Resistance Distance and Kirchhoff Index of Two Edge-subdivision Corona Graphs

Qun Liu ${ }^{a, b}$

Abstract

In this work we first obtain the group inverse of the edge-subdivision-vertex corona and edge-subdivision-edge corona in terms of the group inverse of the factor graphs. Then the resistance distance and Kirchhoff index of these graphs can be derived from the resistance distance and Kirchhoff index of the factor graphs.

Index Terms-Kirchhoff index; Resistance distance; Edge-subdivision-vertex corona; Edge-subdivision-edge corona

I. Introduction

LET $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Let d_{i} be the degree of vertex i in G and $D_{G}=\operatorname{diag}\left(d_{1}, d_{2}, \cdots d_{|V(G)|}\right)$ the diagonal matrix with all vertex degrees of G as its diagonal entries. For a graph G, let A_{G} and B_{G} denote the adjacency matrix and vertex-edge incidence matrix of G, respectively. The matrix $L_{G}=D_{G}-A_{G}$ is called the Laplacian matrix of G, where D_{G} is the diagonal matrix of vertex degrees of G. We use $\mu_{1}(G) \geq u_{2}(G) \geq \cdots \geq \mu_{n}(G)=0$ to denote the eigenvalues of L_{G}. The $\{1\}$-inverse of M is a matrix X such that $M X M=M$. If M is singular, then it has infinite $\{1\}$-inverse [1]. We use $M^{(1)}$ to denote any $\{1\}$-inverse of a matrix M, and let $(M)_{u v}$ denote the (u, v)-entry of M.

Klein and Randić[2] introduced a new distance function named resistance distance on the basis of electrical network theory. The resistance distance between any two vertices u and v in G is defined to be the effective resistance between them when unit resistors are placed on every edge of G. The Kirchhoff index of G is the sum of resistance distances between all pairs of vertices of G. Let $r_{u v}(G)$ denote the resistance distance between u and v in G and $K f(G)$ denote the Kirchhoff index of G. The resistance distance and the Kirchhoff index have attracted extensive attention due to its wide applications in physics, chemistry and others. Up till now, many results on the resistance distance and the Kirchhoff index are obtained. See ([4], [5], [7]), [13]-[19]) and the references therein to know more.

The computation of resistance distance and Kirchhoff index is a hot topic in mathematics, computer science and so on. However, the computation of the effective resistances is difficult, as they are highly sensitive to small perturbations on the network, so this has prompted researchers try to find some techniques to compute the resistance distance

[^0]and Kirchhoff index of a given graph and obtained its closed formula. The subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G. The set of such new vertices is denoted by $I(G)$. In [6], a new graph operation: edge-subdivisionvertex and edge-subdivision-edge corona are introduced, and their A-spectra(resp., L-spectra) are investigated. This paper considers the resistance distance and Kirchhoff index of the graph operations below, which come from [6].

Definition 1 [6] The edge-subdivision-vertex corona of two vertex-disjoint graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the graph obtained from G_{1} and $\left|E\left(G_{1}\right)\right|$ copies of $S\left(G_{2}\right)$ with each edge of G_{1} corresponding to one copy of $S\left(G_{2}\right)$ and all vertex-disjoint, by joining end-vertex of the i th edge of $E\left(G_{1}\right)$ to each vertex of $V\left(G_{2}\right)$ in the i th copy of $S\left(G_{2}\right)$.

Definition 2 [6] The edge-subdivision-edge corona of two vertex-disjoint graphs G_{1} and G_{2}, denoted by $G_{1} \forall G_{2}$, is the graph obtained from G_{1} and $\left|E\left(G_{1}\right)\right|$ copies of $S\left(G_{2}\right)$ with each edge of G_{1} corresponding to one copy of $S\left(G_{2}\right)$ and all vertex-disjoint, by joining end-vertex of the i th edge of $E\left(G_{1}\right)$ to each vertex of $I\left(G_{2}\right)$ in the i th copy of $S\left(G_{2}\right)$.

Bu et al. investigated resistance distance in subdivisionvertex join and subdivision-edge join of graphs [7]. Liu et al. [8] gave the resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs. Liu et al. [9] gave the resistance distance and Kirchhoff index of corona and neighborhood corona of two graphs. Lu et al. [10] computed the resistance distance and Kirchhoff index of two corona graphs. Motivated by the results, in this paper, we further explore the generalized inverse of the edge-subdivision-vertex corona and edge-subdivision-edge corona in terms of the generalized inverse of the factor graphs. Thus the effective resistances and Kirchhoff index of the edge-subdivision-vertex corona and edge-subdivision-edge corona can be derived from the resistance distance and Kirchhoff index of the factor graphs.

II. Preliminaries

For a square matrix M, the group inverse of M, denoted by $M^{\#}$, is the unique matrix X such that $M X M=M$, $X M X=X$ and $M X=X M$. It is known that $M^{\#}$ exists if and only if $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)([1],[11])$. If M is real symmetric, then $M^{\#}$ exists and $M^{\#}$ is a symmetric $\{1\}$ inverse of M. Actually, $M^{\#}$ is equal to the Moore-Penrose inverse of M since M is symmetric [11]. It is known that resistance distances in a connected graph G can be obtained from any $\{1\}$-inverse of G ([4]).

Lemma 2.1 ([11]) Let G be a connected graph. Then

$$
\begin{aligned}
r_{u v}(G) & =\left(L_{G}^{(1)}\right)_{u u}+\left(L_{G}^{(1)}\right)_{v v}-\left(L_{G}^{(1)}\right)_{u v}-\left(L_{G}^{(1)}\right)_{v u} \\
& =\left(L_{G}^{\#}\right)_{u u}+\left(L_{G}^{\#}\right)_{v v}-2\left(L_{G}^{\#}\right)_{u v} .
\end{aligned}
$$

Let 1_{n} denote the column vector of dimension n with all the entries equal one. We will often use 1 to denote an all-one column vector if the dimension can be read from the context.
Lemma 2.2 ([7]) For any graph, we have $L_{G}^{\#} 1=0$.
Lemma 2.3 ([12]) Let

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

be a nonsingular matrix. If A and D are nonsingular, then

$$
\begin{aligned}
M^{-1} & =\left(\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right)
\end{aligned}
$$

where $S=D-C A^{-1} B$.
For a square matrix M, let $\operatorname{tr}(M)$ denote the trace of M.
Lemma 2.5 ([16]) Let G be a connected graph on n vertices. Then

$$
K f(G)=n \operatorname{tr}\left(L_{G}^{(1)}\right)-1^{T} L_{G}^{(1)} 1=\operatorname{ntr}\left(L_{G}^{\#}\right) .
$$

Lemma 2.6 ([15]) Let G be an r-regular graph with n vertices and m edges, $\mu_{G}(x)$ denote the Laplacian characteristic polynomial of $G, l(G)$ be the line graph of G. Then

$$
\mu_{l(G)}(x)=(x-2 r)^{m-n} \mu_{G}(x) .
$$

Lemma 2.7([3]) Let G be a connected graph of order n with edge set E. Then

$$
\sum_{u<v, u v \in E} r_{u v}(G)=n-1
$$

For a vertex i of a graph G, let $T(i)$ denote the set of all neighbors of i in G.

