∈ Cτ,np }. (1.10)

Based on (1.10), we give the other affirmative form of the
Shephard type problems for the general Lp-projection bodies.
Theorem 1.2. Let K,L ∈ Kno , 1 ≤ p < n and τ ∈ [−1, 1].
If Πτ

pK ⊆ Πτ
pL, then

G?p(K) ≤ G?p(L),

with equality when Πτ
pK = Πτ

pL.
Further, we also give a negative answer as follows:

Theorem 1.3. Let L ∈ Kno , 1 ≤ p < n and τ ∈ (−1, 1).
If L is not origin-symmetric convex body, then there exists
K ∈ Kno (τ = 0, K ∈ Knos), such that

Πτ
pK ⊂ Πτ

pL,

but
Gp(K) > Gp(L).

In particular, if τ = 0 in Theorem 1.3, the following result
is obvious.
Corollary 1.1. Let L ∈ Kno , 1 ≤ p < n. If L is not a
origin-symmetric convex body, then there exists K ∈ Knos,
such that

ΠpK ⊂ ΠpL,

but
Gp(K) > Gp(L).

Corollary 1.1 shows the symmetric negative solutions of
the Shephard type problem of Lp-projection bodies for the
Lp-geominimal surface areas. Actually, by the general Lp-
Blaschke bodies, we find the asymmetric negative solutions
in Corollary 1.1, i.e., we generalize the scope of negative
solutions in Corollary 1.1 from Knos to Kno .
Theorem 1.4. Let L ∈ Kno and 1 ≤ p < n. If L is not
origin-symmetric convex body, then there exists K ∈ Kno ,
such that

ΠpK ⊂ ΠpL,

but
Gp(K) > Gp(L).

For more investigations of the Shephard type problems,
we also see articles [1], [11], [13], [18], [23].

II. PRELIMINARIES

A. Radial Function and Polar Body

If K is a compact star-shaped (about the origin) in Rn,
then its radial function, ρ

K
= ρ(K, ·) : Rn\{0} → [0,∞),

is defined by (see [3], [16])

ρ(K,x) = max{λ ≥ 0 : λ · x ∈ K}, x ∈ Rn\{0}. (2.1)

If K ∈ Kno , the polar body, K∗, of K is defined by (see
[3], [16])

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}.
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From (1.1) and (2.1), it follows that if K ∈ Kno , then

h(K∗, ·) =
1

ρ(K, ·)
, ρ(K∗, ·) =

1

h(K, ·)
. (2.2)

B. Lp-Mixed Volume and Lp-Dual Mixed Volume

For K,L ∈ Kno , p ≥ 1 and λ, µ ≥ 0 (not both zero), the
Lp-Minkowski combination, λ ·K +p µ · L, of K and L is
defined by (see [6])

h(λ ·K +p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p,

where +p denotes the Lp-Minkowski addition, λ ·K denotes
the Lp-Minkowski scalar multiplication.

Together with Lp-Minkowski combination, Lutwak [6]
introduced Lp mixed volume as follows: For K,L ∈ Kno ,
ε > 0 and p ≥ 1, the Lp mixed volume Vp(K,L) is defined
by

n

p
Vp(K,L) = lim

ε→0+

Vp(K +p ε · L)− V (K)

ε
.

Besides, Lutwak [6] also gave its integral formula:

Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u). (2.3)

Here Sp(K, ·) is the Lp-surface area measure of K. It turns
out that the measure Sp(K, ·) is absolutely continuous with
respect to S(K, ·), and has Radon-Nikodym derivative (see
[7])

dSp(K, ·)
dS(K, ·)

= h(K, ·)1−p. (2.4)

If c > 0, n 6= p, according to (2.4), we have

Sp(cK, ·) = cn−pSp(K, ·). (2.5)

The Lp-dual mixed volume was introduced by Lutwak (see
[7]). For K,L ∈ Sno and p ≥ 1, the Lp-dual mixed volume,
Ṽ−p(K,L), of K and L is defined by (see [7])

