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Abstract—In this work we first obtain the group inverse
of the edge-subdivision-vertex corona and edge-subdivision-edge
corona in terms of the group inverse of the factor graphs. Then
the resistance distance and Kirchhoff index of these graphs can
be derived from the resistance distance and Kirchhoff index of
the factor graphs.
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subdivision-vertex corona; Edge-subdivision-edge corona

I. INTRODUCTION

LET G = (V (G), E(G)) be a graph with vertex set
V (G) and edge set E(G). Let di be the degree of vertex

i in G and DG = diag(d1, d2, · · · d|V (G)|) the diagonal
matrix with all vertex degrees of G as its diagonal entries.
For a graph G, let AG and BG denote the adjacency matrix
and vertex-edge incidence matrix of G, respectively. The
matrix LG = DG − AG is called the Laplacian matrix of
G, where DG is the diagonal matrix of vertex degrees of
G. We use µ1(G) ≥ u2(G) ≥ · · · ≥ µn(G) = 0 to denote
the eigenvalues of LG. The {1}-inverse of M is a matrix X
such that MXM = M . If M is singular, then it has infinite
{1}-inverse [1]. We use M (1) to denote any {1}-inverse of
a matrix M , and let (M)uv denote the (u, v)-entry of M .

Klein and Randić[2] introduced a new distance function
named resistance distance on the basis of electrical network
theory. The resistance distance between any two vertices u
and v in G is defined to be the effective resistance between
them when unit resistors are placed on every edge of G.
The Kirchhoff index of G is the sum of resistance distances
between all pairs of vertices of G. Let ruv(G) denote the
resistance distance between u and v in G and Kf(G) denote
the Kirchhoff index of G. The resistance distance and the
Kirchhoff index have attracted extensive attention due to
its wide applications in physics, chemistry and others. Up
till now, many results on the resistance distance and the
Kirchhoff index are obtained. See ([4], [5], [7]), [13]-[19])
and the references therein to know more.

The computation of resistance distance and Kirchhoff
index is a hot topic in mathematics, computer science and
so on. However, the computation of the effective resistances
is difficult, as they are highly sensitive to small perturbations
on the network, so this has prompted researchers try to
find some techniques to compute the resistance distance
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and Kirchhoff index of a given graph and obtained its
closed formula. The subdivision graph S(G) of a graph
G is the graph obtained by inserting a new vertex into
every edge of G. The set of such new vertices is denoted
by I(G). In [6], a new graph operation: edge-subdivision-
vertex and edge-subdivision-edge corona are introduced, and
their A-spectra(resp., L-spectra) are investigated. This paper
considers the resistance distance and Kirchhoff index of the
graph operations below, which come from [6].

Definition 1 [6] The edge-subdivision-vertex corona of
two vertex-disjoint graphs G1 and G2, denoted by G1 ∨G2,
is the graph obtained from G1 and |E(G1)| copies of S(G2)
with each edge of G1 corresponding to one copy of S(G2)
and all vertex-disjoint, by joining end-vertex of the ith edge
of E(G1) to each vertex of V (G2) in the ith copy of S(G2).

Definition 2 [6] The edge-subdivision-edge corona of
two vertex-disjoint graphs G1 and G2, denoted by G1∀G2,
is the graph obtained from G1 and |E(G1)| copies of S(G2)
with each edge of G1 corresponding to one copy of S(G2)
and all vertex-disjoint, by joining end-vertex of the ith edge
of E(G1) to each vertex of I(G2) in the ith copy of S(G2).

Bu et al. investigated resistance distance in subdivision-
vertex join and subdivision-edge join of graphs [7]. Liu
et al. [8] gave the resistance distance and Kirchhoff index
of R-vertex join and R-edge join of two graphs. Liu et
al. [9] gave the resistance distance and Kirchhoff index of
corona and neighborhood corona of two graphs. Lu et al.
[10] computed the resistance distance and Kirchhoff index
of two corona graphs. Motivated by the results, in this
paper, we further explore the generalized inverse of the edge-
subdivision-vertex corona and edge-subdivision-edge corona
in terms of the generalized inverse of the factor graphs. Thus
the effective resistances and Kirchhoff index of the edge-
subdivision-vertex corona and edge-subdivision-edge corona
can be derived from the resistance distance and Kirchhoff
index of the factor graphs.