Lemma 2.8 ([17]) Let

$$
L=\left(\begin{array}{cc}
A & B \\
B^{T} & D
\end{array}\right)
$$

be the Laplacian matrix of a connected graph. If D is nonsingular, then

$$
X=\left(\begin{array}{cc}
H^{\#} & -H^{\#} B D^{-1} \\
-D^{-1} B^{T} H^{\#} & D^{-1}+D^{-1} B^{T} H^{\#} B D^{-1}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of L, where $H=A-B D^{-1} B^{T}$.

III. Resistance distance and Kirchhoff index of EDGE-SUBDIVISION-VERTEX CORONA FOR GRAPHS

In this section, we focus on determing the resistance distance and Kirchhoff index of edge-subdivision-vertex corona whenever G_{1} is an r_{1}-regular graph.
Theorem 3.1 Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} an r_{2}-regular graphs on n_{2} vertices and m_{2} edges. Then $G=G_{1} \vee G_{2}$ have the resistance distance and Kirchhoff index
(i) For any $i, j \in V\left(G_{1}\right)$, we have

$$
\begin{aligned}
r_{i j}(G)= & \frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{j j} \\
& -\frac{4}{n_{2}+2}\left(L_{1}^{\#}\right)_{i j}=\frac{2}{n_{2}+2} r_{i j}\left(G_{1}\right)
\end{aligned}
$$

(ii) For any $i, j \in V\left(G_{2}\right)$, we have

$$
\begin{aligned}
r_{i j}(G)= & \left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i i}+\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1}\right. \\
& \left.\otimes I_{m_{1}}\right)_{j j}-2\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i j} .
\end{aligned}
$$

(iii) For any $i \in V\left(G_{1}\right), j \in V\left(G_{2}\right)$, we have

$$
\begin{aligned}
r_{i j}(G)= & \frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1}\right. \\
& \left.\otimes I_{m_{1}}\right)_{j j}-\frac{4}{n_{2}+2}\left(L_{1}^{\#}\right)_{i j}
\end{aligned}
$$

(iv) $K f\left(L_{G}\right)$

$$
\begin{aligned}
= & \left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{2+r_{1}\left(n_{2}+m_{2}\right)}{n_{1}\left(n_{2}+2\right)} K f\left(G_{1}\right)\right. \\
& +m_{1} \sum_{i=1}^{n_{2}} \frac{1}{\frac{1}{2} \mu_{i}\left(G_{2}\right)+2}+\left(r_{2}+2\right) m_{1} \sum_{i=1}^{n_{1}} \frac{1}{4+\mu_{i}\left(G_{2}\right)} \\
& \left.+\frac{m_{1}\left(r_{2}+2\right)\left(n_{2}-m_{2}\right)}{4+2 r_{2}}-\frac{\left(n_{1}-1\right)\left(n_{2}+m_{2}\right)}{2\left(n_{2}+2\right)}\right) \\
& -\frac{6 m_{1} m_{2}+m_{2}\left(r_{2}+2\right)}{4},
\end{aligned}
$$

where $\mu_{i}\left(G_{2}\right)$ is the Laplacian eigenvalues of G_{2}.
Proof Let $R_{i}(i=1,2)$ be the incidence matrix of G_{i}. Then with a proper labeling of vertices, the Laplacian matrix of $G_{1} \vee G_{2}$ can be written as

$L\left(G_{1} \vee G_{2}\right)$

$$
=\left(\begin{array}{ccc}
L_{1}+r_{1} n_{2} I_{n_{1}} & -1_{n_{2}}^{T} \otimes R_{1} & 0_{n_{1} \times m_{1} m_{2}} \\
-1_{n_{2}} \otimes R_{1}^{T} & \left(2+r_{2}\right) I_{n_{2}} \otimes I_{m_{1}} & -R_{2} \otimes I_{m_{1}} \\
0_{m_{1} m_{2} \times n_{1}} & -R_{2}^{T} \otimes I_{m_{1}} & 2 I_{m_{1} m_{2}}
\end{array}\right) .
$$

Let $A=L_{1}+r_{1} n_{2} I_{n_{1}}, B=\left(\begin{array}{ll}-1_{n_{2}}^{T} \otimes R_{1} & 0_{n_{1} \times m_{1} m_{2}}\end{array}\right)$, $B^{T}=\binom{-1_{n_{2}} \otimes R_{1}^{T}}{0_{m_{1} m_{2} \times n_{1}}}$, and

$$
D=\left(\begin{array}{cc}
\left(2+r_{2}\right) I_{n_{2}} \otimes I_{m_{1}} & -R_{2} \otimes I_{m_{1}} \\
-R_{2}^{T} \otimes I_{m_{1}} & 2 I_{m_{1} m_{2}}
\end{array}\right)
$$

First we compute the D^{-1}. By Lemma 2.3, we have
$A_{1}-B_{1} D_{1}^{-1} C_{1}$

$$
\begin{aligned}
& =\left(2+r_{2}\right) I_{n_{2}} \otimes I_{m_{1}}-\frac{1}{2}\left(R_{2} \otimes I_{m_{1}}\right)\left(R_{2}^{T} \otimes I_{m_{1}}\right) \\
& =\left[\left(2+r_{2}\right) I_{n_{2}}-\frac{1}{2}\left(r_{2} I_{n_{2}}+A\left(G_{2}\right)\right)\right] \otimes I_{m_{1}} \\
& =\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right) \otimes I_{m_{1}},
\end{aligned}
$$

so $\left(A_{1}-B_{1} D_{1}^{-1} C_{1}\right)^{-1}=\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}$.
By Lemma 2.3, we have

$$
\begin{aligned}
S & =\left(D_{1}-C_{1} A_{1}^{-1} B_{1}\right) \\
& =2 I_{m_{1} m_{2}}-\frac{1}{r_{2}+2}\left(R_{2}^{T} \otimes I_{m_{1}}\right)\left(I_{n_{2}} \otimes I_{m_{1}}\right)\left(R_{2} \otimes I_{m_{1}}\right) \\
& =2 I_{m_{1} m_{2}}-\frac{1}{r_{2}+2}\left(R_{2}^{T} R_{2} \otimes I_{m_{1}}\right) \\
& =\left(2 I_{m_{1} m_{2}}-\frac{1}{r_{2}+2}\left(2 I_{m_{2}}+A\left(l\left(G_{2}\right)\right)\right) \otimes I_{m_{1}}\right. \\
& =\frac{1}{r_{2}+2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right) \otimes I_{m_{1}} .
\end{aligned}
$$