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρn+p
K (u)ρ−pL (u)dS(u). (2.6)

C. General Lp-Blaschke Bodies

According to the existence’s theorem of Lp-Minkowski
problem (see Theorem 9.2.3 in [16]), the Lp-Blaschke
combinations of convex bodies was stated as follows: For
K,L ∈ Kno , 1 ≤ p 6= n, λ, µ ≥ 0 (not both zero), the Lp-
Blaschke combination λ � K ∓p µ � L ∈ Kno of K, L is
defined by

Sp(λ�K ∓p µ� L, ·) = λSp(K, ·) + µSp(L, ·). (2.7)

where ∓p denotes the Lp-Blaschke addition, and λ � K
denotes the Lp-Blaschke scalar multiplication.

If K,L ∈ Knos, then definition (2.7) is owe to Lutwak [6].
Let λ = f1(τ), µ = f2(τ) and L = −K in (2.7), where

f1(τ) and f2(τ) satisfy (1.7). We define the general Lp-
Blaschke body, ∇τpK, of K ∈ Kno by

∇τpK = f1(τ)�K ∓p f2(τ)� (−K). (2.8)

Obviously, by (1.7) and (2.8) we see that if τ = ±1, then
∇τpK = ∇±p K = ±K.

D. General Lp-Centroid Bodies

In 2015, Feng et al. [2] introduced the general Lp-centroid
body as follows: For K ∈ Sno , p ≥ 1 and τ ∈ [−1, 1],
the general Lp-centroid body, ΓτpK, of K is a convex body
whose support function is defined by

hpΓτpK(u)

=
2

cn,p(τ)(n+ p)V (K)

∫
Sn−1

ϕτ (u · v)pρK(v)n+pdv,

where
cn,p(τ) = cn,p[(1 + τ)p + (1− τ)p].

III. RESULTS AND PROOFS

In this part, we will give the proofs of Theorems 1.1-1.4.
First, in order to prove theorem 1.1, the following lemma is
required.
Lemma 3.1 ([24]). If K,L ∈ Kno , p ≥ 1 and τ ∈ [−1, 1],
then

Vp(K,Π
τ
pL) = Vp(L,Π

τ
pK). (3.1)

Proof of Theorem 1.1. Since K,L ∈ Kno , 1 ≤ p < n, if
Πτ
pK ⊆ Πτ

pL, then for all u ∈ Sn−1,

h(Πτ
pK,u) ≤ h(Πτ

pL, u). (3.2)

From (2.3), (3.1) and (3.2), we have for any M ∈ Kno ,

Vp(K,Π
τ
pM)

= Vp(M,Πτ
pK)

≤ Vp(M,Πτ
pL)

= Vp(L,Π
τ
pM). (3.3)

Since Πτ
pM ∈ Pτ,np , thus by (1.9) and (3.3), we get

ω
p
n
n G

o
p(K)

= inf{nVp(K,Πτ
pM)V (Πτ,∗

p M)
p
n : Πτ

pM ∈ Pτ,np }

≤ inf{nVp(L,Πτ
pM)V (Πτ,∗

p M)
p
n : Πτ

pM ∈ Pτ,np }

= ω
p
n
n G

o
p(L),

i.e.,
Gop(K) ≤ Gop(L).

Equality holds when Πτ
pK = Πτ

pL.
Lemma 3.2 ([8]). If M ∈ Kno , N ∈ Sno , p ≥ 1 and τ ∈
[−1, 1], then

Vp(M,ΓτpN) =
ωn

V (N)
Ṽ−p(N,Π

τ,∗
p M). (3.4)

Proof of Theorem 1.2. Since K,L ∈ Kno , 1 ≤ p < n, if
Πτ
pK ⊆ Πτ

pL, then Πτ,∗
p K ⊇ Πτ,∗

p L. From (2.2), (2.6) and
(3.4), for any N ∈ Sno , we obtain

Vp(K,Γ
τ
pN)

=
ωn

V (N)
Ṽ−p(N,Π

τ,∗
p K)

≤ ωn
V (N)

Ṽ−p(N,Π
τ,∗
p L)

= Vp(L,Γ
τ
pN). (3.5)
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Taking Q = ΓτpN , N ∈ Sno , thus by (1.10) and (3.5), we
have

G?p(K) ≤ G?p(L).