II. PRELIMINARIES

For a square matrix M , the group inverse of M , denoted
by M#, is the unique matrix X such that MXM = M ,
XMX = X and MX = XM . It is known that M# exists
if and only if rank(M) = rank(M2) ([1],[11]). If M is real
symmetric, then M# exists and M# is a symmetric {1}-
inverse of M . Actually, M# is equal to the Moore-Penrose
inverse of M since M is symmetric [11]. It is known that
resistance distances in a connected graph G can be obtained
from any {1}-inverse of G ([4]).

Lemma 2.1 ([11]) Let G be a connected graph. Then

ruv(G) = (L
(1)
G )uu + (L

(1)
G )vv − (L

(1)
G )uv − (L

(1)
G )vu

= (L#
G)uu + (L#

G)vv − 2(L#
G)uv.
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Let 1n denote the column vector of dimension n with all the
entries equal one. We will often use 1 to denote an all-one
column vector if the dimension can be read from the context.

Lemma 2.2 ([7]) For any graph, we have L#
G1 = 0.

Lemma 2.3 ([12]) Let

M =

(
A B
C D

)
be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
=

(
(A−BD−1C)−1 −A−1BS−1
−S−1CA−1 S−1

)
,

where S = D − CA−1B.

For a square matrix M , let tr(M) denote the trace of M .

Lemma 2.5 ([16]) Let G be a connected graph on n vertices.
Then

Kf(G) = ntr(L
(1)
G )− 1TL

(1)
G 1 = ntr(L#

G).

Lemma 2.6 ([15]) Let G be an r-regular graph with n ver-
tices and m edges, µG(x) denote the Laplacian characteristic
polynomial of G, l(G) be the line graph of G. Then

µl(G)(x) = (x− 2r)m−nµG(x).

Lemma 2.7([3]) Let G be a connected graph of order n
with edge set E. Then∑

u<v,uv∈E
ruv(G) = n− 1.

For a vertex i of a graph G, let T (i) denote the set of all
neighbors of i in G.

Lemma 2.8 ([17]) Let

L =

(
A B
BT D

)
be the Laplacian matrix of a connected graph. If D is
nonsingular, then

X =

(
H# −H#BD−1

−D−1BTH# D−1 +D−1BTH#BD−1

)
is a symmetric {1}-inverse of L, where H = A−BD−1BT .

III. RESISTANCE DISTANCE AND KIRCHHOFF INDEX OF
EDGE-SUBDIVISION-VERTEX CORONA FOR GRAPHS

In this section, we focus on determing the resistance dis-
tance and Kirchhoff index of edge-subdivision-vertex corona
whenever G1 is an r1-regular graph.
Theorem 3.1 Let G1 be an r1-regular graph with n1 vertices
and m1 edges and G2 an r2-regular graphs on n2 vertices and
m2 edges. Then G = G1 ∨ G2 have the resistance distance
and Kirchhoff index
(i) For any i, j ∈ V (G1), we have

rij(G) =
2

n2 + 2

(
L#
1

)
ii

+
2

n2 + 2

(
L#
1

)
jj

− 4

n2 + 2

(
L#
1

)
ij

=
2

n2 + 2
rij (G1) .

(ii) For any i, j ∈ V (G2), we have

rij(G) =

(
(2In2 +

1

2
L2)−1 ⊗ Im1

)
ii

+

(
(2In2 +

1

2
L2)−1

⊗Im1
)jj − 2

(
(2In2

+
1

2
L2)−1 ⊗ Im1

)
ij

.

(iii) For any i ∈ V (G1), j ∈ V (G2), we have

rij(G) =
2

n2 + 2

(
L#
1

)
ii

+

(
(2In2 +

1

2
L2)−1

⊗Im1
)jj −

4

n2 + 2

(
L#
1

)
ij
.

(iv) Kf(LG)

= (n1 + n2 + 2m1)

(
2 + r1(n2 +m2)

n1(n2 + 2)
Kf(G1)

+m1

n2∑
i=1

1
1
2µi(G2) + 2

+ (r2 + 2)m1

n1∑
i=1

1

4 + µi(G2)

+
m1(r2 + 2)(n2 −m2)

4 + 2r2
− (n1 − 1)(n2 +m2)

2(n2 + 2)

)
−6m1m2 +m2(r2 + 2)

4
,

where µi(G2) is the Laplacian eigenvalues of G2.