So $S^{-1}=\left(r_{2}+2\right)\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$.
By Lemma 2.3, we have
$-A_{1}^{-1} B_{1} S^{-1}$

$$
\begin{aligned}
= & -\frac{1}{r_{2}+2}\left(I_{n_{2}} \otimes I_{m_{1}}\right)\left(-R_{2} \otimes I_{m_{1}}\right)\left(r_{2}+2\right) \\
& \left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) \\
= & R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}} .
\end{aligned}
$$

Similarly, $-S^{-1} C_{1} A_{1}^{-1}=\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} R_{2}^{T} \otimes I_{m_{1}}$.
Let $V=\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}, T=\left(r_{2}+2\right)\left(4 I_{m_{2}}+\right.$ $\left.L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}, M=R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$.

So

$$
D^{-1}=\left(\begin{array}{cc}
V & M \\
M^{T} & T
\end{array}\right)
$$

Now we are ready to calculate H.
Let $P=\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}, Q=\left(r_{2}+2\right)\left(4 I_{m_{2}}+\right.$ $\left.L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}, M=R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$, then

$$
\begin{aligned}
H= & L_{1}+r_{1} n_{2} I_{n_{1}}-\left(\begin{array}{c}
-1_{n_{2}}^{T} \otimes R_{1}
\end{array}\right) \\
& \left(\begin{array}{cc}
V & M \\
M^{T} & T
\end{array}\right)\binom{-1_{n_{2}} \otimes R_{1}^{T}}{0} \\
= & L_{1}+r_{1} n_{2} I_{n_{1}}-\frac{n_{2}}{2} R_{1} R_{1}^{T}=\frac{n_{2}+2}{2} L_{1},
\end{aligned}
$$

By Lemma 2.8, we have $H^{\#}=\frac{2}{n_{2}+2} L_{1}^{\#}$.
Next according to Lemma 2.8, we calculate $-H^{\#} B D^{-1}$ and $-D^{-1} B^{T} H^{\#}$.
$-H^{\#} B D^{-1}$

$$
\begin{aligned}
& =-\frac{2}{n_{2}+2} L_{1}^{\#}\left(\begin{array}{cc}
-1_{n_{2}}^{T} \otimes R_{1} & 0
\end{array}\right)\left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right) \\
& =\frac{2}{n_{2}+2} L_{1}^{\#}\left(\begin{array}{ll}
\frac{1}{2} 1_{n_{2}}^{T} \otimes R_{1} & 1_{n_{2}}^{T} M
\end{array}\right) .
\end{aligned}
$$

Note that $1_{n_{2}}^{T} R_{2}=2 \cdot 1_{m_{2}}^{T}$, then $1_{n_{2}}^{T} R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes$ $R_{1}=2 \cdot 1_{m_{2}}^{T}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes R_{1}=\frac{1}{2} 1_{m_{2}}^{T} \otimes R_{1}$, so

$$
-H^{\#} B D^{-1}=\frac{1}{n_{2}+2} L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1} \quad 1_{m_{2}}^{T} \otimes R_{1}\right)
$$

and
$-D^{-1} B^{T} H^{\#}$

$$
\begin{aligned}
& =-\left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right)\binom{-1_{n_{2}} \otimes R_{1}^{T}}{0} \frac{1}{n_{2}+2} L_{1}^{\#} \\
& =\frac{1}{n_{2}+2}\binom{1_{n_{2}} \otimes R_{1}^{T}}{1_{m_{2}} \otimes R_{1}^{T}} L_{1}^{\#} .
\end{aligned}
$$

We are ready to compute the $D^{-1} B^{T} H^{\#} B D^{-1}$.
Let $1_{n_{2}} \otimes R_{1}^{T}=H, K=1_{m_{2}}^{T} \otimes R_{1}$, then $D^{-1} B^{T} H^{\#} B D^{-1}$

$$
\begin{aligned}
& =\binom{\frac{1}{2} H}{\frac{1}{2} K^{T}} \frac{1}{n_{2}+2} L_{1}^{\#}\left(\begin{array}{cc}
H^{T} & K
\end{array}\right) \\
& =\frac{1}{2\left(n_{2}+2\right)}\left(\begin{array}{cc}
H L_{1}^{\#} H^{T} & H L_{1}^{\#} K \\
K^{T} L_{1}^{\#} H^{T} & K^{T} L_{1}^{\#} K
\end{array}\right) .
\end{aligned}
$$

Let $1_{n_{2}} \otimes R_{1}^{T}=H, K=1_{m_{2}}^{T} \otimes R_{1}$, then based on Lemma 2.3 and 2.7, the following matrix $N=$

$$
\left(\begin{array}{ccc}
\frac{2}{n_{2}+2} L_{1}^{\#} & \frac{1}{n_{2}+L_{1}} L_{1}^{\#} H^{T} & \frac{1}{n_{2}+2} L_{1}^{\#} K \\
\frac{1}{n_{2}+2} H L_{1}^{\#} & P+\frac{1}{2\left(n_{2}+2\right)} H L_{1}^{\#} H^{T} & M+\frac{1}{2\left(n_{2}+2\right)} H_{1}^{\#} L_{1}^{\#} K \\
\frac{1}{n_{2}+2} K^{T} L_{1}^{\#} & M^{T}+\frac{1}{2\left(n_{2}+2\right)} K^{T} L_{1}^{\#} H^{T} & Q+\frac{1}{2\left(n_{2}+2\right)} K^{T} L_{1}^{\#} H^{T}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L_{G_{1} \vee G_{2}}$, where $P=\left(2 I_{n_{2}}+\right.$ $\left.\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}, Q=\left(r_{2}+2\right)\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$, $M=R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$. Let N be Equation (3.1).