Equality holds when Πτ
pK = Πτ

pL.
Lemma 3.3. If K ∈ Kno , p ≥ 1 and τ ∈ [−1, 1], then

Gp(∇τpK) ≥ Gp(K), (3.6)

with equality for τ ∈ (−1, 1) if and only if K is origin-
symmetric. For τ = ±1, (3.6) becomes an equality.

Proof. By (1.8), (2.8), (2.3), (2.7) and (1.7), we have

ω
p
n
n Gp(∇τpK)

= inf{nVp(∇τpK,Q)V (Q∗)
p
n : Q ∈ Kno }

= inf{nVp(f1(τ)�K∓p f2(τ)� (−K), Q)V (Q∗)
p
n :

Q ∈ Kno }

= inf{n(f1(τ)Vp(K,Q)+f2(τ)Vp(−K,Q))V (Q∗)
p
n :

Q ∈ Kno }

≥ inf{nf1(τ)Vp(K,Q)V (Q∗)
p
n : Q ∈ Kno }

+ inf{nf2(τ)Vp(−K,Q)V (Q∗)
p
n : Q ∈ Kno }

= f1(τ) inf{nVp(K,Q)V (Q∗)
p
n : Q ∈ Kno }

+f2(τ) inf{nVp(K,−Q)V ((−Q)∗)
p
n : −Q ∈ Kno }

= ω
p
n
n (f1(τ)Gp(K) + f2(τ)Gp(K))

= ω
p
n
n Gp(K).

For any Q ∈ Kno and τ ∈ (−1, 1), with equality if and only if
f1(τ)Vp(K,Q) and f1(τ)Vp(−K,Q) are proportional, i.e.,
f1(τ)Sp(K, .) and f2(τ)Sp(−K, .) are proportional. This
together with Lutwak’s result (see [6]) imples that equality
holds in (3.6) if and only if K and −K are dilates, namely,
K is origin-symmetric.

Obviously, by ∇±1
p K = ±K we see that if τ = ±1, then

(3.6) is an equality.
Lemma 3.4. If K ∈ Kno , p ≥ 1 and τ ∈ (−1, 1), then

Π+
p ∇τpK = Πτ

pK, (3.7)

and
Π−p ∇τpK = Π−τp K. (3.8)

Proof. By (1.3), (2.8), (2.7), (1.4) and (1.6), we get for
all u ∈ Sn−1,

hp(Π+
p ∇τpK,u)

= 2αn,p

∫
Sn−1

(u · v)p+dSp(∇τpK, v)

= 2αn,p

∫
Sn−1

(u · v)p+dSp(f1(τ)�K ∓p f2(τ)� (−K), v)

= 2αn,p

∫
Sn−1

(u ·v)p+d[f1(τ)Sp(K, v)+f2(τ)Sp((−K), v)]

= f1(τ)hp(Π+
pK,u) + f2(τ)hp(Π+

p (−K), u)

= f1(τ)hp(Π+
pK,u) + f2(τ)hp(Π−p K,u)

= hp(Πτ
pK,u).

This immediately gives (3.7).
Similarly, we have for all u ∈ Sn−1,

hp(Π−p ∇τpK,u) = hp(Π−τp K,u).

This yields (3.8).
Lemma 3.5. Let L ∈ Kno , 1 ≤ p < n and τ ∈ (−1, 1).
If L is not origin-symmetric convex body, then there exists
K ∈ Kno (τ = 0 , K ∈ Knos), such that

Π+
pK ⊂ Πτ

pL, Π−p K ⊂ Π−τp L,

but
Gp(K) > Gp(L).