Proof Let Ri(i = 1, 2) be the incidence matrix of Gi. Then
with a proper labeling of vertices, the Laplacian matrix of
G1 ∨G2 can be written as

L(G1 ∨G2)

=

 L1 + r1n2In1
−1Tn2

⊗R1 0n1×m1m2

−1n2 ⊗RT1 (2 + r2)In2 ⊗ Im1 −R2 ⊗ Im1

0m1m2×n1
−RT2 ⊗ Im1

2Im1m2

 .

Let A = L1 + r1n2In1
, B =

(
−1Tn2

⊗R1 0n1×m1m2

)
,

BT =

(
−1n2

⊗RT1
0m1m2×n1

)
, and

D =

(
(2 + r2)In2 ⊗ Im1 −R2 ⊗ Im1

−RT2 ⊗ Im1
2Im1m2

)
.

First we compute the D−1. By Lemma 2.3, we have
A1 −B1D

−1
1 C1

= (2 + r2)In2
⊗ Im1

− 1
2 (R2 ⊗ Im1

)(RT2 ⊗ Im1
)

= [(2 + r2)In2
− 1

2 (r2In2
+A(G2))]⊗ Im1

= (2In2
+ 1

2L2)⊗ Im1
,

so (A1 −B1D
−1
1 C1)−1 = (2In2

+ 1
2L2)−1 ⊗ Im1

.

By Lemma 2.3, we have

S = (D1 − C1A
−1
1 B1)

= 2Im1m2
− 1

r2+2 (RT2 ⊗ Im1
)(In2

⊗ Im1
)(R2 ⊗ Im1

)

= 2Im1m2
− 1

r2+2 (RT2 R2 ⊗ Im1
)

= (2Im1m2 − 1
r2+2 (2Im2 +A(l(G2)))⊗ Im1

= 1
r2+2 (4Im2

+ Ll(G2))⊗ Im1
.

So S−1 = (r2 + 2)(4Im2
+ Ll(G2))

−1 ⊗ Im1
.

By Lemma 2.3, we have
−A−11 B1S

−1

= − 1
r2+2 (In2

⊗ Im1
)(−R2 ⊗ Im1

)(r2 + 2)

((4Im2
+ Ll(G2))

−1 ⊗ Im1
)

= R2(4Im2 + Ll(G2))
−1 ⊗ Im1 .

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_17

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



Similarly, −S−1C1A
−1
1 = (4Im2 + Ll(G2))

−1RT2 ⊗ Im1 .

Let V = (2In2
+ 1

2L2)−1 ⊗ Im1
, T = (r2 + 2)(4Im2

+
Ll(G2))

−1 ⊗ Im1
, M = R2(4Im2

+ Ll(G2))
−1 ⊗ Im1

.

So

D−1 =

(
V M
MT T

)
.

Now we are ready to calculate H .
Let P = (2In2 + 1

2L2)−1 ⊗ Im1 , Q = (r2 + 2)(4Im2 +
Ll(G2))

−1 ⊗ Im1
, M = R2(4Im2

+ Ll(G2))
−1 ⊗ Im1

, then

H = L1 + r1n2In1 −
(
−1Tn2

⊗R1 0
)(

V M
MT T

)(
−1n2

⊗RT1
0

)
= L1 + r1n2In1

− n2

2 R1R
T
1 = n2+2

2 L1,

,

By Lemma 2.8, we have H# = 2
n2+2L

#
1 .

Next according to Lemma 2.8, we calculate −H#BD−1 and
−D−1BTH#.
−H#BD−1

= − 2
n2+2L

#
1

(
−1Tn2

⊗R1 0

)(
P M
MT Q

)

= 2
n2+2L

#
1

(
1
21Tn2

⊗R1 1Tn2
M

)
.

Note that 1Tn2
R2 = 2 · 1Tm2

, then 1Tn2
R2(4Im2

+Ll(G2))
−1⊗

R1 = 2 · 1Tm2
(4Im2 + Ll(G2))

−1 ⊗R1 = 1
21Tm2

⊗R1, so

−H#BD−1 = 1
n2+2L

#
1

(
1Tn2
⊗R1 1Tm2

⊗R1

)
and
−D−1BTH#

= −
(

P M
MT Q

)(
−1n2

⊗RT1
0

)
1

n2+2L
#
1

= 1
n2+2

(
1n2 ⊗RT1
1m2
⊗RT1

)
L#
1 .