For any $i, j \in V\left(G_{1}\right)$, by Lemma 2.1 and the Equation (3.1), we have
$r_{i j}\left(G_{1} \vee G_{2}\right)$

$$
\begin{aligned}
= & \frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{j j} \\
& -\frac{4}{n_{2}+2}\left(L_{1}^{\#}\right)_{i j}=\frac{2}{n_{2}+2} r_{i j}\left(G_{1}\right)
\end{aligned}
$$

For any $i, j \in V\left(G_{2}\right)$, by Lemma 2.1 and the Equation (3.1), we have
$r_{i j}\left(G_{1} \vee G_{2}\right)$

$$
\begin{aligned}
= & \left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i i}+\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1}\right. \\
& \left.\otimes I_{m_{1}}\right)_{j j}-2\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i j}
\end{aligned}
$$

For any $i \in V\left(G_{1}\right), j \in V\left(G_{2}\right)$, by Lemma 2.1 and the Equation (3.1), we have
$r_{i j}\left(G_{1} \vee G_{2}\right)$

$$
\begin{aligned}
= & \frac{2}{n_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{j j} \\
& -\frac{4}{n_{2}+2}\left(L_{1}^{\#}\right)_{i j}
\end{aligned}
$$

By Lemma 2.5, we have

$$
\begin{aligned}
& K f\left(L_{G_{1} \vee G_{2}}\right) \\
&=\left(n_{1}+n_{2}+2 m_{1}\right) \operatorname{tr}(N)-1^{T} N 1 \\
&=\left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{2}{n_{2}+2} \operatorname{tr}\left(L_{1}^{\#}\right)\right. \\
&+\operatorname{tr}\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right) \\
&+\left(r_{2}+2\right) \operatorname{tr}\left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) \\
&+\frac{1}{2\left(n_{2}+2\right)} \operatorname{tr}\left(\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right)\right) \\
&\left.+\frac{1}{2\left(n_{2}+2\right)} \operatorname{tr}\left(\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right)\right)\right)-1^{T} N 1
\end{aligned}
$$

Note that the eigenvalues of $\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)$ are $\frac{1}{2} \mu_{1}\left(G_{2}\right)+$ $2, \frac{1}{2} \mu_{2}\left(G_{2}\right)+2, \ldots, \frac{1}{2} \mu_{n_{2}}\left(G_{2}\right)+2$. Then

$$
\begin{aligned}
\operatorname{tr}\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)^{-1} & =m_{1} \sum_{i=1}^{n_{2}}\left(\frac{1}{2} \mu_{i}\left(G_{2}\right)+2\right)^{-1} \\
& =m_{1} \sum_{i=1}^{n_{2}} \frac{1}{\frac{1}{2} \mu_{i}\left(G_{2}\right)+2} .
\end{aligned}
$$

By Lemma 2.6, then

$$
\begin{aligned}
& \operatorname{tr}\left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right)= m_{1} \sum_{i=1}^{n_{1}} \frac{1}{4+\mu_{i}\left(G_{2}\right)}+ \\
& \frac{m_{1}\left(n_{2}-m_{2}\right)}{4+2 r_{2}}
\end{aligned}
$$

By Lemma 2.7, we have
$\operatorname{tr}\left(\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right)\right)$

$$
\begin{aligned}
& =n_{2} \operatorname{tr}\left(R_{1}^{T} L_{1}^{\#} R_{1}\right) \\
& =n_{2} \sum_{i<j, i j \in E(G)}\left(L_{i i}^{\#}+L_{j j}^{\#}+2 L_{i j}^{\#}\right) \\
& =n_{2} \sum_{i<j, i j \in E(G)}\left(2 L_{i i}^{\#}+2 L_{j j}^{\#}-r_{i j}\left(G_{1}\right)\right) \\
& =2 n_{2} r_{1} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-n_{2}\left(n_{1}-1\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{tr}\left(\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right)\right) \\
& =2 m_{2} r_{1} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-m_{2}\left(n_{1}-1\right)
\end{aligned}
$$

So
$K f\left(L_{G_{1} \vee G_{2}}\right)$

$$
\begin{aligned}
= & \left(n_{1}+n_{2}+2 m_{1}\right) \operatorname{tr}(N)-1^{T} N 1 \\
= & \left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{2}{n_{1}\left(n_{2}+2\right)} K f\left(G_{1}\right)\right. \\
& +m_{1} \sum_{i=1}^{n_{2}} \frac{1}{\frac{1}{2} \mu_{i}\left(G_{2}\right)+2} \\
& +\left(r_{2}+2\right) \operatorname{tr}\left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) \\
& +\frac{1}{2\left(n_{2}+2\right)} \operatorname{tr}\left(\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right)\right) \\
& \left.+\frac{1}{2\left(n_{2}+2\right)} \operatorname{tr}\left(\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right)\right)\right) \\
& -1^{T} N 1
\end{aligned}
$$

$$
=\left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{2}{n_{1}\left(n_{2}+2\right)} K f\left(G_{1}\right)\right.
$$

$$
+m_{1} \sum_{i=1}^{n_{2}} \frac{1}{\frac{1}{2} \mu_{i}\left(G_{2}\right)+2}
$$

$$
\left.+\left(r_{2}+2\right)\left(m_{1} \sum_{i=1}^{n_{1}} \frac{1}{4+\mu_{i}\left(G_{2}\right)}\right)+\frac{m_{1}\left(n_{2}-m_{2}\right)}{4+2 r_{2}}\right)
$$

$$
+\frac{1}{2\left(n_{2}+2\right)}\left(2 n_{2} r_{1} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-n_{2}\left(n_{1}-1\right)\right)
$$

$$
\left.+\frac{1}{2\left(n_{2}+2\right)}\left(2 m_{2} r_{1} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-m_{2}\left(n_{1}-1\right)\right)\right)
$$

$$
-1^{T} N 1 .
$$

Next, we calculate the $1^{T}\left(L_{G_{1} \vee G_{2}}^{(1)}\right) 1$. Since $L_{G}^{\#} 1=0$, then $1^{T}\left(L_{G_{1} \vee G_{2}}^{(1)}\right) 1$

$$
\begin{aligned}
= & 1^{T}\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right) 1+1^{T}\left(\left(r_{2}+2\right)\right. \\
& \left.\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) 1 \\
& +1^{T}\left(R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) 1 \\
& +1^{T}\left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} R_{2}^{T} \otimes I_{m_{1}}\right) 1 \\
& +\frac{1}{2\left(n_{2}+2\right)} 1^{T}\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2\left(n_{2}+2\right)} 1^{T}\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2\left(n_{2}+2\right)} 1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2\left(n_{2}+2\right)} 1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1 .
\end{aligned}
$$

Let $T=1_{m_{1} n_{2}}^{T}\left(\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} \otimes I_{m_{1}}\right) 1_{m_{1} n_{2}}, F=\left(\left(2 I_{n_{2}}+\right.\right.$ $\left.\left.\frac{1}{2} L_{2}\right) \otimes I_{m_{1}}\right)$, then

$$
\begin{aligned}
T & =\left(\begin{array}{llll}
1_{n_{2}}^{T} & 1_{n_{2}}^{T} & \cdots & 1_{n_{2}}^{T}
\end{array}\right) \\
& \left(\begin{array}{cccc}
F^{-1} & & \\
& F^{-1} & & \\
& & & \ddots
\end{array}\right)\left(\begin{array}{c}
1_{n_{2}} \\
1_{n_{2}} \\
\cdots \\
1_{n_{2}}
\end{array}\right) \\
& =m_{1} 1_{n_{2}}^{T}\left(2 I_{n_{2}}+\frac{1}{2} L_{2}\right)^{-1} 1_{n_{2}}=\frac{m_{1} n_{2}}{2} .
\end{aligned}
$$

Similarly,
$1^{T}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} 1=\frac{m_{2}}{4}, 1^{T}\left(R_{2}\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes\right.$ $\left.I_{m_{1}}\right) 1=1^{T}\left(\left(4 I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} R_{2}^{T} \otimes I_{m_{1}}\right) 1=\frac{\left.m_{1} m_{2}\right)}{2}$.