Proof. Since L is not origin-symmetric and τ ∈ (−1, 1),
thus by Lemma 3.3, we know Gp(∇τpL) > Gp(L). Choose
ε > 0, such that 1 − ε > 0, and K = (1 − ε)∇τpL ∈ Kno
satisfies

Gp(K) = Gp((1− ε)∇τpL) > Gp(L).

But by (1.5) and (2.5), we have

Πτ
pcK = cn−pΠτ

pK, (c > 0). (3.9)

Therefore, for n > p, by (3.7), (3.8) and (3.9), we respec-
tively have

Π+
pK = Π+

p [(1− ε)∇τpL] = (1− ε)n−pΠ+
p ∇τpL

= (1− ε)n−pΠτ
pL ⊂ Πτ

pL,

and

Π−p K = Π−p [(1− ε)∇τpL] = (1− ε)n−pΠ−p ∇τpL

= (1− ε)n−pΠ−τp L ⊂ Π−τp L.

This obtains the desired result.
Proof of Theorem 1.3. Since L is not origin-symmetric

and τ ∈ (−1, 1), thus by Lemma 3.5, there exists K ∈ Kno ,
such that

Π+
pK ⊂ Πτ

pL, Π−p K ⊂ Π−τp L,

but
Gp(K) > Gp(L).

Because τ ∈ (−1, 1) is equivalent to −τ ∈ (−1, 1), we
have Π+

pK ⊂ Πτ
pL, Π−p K ⊂ Π−τp L, these imply

Π+
pK ⊂ Πτ

pL, Π−p K ⊂ Πτ
pL.

From these and together with (1.6) and (1.7), we obtain for
any u ∈ Sn−1,

h(Πτ
pK,u)p

= f1(τ)h(Π+
pK,u)p + f2(τ)h(Π−p K,u)p

< f1(τ)h(Πτ
pL, u)p + f2(τ)h(Πτ

pL, u)p

= h(Πτ
pL, u)p,

i.e.,
Πτ
pK ⊂ Πτ

pL.

This yields desired result.
Lemma 3.6. Let K,L ∈ Kno , p ≥ 1 and τ ∈ [−1, 1], then

Πp(∇τpK) = ΠpK. (3.10)
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Proof. By (1.2), (2.8) and (2.7), we obtain for any u ∈
Sn−1,

hp(Πp(∇τpK), u)

= αn,p

∫
Sn−1

|u·v|pdSp(∇τpK, v)

= αn,p

∫
Sn−1

|u ·v|pdSp(f1(τ)�K∓p f2(τ)� (−K), v)

= αn,p

∫
Sn−1

|u·v|pd[f1(τ)Sp(K, v)+f2(τ)Sp((−K), v)]

= f1(τ)hp(ΠpK,u)+f2(τ)hp(Πp(−K), u).

Note that ΠpK = Πp(−K), thus

hp(Πp(∇τpK), u) = hp(ΠpK,u),

i.e.,
Πp(∇τpK) = ΠpK.

This yields (3.10). Proof of Theorem 1.4. Since L is
not origin-symmetric, from Lemma 3.3, we know for τ ∈
(−1, 1),

Gp(∇τpL) > Gp(L).

Choose 0 < ε < 1, such that

Gp((1− ε)∇τpL) > Gp(L).

Let K = (1 − ε)∇τpL, then K ∈ Kno (for τ 6= 0, K ∈
Kno \Knos; for τ = 0, K ∈ Knos) and

Gp(K) > Gp(L).

But by (1.2) and (2.5), we have

ΠpcK = cn−pΠpK, (c > 0). (3.11)

Hence, for n > p, (3.10) and (3.11) mean that

ΠpK = Πp((1− ε)∇τpL) = (1− ε)n−pΠp∇τpL

= (1− ε)n−pΠpL ⊂ ΠpL.

This obtains the desired result.
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