We are ready to compute the D−1BTH#BD−1.
Let 1n2

⊗RT1 = H , K = 1Tm2
⊗R1, then

D−1BTH#BD−1

=

(
1
2H
1
2K

T

)
1

n2+2L
#
1

(
HT K

)
= 1

2(n2+2)

(
HL#

1 H
T HL#

1 K

KTL#
1 H

T KTL#
1 K

)
.

Let 1n2 ⊗RT1 = H , K = 1Tm2
⊗R1, then based on Lemma

2.3 and 2.7, the following matrix
N =(

2
n2+2

L
#
1

1
n2+2

L
#
1 HT 1

n2+2
L
#
1 K

1
n2+2

HL
#
1 P + 1

2(n2+2)
HL

#
1 HT M + 1

2(n2+2)
HL

#
1 K

1
n2+2

KT L
#
1 MT + 1

2(n2+2)
KT L

#
1 HT Q + 1

2(n2+2)
KT L

#
1 HT

)
is a symmetric {1}-inverse of LG1∨G2

, where P = (2In2
+

1
2L2)−1 ⊗ Im1

, Q = (r2 + 2)(4Im2
+ Ll(G2))

−1 ⊗ Im1
,

M = R2(4Im2
+Ll(G2))

−1⊗Im1
. Let N be Equation (3.1).

For any i, j ∈ V (G1), by Lemma 2.1 and the Equation (3.1),
we have

rij(G1 ∨G2)

=
2

n2 + 2

(
L#
1

)
ii

+
2

n2 + 2

(
L#
1

)
jj

− 4

n2 + 2

(
L#
1

)
ij

=
2

n2 + 2
rij (G1) .

For any i, j ∈ V (G2), by Lemma 2.1 and the Equation (3.1),
we have
rij(G1 ∨G2)

=

(
(2In2 +

1

2
L2)−1 ⊗ Im1

)
ii

+

(
(2In2 +

1

2
L2)−1

⊗Im1
)jj − 2

(
(2In2

+
1

2
L2)−1 ⊗ Im1

)
ij

.

For any i ∈ V (G1), j ∈ V (G2), by Lemma 2.1 and the
Equation (3.1), we have
rij(G1 ∨G2)

=
2

n2 + 2

(
L#
1

)
ii

+

(
(2In2 +

1

2
L2)−1 ⊗ Im1

)
jj

− 4

n2 + 2

(
L#
1

)
ij
.

By Lemma 2.5, we have
Kf(LG1∨G2

)

= (n1 + n2 + 2m1)tr(N)− 1TN1

= (n1 + n2 + 2m1)

(
2

n2 + 2
tr
(
L#
1

)
+tr

(
(2In2

+
1

2
L2)−1 ⊗ Im1

)
+(r2 + 2)tr

(
(4Im2 + Ll(G2))

−1 ⊗ Im1

)
+

1

2(n2 + 2)
tr
(

(1n2
⊗RT1 )L#

1 (1Tn2
⊗R1)

)
+

1

2(n2 + 2)
tr
(

(1m2
⊗RT1 )L#

1 (1Tm2
⊗R1)

))
− 1TN1.

Note that the eigenvalues of (2In2
+ 1

2L2) are 1
2µ1(G2) +

2, 12µ2(G2) + 2, ..., 12µn2(G2) + 2. Then

tr((2In2
+ 1

2L2)−1 ⊗ Im1
)−1 = m1

∑n2

i=1( 1
2µi(G2) + 2)−1

= m1

∑n2

i=1
1

1
2µi(G2)+2

.

By Lemma 2.6, then

tr((4Im2
+ Ll(G2))

−1 ⊗ Im1
) = m1

∑n1

i=1
1

4+µi(G2)
+

m1(n2−m2)
4+2r2

.

By Lemma 2.7, we have
tr
(

(1n2 ⊗RT1 )L#
1 (1Tn2

⊗R1)
)

= n2tr
(
RT1 L

#
1 R1

)
= n2

∑
i<j,ij∈E(G)

(
L#
ii + L#

jj + 2L#
ij

)
= n2

∑
i<j,ij∈E(G)

(
2L#

ii + 2L#
jj − rij(G1)

)
= 2n2r1tr(L

#
G1

)− n2(n1 − 1).