By direct computation,
$1^{T}\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes R_{1}\right) 1=n_{2}^{2} \pi^{T} L_{1}^{\#} \pi=n_{2}^{2} r_{1}^{2} 1^{T} L_{1}^{\#} 1=$ $0,1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1=m_{2}^{2} \pi^{T} L_{1}^{\#} \pi=0$,
$1^{T}\left(1_{n_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1=1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{n_{2}}^{T} \otimes\right.$ $\left.R_{1}\right) 1=n_{2} m_{2} \pi^{T} L_{1}^{\#} \pi=0$.
So

$$
\begin{aligned}
1^{T}\left(L_{G_{1} \vee G_{2}}^{(1)}\right) 1 & =\frac{m_{1} m_{2}}{2}+\frac{m_{2}\left(r_{2}+2\right)}{4}+m_{1} m_{2} \\
& =\frac{6 m_{1} m_{2}+m_{2}\left(r_{2}+2\right)}{4} .
\end{aligned}
$$

Lemma 2.5 implies that

$$
K f(G)=\left(n_{1}+n_{2}+2 m_{1}\right) \operatorname{tr}(N)-1^{T} N 1 .
$$

Then plugging $\operatorname{tr}\left(L_{G_{1} \vee G_{2}}^{(1)}\right)$ and $1^{T}\left(L_{G_{1} \vee G_{2}}^{(1)}\right) 1$ into the equation above, we obtain the required result.

IV. Resistance distance and Kirchhoff index of edge-Subdivision-EDGE CORONA FOR GRAPHS

In this section, we focus on determing the resistance distance and Kirchhoff index of edge-subdivision-edge corona whenever G_{1} is an r_{1}-regular graph.
Theorem 4.1 Let G_{1} be an r_{1}-regular graph with n_{1} vertices and m_{1} edges and G_{2} an r_{2}-regular graphs with n_{2} vertices and m_{2} edges. Then $G_{1} \forall G_{2}$ have the resistance distance and Kirchhoff index
(i) For any $i, j \in V\left(G_{1}\right)$, we have
$r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
& =\frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{j j}-\frac{4}{m_{2}+2}\left(L_{1}^{\#}\right)_{i j} \\
& =\frac{2}{m_{2}+2} r_{i j}\left(G_{1}\right) .
\end{aligned}
$$

(ii) For any $i, j \in V\left(G_{2}\right)$, we have $r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
= & \left(I_{n_{1}} \otimes\left(L_{G_{2}}+I_{n_{2}}\right)^{-1}\right)_{i i}+\left(I_{n_{1}} \otimes\left(L_{G_{2}}+I_{n_{2}}\right)^{-1}\right)_{j j} \\
& -2\left(I_{n_{1}} \otimes\left(L_{G_{2}}+I_{n_{2}}\right)^{-1}\right)_{i j} .
\end{aligned}
$$

(iii) For any $i \in V\left(G_{1}\right), j \in V\left(G_{2}\right)$, we have $r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
= & \frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\left(I_{n_{1}} \otimes\left(L_{G_{2}}+I_{n_{2}}\right)^{-1}\right)_{j j} \\
& -\frac{4}{m_{2}+2}\left(L_{1}^{\#}\right)_{i j} .
\end{aligned}
$$

(iv) $K f\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
= & \left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{4 r_{2}+2 n_{1} r_{1}^{3}+m_{1} r_{2}}{2 n_{1} r_{2}\left(m_{2}+2\right)} K f\left(G_{1}\right)\right. \\
& +m_{1} \sum_{i=1}^{n_{2}} \frac{1}{\frac{1}{4} \mu_{i}\left(G_{2}\right)+\frac{r_{2}}{2}}+r_{2} m_{1} \sum_{i=1}^{n_{2}} \frac{1}{2 r_{2}+\mu_{i}\left(G_{2}\right)} \\
& \left.+\frac{m_{1}\left(n_{2}-m_{2}\right)}{4}-\frac{\left(n_{1}-1\right)\left(n_{1} r_{1}^{2}+m_{2} r_{2}\right)}{2 r_{2}\left(m_{2}+2\right)}\right) \\
& -\frac{4 m_{1} n_{2}+m_{2} r_{2}+4 m_{1} m_{2}}{2 r_{2}} .
\end{aligned}
$$

Proof Let $R_{i}(i=1,2)$ be the incidence matrix of G_{i}. Then with a proper labeling of vertices, the Laplacian matrix of $G_{1} \forall G_{2}$ can be written as

$$
\begin{aligned}
& L\left(G_{1} \forall G_{2}\right)= \\
& \qquad\left(\begin{array}{ccc}
L_{1}+r_{1} m_{2} I_{n_{1}} & 0_{n_{1} \times m_{1} n_{2}} & -1_{m_{2}}^{T} \otimes R_{1} \\
0_{m_{1} n_{2} \times n_{1}} & r_{2} I_{n_{2}} \otimes I_{m_{1}} & -R_{2} \otimes I_{m_{1}} \\
-1_{m_{2}} \otimes R_{1}^{T} & -R_{2}^{T} \otimes I_{m_{1}} & 4 I_{m_{1} m_{2}}
\end{array}\right)
\end{aligned}
$$

Let $A=L_{1}+r_{1} m_{1} I_{n_{1}}, B=\left(\begin{array}{cc}0_{n_{1} \times m_{1} n_{2}} & -1_{m_{2}}^{T} \otimes R_{1}\end{array}\right)$, $B^{T}=\binom{0_{m_{1} n_{2} \times n_{1}}}{-1_{m_{2}} \otimes R_{1}^{T}}$ and

$$
D=\left(\begin{array}{cc}
r_{2} I_{n_{2}} \otimes I_{m_{1}} & -R_{2} \otimes I_{m_{1}} \\
-R_{2}^{T} \otimes I_{m_{1}} & 4 I_{m_{1} m_{2}}
\end{array}\right)
$$