Similarly,

tr
(

(1m2 ⊗RT1 )L#
1 (1Tm2

⊗R1)
)

= 2m2r1tr(L
#
G1

)−m2(n1 − 1) .

So
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Kf(LG1∨G2)

= (n1 + n2 + 2m1)tr(N)− 1TN1

= (n1 + n2 + 2m1)

(
2

n1(n2 + 2)
Kf(G1)

+m1

n2∑
i=1

1
1
2µi(G2) + 2

+(r2 + 2)tr
(
(4Im2

+ Ll(G2))
−1 ⊗ Im1

)
+

1

2(n2 + 2)
tr
(

(1n2
⊗RT1 )L#

1 (1Tn2
⊗R1)

)
+

1

2(n2 + 2)
tr
(

(1m2 ⊗RT1 )L#
1 (1Tm2

⊗R1)
))

−1TN1

= (n1 + n2 + 2m1)

(
2

n1(n2 + 2)
Kf(G1)

+m1

n2∑
i=1

1
1
2µi(G2) + 2

+(r2 + 2)

(
m1

n1∑
i=1

1

4 + µi(G2)
) +

m1(n2 −m2)

4 + 2r2

)

+
1

2(n2 + 2)

(
2n2r1tr(L

#
G1

)− n2(n1 − 1)

)
+

1

2(n2 + 2)

(
2m2r1tr(L

#
G1

)−m2(n1 − 1)
))

−1TN1.

Next, we calculate the 1T (L
(1)
G1∨G2

)1. Since L#
G1 = 0, then

1T (L
(1)
G1∨G2

)1

= 1T ((2In2 +
1

2
L2)−1 ⊗ Im1)1 + 1T ((r2 + 2)

(4Im2
+ Ll(G2))

−1 ⊗ Im1
)1

+1T (R2(4Im2
+ Ll(G2))

−1 ⊗ Im1
)1

+1T ((4Im2
+ Ll(G2))

−1RT2 ⊗ Im1
)1

+
1

2(n2 + 2)
1T (1n2 ⊗RT1 )L#

1 (1Tn2
⊗R1)1

+
1

2(n2 + 2)
1T (1n2

⊗RT1 )L#
1 (1Tm2

⊗R1)1

+
1

2(n2 + 2)
1T (1m2 ⊗RT1 )L#

1 (1Tn2
⊗R1)1

+
1

2(n2 + 2)
1T (1m2

⊗RT1 )L#
1 (1Tm2

⊗R1)1.

Let T = 1Tm1n2
((2In2 + 1

2L2)−1⊗Im1)1m1n2 , F = ((2In2 +
1
2L2)⊗ Im1

), then

T =
(

1Tn2
1Tn2

· · · 1Tn2

)
F−1

F−1

. . .
F−1




1n2

1n2

· · ·
1n2


= m11Tn2

(2In2 + 1
2L2)−11n2 = m1n2

2 .

Similarly,
1T (4Im2

+ Ll(G2))
−11 = m2

4 , 1T (R2(4Im2
+ Ll(G2))

−1 ⊗
Im1

)1 = 1T ((4Im2
+ Ll(G2))

−1RT2 ⊗ Im1
)1 = m1m2

2 .

By direct computation,

1T (1n2⊗RT1 )L#
1 (1Tn2

⊗R1)1 = n22π
TL#

1 π = n22r
2
11TL#

1 1 =

0, 1T (1m2
⊗RT1 )L#

1 (1Tm2
⊗R1)1 = m2

2π
TL#

1 π = 0,

1T (1n2
⊗ RT1 )L#

1 (1Tm2
⊗ R1)1 = 1T (1m2

⊗ RT1 )L#
1 (1Tn2

⊗
R1)1 = n2m2π

TL#
1 π = 0.

So

1T (L
(1)
G1∨G2

)1 =
m1m2

2
+
m2(r2 + 2)

4
+m1m2

=
6m1m2 +m2(r2 + 2)

4
.

Lemma 2.5 implies that

Kf(G) = (n1 + n2 + 2m1)tr(N)− 1TN1.

Then plugging tr(L(1)
G1∨G2

) and 1T (L
(1)
G1∨G2

)1 into the equa-
tion above, we obtain the required result.