First we compute the D^{-1}. By Lemma 2.3, we have $A_{1}-B_{1} D_{1}^{-1} C_{1}$

$$
\begin{aligned}
& =r_{2} I_{n_{2}} \otimes I_{m_{1}}-\frac{1}{4}\left(R_{2} \otimes I_{m_{1}}\right)\left(R_{2}^{T} \otimes I_{m_{1}}\right) \\
& =\left(r_{2} I_{n_{2}}-\frac{1}{4}\left(r_{2} I_{n_{2}}+A\left(G_{2}\right)\right)\right) \otimes I_{m_{1}} \\
& =\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right) \otimes I_{m_{1}}
\end{aligned}
$$

so $\left(A_{1}-B_{1} D_{1}^{-1} C_{1}\right)^{-1}=\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}$.
By Lemma 2.3, we have

$$
\begin{aligned}
S & =D_{1}-C_{1} A_{1}^{-1} B_{1} \\
& =4 I_{m_{1} m_{2}}-\frac{1}{r_{2}}\left(R_{2}^{T} \otimes I_{m_{1}}\right)\left(I_{n_{2}} \otimes I_{m_{1}}\right)\left(R_{2} \otimes I_{m_{1}}\right) \\
& =4 I_{m_{1} m_{2}}-\frac{1}{r_{2}}\left(R_{2}^{T} R_{2} \otimes I_{m_{1}}\right) \\
& =4 I_{m_{1} m_{2}}-\frac{1}{r_{2}}\left(\left(2 I_{m_{2}}+A\left(l\left(G_{2}\right)\right) \otimes I_{m_{1}}\right)\right. \\
& =\frac{1}{r_{2}}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right) \otimes I_{m_{1}}
\end{aligned}
$$

so $S^{-1}=r_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$.
By Lemma 2.3, we have

$$
\begin{aligned}
-A_{1}^{-1} B_{1} S^{-1}= & -\frac{1}{r_{2}}\left(I_{n_{2}} \otimes I_{m_{1}}\right)\left(-R_{2} \otimes I_{m_{1}}\right) \\
& r_{2}\left(\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) \\
= & R_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}
\end{aligned}
$$

Similarly, $-S^{-1} C_{1} A_{1}^{-1}=\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} R_{2}^{T} \otimes I_{m_{1}}$.
Let $P=\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}, Q=r_{2}\left(2 r_{2} I_{m_{2}}+\right.$ $\left.L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}, M=R_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$, then

$$
D^{-1}=\left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right)
$$

Now we are ready to calculate H.

$$
\begin{aligned}
H= & L_{1}+r_{1} m_{2} I_{n_{1}}-\left(\begin{array}{cc}
0_{n_{1} \times m_{1} n_{2}} & -1_{m_{2}}^{T} \otimes R_{1}
\end{array}\right) \\
& \left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right)\binom{0_{m_{1} n_{2} \times n_{1}}}{-1_{m_{2}} \otimes R_{1}^{T}} \\
= & L_{1}+r_{1} m_{2} I_{n_{1}}-\frac{m_{2}}{2} R_{1} R_{1}^{T}=\frac{m_{2}+2}{2} L_{1}
\end{aligned}
$$

By Lemma 2.8 , we have $H^{\#}=\frac{2}{m_{2}+2} L_{1}^{\#}$.
Next according to Lemma 2.8, we calculate $-H^{\#} B D^{-1}$ and $-D^{-1} B^{T} H^{\#}$.
Note that $R(G) \mathbf{1}=\pi$, where $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)^{T}$, then $-H^{\#} B D^{-1}$

$$
\left.\begin{array}{l}
=-\frac{2}{m_{2}+2} L_{1}^{\#}\left(\begin{array}{cc}
0 & -1_{m_{2}}^{T} \otimes R_{1}
\end{array}\right)\left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right) \\
=\frac{2}{m_{2}+2} L_{1}^{\#}\binom{\frac{1}{2} 1_{m_{2}}^{T} R_{2}^{T} \otimes R_{1}}{\frac{1}{2} 1_{m_{2}}^{T} \otimes R_{1}} \\
=\frac{1}{m_{2}+2} L_{1}^{\#}\left(\begin{array}{l}
\pi^{T} \otimes R_{1}
\end{array} 1_{m_{2}}^{T} \otimes R_{1}\right.
\end{array}\right)
$$

and
$-D^{-1} B^{T} H^{\#}$

$$
\begin{aligned}
& =-\left(\begin{array}{cc}
P & M \\
M^{T} & Q
\end{array}\right)\binom{0}{-1_{m_{2}} \otimes R_{1}^{T}} \frac{1}{m_{2}+2} L_{1}^{\#} \\
& =\frac{1}{m_{2}+2}\binom{\pi \otimes R_{1}^{T}}{1_{m_{2}} \otimes R_{1}^{T}} L_{1}^{\#} .
\end{aligned}
$$

We are ready to compute the $D^{-1} B^{T} H^{\#} B D^{-1}$. Let $W=$ $\pi \otimes R_{1}^{T}, R=1_{m_{2}} \otimes R_{1}^{T}$, then $D^{-1} B^{T} H^{\#} B D^{-1}$

$$
\begin{aligned}
& =\binom{\frac{1}{2 r_{2}} \pi \otimes R_{1}^{T}}{\frac{1}{2}\left(1_{m_{2}} \otimes R_{1}^{T}\right)} \frac{1}{m_{2}+2} L_{1}^{\#}\left(\pi^{T} \otimes R_{1} 1_{m_{2}}^{T} \otimes R_{1}\right) \\
& =\frac{1}{m_{2}+2}\left(\begin{array}{cc}
\frac{1}{2 r_{2}} W L_{1}^{\#} W^{T} & \frac{1}{2 r_{2}} W L_{1}^{\#} R^{T} \\
\frac{1}{2} R L_{1}^{\#} W^{T} & \frac{1}{2} R L_{1}^{\#} R^{T}
\end{array}\right)
\end{aligned}
$$

Based on Lemmas 2.3 and 2.8, the following matrix
$N=$

$$
\left(\begin{array}{ccc}
\frac{2}{m_{2}+2} L_{1}^{\#} & \frac{1}{m_{2}+2} L_{1}^{\#} W & \frac{1}{m_{2}+2} L_{1}^{\#} R^{T} \\
\frac{1}{m_{2}+2} W^{T} & P+\frac{1}{2 r_{2}\left(m_{2}+2\right)} W L_{1}^{\#} W^{T} & M+\frac{1}{2 r_{2}\left(m_{2}+2\right)} W L_{1}^{\#} R^{T} \\
\frac{1}{m_{2}+2} R & M^{T}+\frac{1}{2\left(m_{2}+2\right)} R L_{1}^{\#} W^{T} & Q+\frac{1}{2\left(m_{2}+2\right)} R L_{1}^{\#} R^{T}
\end{array}\right)
$$

is a symmetric $\{1\}$-inverse of $L_{G_{1} \forall G_{2}}$, where $P=\left(\frac{r_{2}}{2} I_{n_{2}}+\right.$ $\left.\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}, Q=r_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}, M=$ $R_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}$. Let the above N be the Equation (4.1).
For any $i, j \in V\left(G_{1}\right)$, by Lemma 2.1 and the Equation (4.1), we have
$r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
& =\frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{j j}-\frac{4}{m_{2}+2}\left(L_{1}^{\#}\right)_{i j} \\
& =\frac{2}{m_{2}+2} r_{i j}\left(G_{1}\right) .
\end{aligned}
$$

For any $i, j \in V\left(G_{2}\right)$, by Lemma 2.1 and the Equation (4.1), we have
$r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
= & \left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i i}+ \\
& \left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{j j} \\
& -2\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{i j} .
\end{aligned}
$$

For any $i \in V\left(G_{1}\right), j \in V\left(G_{2}\right)$, by Lemma 2.1 and the Equation (4.1), we have
$r_{i j}\left(G_{1} \forall G_{2}\right)$

$$
\begin{aligned}
= & \frac{2}{m_{2}+2}\left(L_{1}^{\#}\right)_{i i}+\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)_{j j} \\
& -\frac{4}{m_{2}+2}\left(L_{1}^{\#}\right)_{i j} .
\end{aligned}
$$

By Lemma 2.5, we have
$K f\left(L_{G_{1} \forall G_{2}}\right)$

$$
\begin{array}{rlr}
= & \left(n_{1}+n_{2}+2 m_{1}\right) \operatorname{tr}(N)-1^{T} N 1 & \\
= & \left(n_{1}+n_{2}+2 m_{1}\right)\left(\frac{2}{m_{2}+2} \operatorname{tr}\left(L_{1}^{\#}\right)\right. & \frac{L_{l(1)}}{r_{2}} \\
& +\operatorname{tr}\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right) & \\
& & n_{1}^{2} 1 \\
& +r_{2} \operatorname{tr}\left(\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) & \mathrm{Sim} \\
& +\frac{1}{2 r_{2}\left(m_{2}+2\right)} \operatorname{tr}\left(\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right)\right) & \text { So } \\
& \left.\left.+\frac{1}{2\left(m_{2}+2\right)} \operatorname{tr}\left(\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right)\right)\right)\right)-1^{T} N 1 .
\end{array}
$$

Similarly, $1^{T}\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)^{-1} 1=\frac{2 m_{1} n_{2}}{r_{2}}$, $1^{T}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} 1=\frac{m_{2}}{2 r_{2}}, 1^{T}\left(R_{2}\left(2 r_{2} I_{m_{2}}+\right.\right.$ $\left.\left.L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) 1=1^{T}\left(\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} R_{2}^{T} \otimes I_{m_{1}}\right) 1=$ $\frac{m_{1} m_{2}}{r_{2}}$.
By direct computation, $1^{T}\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right) 1=$ $n_{1}^{2} 1^{T} R_{1}^{T} L_{1}^{\#} R_{1} 1=n_{1}^{2} r_{2}^{2} 1^{T} L_{1}^{\#} 1=0$.
Similarly, $1^{T}\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1=1^{T}\left(1_{m_{2}} \otimes\right.$ $\left.R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right) 1=1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1=0$.

$$
\begin{aligned}
1^{T}\left(G_{1} \forall G_{2}\right) 1 & =\frac{2 m_{1} n_{2}}{r_{2}}+\frac{m_{2}}{2}+\frac{2 m_{1} m_{2}}{r_{2}} \\
& =\frac{4 m_{1} n_{2}+m_{2} r_{2}+4 m_{1} m_{2}}{2 r_{2}}
\end{aligned}
$$

Note that the Laplacian eigenvalues of $\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)$ are $\frac{1}{4} \mu_{1}\left(G_{2}\right)+\frac{r_{2}}{2}, \frac{1}{4} \mu_{2}\left(G_{2}\right)+\frac{r_{2}}{2}, \ldots, \frac{1}{4} \mu_{n_{2}}\left(G_{2}\right)+\frac{r_{2}}{2}$. Then

$$
\begin{aligned}
& \operatorname{tr}\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right)^{-1} \\
& \quad=m_{1} \sum_{i=1}^{n_{2}}\left(\frac{1}{4} \mu_{i}\left(G_{2}\right)+\frac{r_{2}}{2}\right) \\
& \quad=m_{1} \sum_{i=1}^{n_{2}} \underline{1}{ }_{1}\left(G_{0}\right)+\underline{r_{2}} .
\end{aligned}
$$

By Lemma 2.6, then

$$
\begin{gathered}
\operatorname{tr}\left(\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right)= \\
m_{1} \sum_{i=1}^{n_{2}} \frac{1}{2 r_{2}+\mu_{i}\left(G_{2}\right)}+\frac{m_{1}\left(n_{2}-m_{2}\right)}{4 r_{2}} .
\end{gathered}
$$

By direct computation and Lemma 2.7,
$\operatorname{tr}\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right)$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{n_{1}} d_{i}^{2}\right) \operatorname{tr}\left(R_{1}^{T} L_{1}^{\#} R_{1}\right) \\
& =\left(\sum_{i=1}^{n_{1}} d_{i}^{2}\right) \sum_{i<j, i j \in E(G)}\left(L_{i i}^{\#}+L_{j j}^{\#}+2 L_{i j}^{\#}\right) \\
& =\left(\sum_{i=1}^{n_{1}} d_{i}^{2}\right) \sum_{i<j, i j \in E(G)}\left(2 L_{i i}^{\#}+2 L_{j j}^{\#}-r_{i j}\left(G_{1}\right)\right) . \\
& =2\left(\sum_{i=1}^{n_{1}} d_{i}^{2}\right) \operatorname{tr}\left(D_{G_{1}} L_{G_{1}}^{\#}\right)-\left(\sum_{i=1}^{n_{1}} d_{i}^{2}\right)\left(n_{1}-1\right) \\
& =2 n_{1} r_{1}^{3} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-n_{1} r_{1}^{2}\left(n_{1}-1\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr}\left(1_{m_{2}} \otimes\right. & \left.R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) \\
& =m_{2} \operatorname{tr}\left(R_{1}^{T} L_{1}^{\#} R_{1}\right) \\
& =m_{2} \sum_{i<j, i j \in E(G)}\left[L_{i i}^{\#}+L_{j j}^{\#}+2 L_{i j}^{\#}\right] \\
& =m_{2} \operatorname{tr}\left(2 L_{i i}^{\#}+2 L_{j j}^{\#}-r_{i j}\left(G_{1}\right)\right) \\
& =m_{2}\left(\operatorname{tr}\left(D_{G_{1}} L_{G_{1}}^{\#}\right)-\left(n_{1}-1\right)\right) \\
& =m_{2}\left(r_{1} \operatorname{tr}\left(L_{G_{1}}^{\#}\right)-\left(n_{1}-1\right)\right) .
\end{aligned}
$$

Next, we calculate the $1^{T}\left(L_{G_{1} \vee G_{2}}^{(1)}\right)$. Since $L_{G}^{\#} 1=0$, then $1^{T}\left(L_{G_{1} \forall G_{2}}^{(1)}\right) 1$

$$
\begin{aligned}
= & 1^{T}\left(\left(\frac{r_{2}}{2} I_{n_{2}}+\frac{1}{4} L_{2}\right)^{-1} \otimes I_{m_{1}}\right) 1+r_{2} 1^{T}\left(2 r_{2} I_{m_{2}}\right. \\
& \left.+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}} 1 \\
& +1^{T}\left(R_{2}\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)}\right)^{-1} \otimes I_{m_{1}}\right) 1 \\
& +1^{T}\left(\left(2 r_{2} I_{m_{2}}+L_{l\left(G_{2}\right)} R_{2}^{T}\right)^{-1} \otimes I_{m_{1}}\right) 1 \\
& +\frac{1}{2 r_{2}\left(n_{2}+2\right)} 1^{T}\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2 r_{2}\left(n_{2}+2\right)} 1^{T}\left(\pi \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2\left(m_{2}+2\right)} 1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(\pi^{T} \otimes R_{1}\right) 1 \\
& +\frac{1}{2\left(m_{2}+2\right)} 1^{T}\left(1_{m_{2}} \otimes R_{1}^{T}\right) L_{1}^{\#}\left(1_{m_{2}}^{T} \otimes R_{1}\right) 1 .
\end{aligned}
$$

Lemma 2.5 implies that

$$
K f\left(G_{1} \forall G_{2}\right)=\left(n_{1}+n_{2}+2 m_{1}\right) \operatorname{tr}(N)-1^{T} N 1
$$

Then plugging $\operatorname{tr}\left(L_{G_{1} \forall G_{2}}^{(1)}\right)$ and $1^{T}\left(L_{G_{1} \forall G_{2}}^{(1)}\right) 1$ into the equation above, we obtain the required result.

V. Conclusion

In this paper, we give the closed-form formulas for resistance distance and Kirchhoff index of the edge-subdivision-vertex and edge-subdivision-edge corona. This method is a general method. The resistance distance and Kirchhoff index of the the edge-subdivision-vertex corona and edge-subdivisionedge corona can obtain in terms of the resistance distance and Kirchhoff index of the factor graph.

Acknowledgment

The author is very grateful to the anonymous referees for their carefully reading the paper and for constructive comments and suggestions which have improved this paper.

REFERENCES

[1] A. Ben-Israel, T.N.E. Greville, Generalized inverses: theory and applications, 2nd ed.,Springer, New York, 2003.
[2] D.J. Klein, M. Randić, "Resistance distance," J. Math. Chem., vol. 12, pp. 81-95, 1993.
[3] D.J. Klein, "Resistance-distance sum rules," Croat. Chem. Acta., vol. 75, pp. 633-649, 2002.
[4] R.B. Bapat, S. Gupta, "Resistance distance in wheels and fans," Indian J. Pure Appl.Math., vol. 41, pp. 1-13, 2010.
[5] R.B. Bapat, "Resistance matrix of a weighted graph," Match Commun. Math. Comput. Chem., vol. 50, pp. 73-82, 2004.
[6] P.L. Lu, L.Z. Sun, J. Zhou, Y. M. Wei, "Spectra of the edge-subdivisionvertex and edge-subdivision-edge coronae," Journal of Natural Science of Hunan Normal University, vol. 1, pp. 88-94, 2017.
[7] C.J. Bu, B. Yan, X. Q. Zhou, J. Zhou, "Resistance distance in subdivision-vertex join and subdivision-edge join of graphs," Linear Algebra Appl., vol. 458, pp. 454-462, 2014.
[8] X.G. Liu, J. Zhou, C. J. Bu, "Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs," Discrete Appl. Math., vol. 458, pp. 130-139, 2015.
[9] J.D. Cao, J. B. Liu, S.H. Wang, "Resistance distances in corona and neighborhood corona networks based on Laplacian generalized inverse approach," Journal of Algebra and its Applications, 1950053, 2019.
[10] P.L. Lu, L.Y. Xue, "Resistance distance and Kirchhoff index of two corona graphs," Ars Combimatoria, vol. 138, pp. 323-331, 2018.
[11] C.J. Bu, L.Z. Sun, J. Zhou, Y. M. Wei, "A note on block representations of the group inverse of Laplacian matrices," Electron. J. Linear Algebra, vol. 23, pp. 866-876, 2012.
[12] F.Z. Zhang, The Schur Complement and Its Applications, SpringerVerlag, New York, 2005.
[13] H.Y. Cheng, F.J. Zhang, "Resistance distance and the normalized Laplacian spectrum," Discrete Appl. Math., vol. 155, pp. 654-661, 2007.
[14] G. Zhong, M. Yi, J. Huang, "Numerical method for solving fractional convection diffusion equations with time-space variable coefficients," IAENG International Journal of Applied Mathematics, vol. 48, pp. 6266, 2018.
[15] X.G. Liu, J. Zhou, C. J. Bu, "Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs," Discrete Appl. Math., vol. 187, pp. 130-139, 2015.
[16] L.Z. Sun, W.Z. Wang, J. Zhou, C. J. Bu, "Some results on resistance distances and resistance matrices," Linear and Multilinear Algebra, vol. 63, pp. 523-533, 2015.
[17] Q. Liu, "Some results of resistance distance and Kirchhoff index based on R-graph," IAENG International Journal of Applied Mathematics, vol. 46, pp. 346-352, 2016.
[18] P.C. Xie, Z.Z. Zhang, F. Comellas, "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Appl. Math. Cmput, vol. 273, pp. 1123-1129, 2016.
[19] P.C. Xie, Z.Z. Zhang, F. Comellas, "The normalized Laplacian spectrum of subdivisions of a graph," Appl. Math. Cmput, vol. 286, pp. 250-256, 2016.

[^0]: Manuscript received August 18, 2018, revised November 23, 2018. This work was supported by the National Natural Science Foundation of China (Nos. 11461020), the Research Foundation of the Higher Education Institutions of Gansu Province, China (2018A-093), the Science and Technology Plan of Gansu Province (18JR3RG206) and Research and Innovation Fund Project of President of Hexi University (XZZD2018003).
 Q. Liu is with (a) School of Computer Science, Fudan University, Shanghai 200433, China and (b) School of Mathematics and Statistics, Hexi University, Gansu, Zhangye, 734000, P.R. China. Email: liuqun@fudan.edu.cn.