IV. RESISTANCE DISTANCE AND KIRCHHOFF INDEX OF
EDGE-SUBDIVISION-EDGE CORONA FOR GRAPHS

In this section, we focus on determing the resistance dis-
tance and Kirchhoff index of edge-subdivision-edge corona
whenever G1 is an r1-regular graph.
Theorem 4.1 Let G1 be an r1-regular graph with n1 vertices
and m1 edges and G2 an r2-regular graphs with n2 vertices
and m2 edges. Then G1∀G2 have the resistance distance and
Kirchhoff index
(i) For any i, j ∈ V (G1), we have
rij(G1∀G2)

=
2

m2 + 2
(L#

1 )ii +
2

m2 + 2
(L#

1 )jj −
4

m2 + 2
(L#

1 )ij

=
2

m2 + 2
rij(G1).

(ii) For any i, j ∈ V (G2), we have
rij(G1∀G2)

= (In1 ⊗ (LG2 + In2)−1)ii + (In1 ⊗ (LG2 + In2)−1)jj

−2(In1 ⊗ (LG2 + In2)−1)ij .

(iii) For any i ∈ V (G1), j ∈ V (G2), we have
rij(G1∀G2)

=
2

m2 + 2

(
L#
1

)
ii

+
(
In1 ⊗ (LG2 + In2)−1

)
jj

− 4

m2 + 2

(
L#
1

)
ij
.

(iv) Kf(G1∀G2)

= (n1 + n2 + 2m1)

(
4r2 + 2n1r

3
1 +m1r2

2n1r2(m2 + 2)
Kf(G1)

+m1

n2∑
i=1

1
1
4µi(G2) + r2

2

+ r2m1

n2∑
i=1

1

2r2 + µi(G2)

+
m1(n2 −m2)

4
− (n1 − 1)(n1r

2
1 +m2r2)

2r2(m2 + 2)

)
−4m1n2 +m2r2 + 4m1m2

2r2
.

Proof Let Ri(i = 1, 2) be the incidence matrix of Gi. Then
with a proper labeling of vertices, the Laplacian matrix of
G1∀G2 can be written as
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L(G1∀G2) = L1 + r1m2In1
0n1×m1n2

−1Tm2
⊗R1

0m1n2×n1
r2In2

⊗ Im1
−R2 ⊗ Im1

−1m2 ⊗RT1 −RT2 ⊗ Im1
4Im1m2

 .

Let A = L1 + r1m1In1
, B =

(
0n1×m1n2 −1Tm2

⊗R1

)
,

BT =

(
0m1n2×n1

−1m2
⊗RT1

)
and

D =

(
r2In2

⊗ Im1
−R2 ⊗ Im1

−RT2 ⊗ Im1 4Im1m2

)
.

First we compute the D−1. By Lemma 2.3, we have
A1 −B1D

−1
1 C1

= r2In2
⊗ Im1

− 1
4 (R2 ⊗ Im1

)(RT2 ⊗ Im1
)

= (r2In2 − 1
4 (r2In2 +A(G2)))⊗ Im1

= ( r22 In2
+ 1

4L2)⊗ Im1
,

so (A1 −B1D
−1
1 C1)−1 = ( r22 In2 + 1

4L2)−1 ⊗ Im1 .
By Lemma 2.3, we have

S = D1 − C1A
−1
1 B1

= 4Im1m2
− 1

r2
(RT2 ⊗ Im1

)(In2
⊗ Im1

)(R2 ⊗ Im1
)

= 4Im1m2 − 1
r2

(RT2 R2 ⊗ Im1)

= 4Im1m2
− 1

r2
((2Im2

+A(l(G2))⊗ Im1
)

= 1
r2

(2r2Im2
+ Ll(G2))⊗ Im1

,

so S−1 = r2(2r2Im2
+ Ll(G2))

−1 ⊗ Im1
.

By Lemma 2.3, we have

−A−11 B1S
−1 = − 1

r2
(In2
⊗ Im1

)(−R2 ⊗ Im1
)

r2((2r2Im2
+ Ll(G2))

−1 ⊗ Im1
)

= R2(2r2Im2 + Ll(G2))
−1 ⊗ Im1 .

Similarly, −S−1C1A
−1
1 = (2r2Im2

+ Ll(G2))
−1RT2 ⊗ Im1

.

Let P = ( r22 In2 + 1
4L2)−1 ⊗ Im1 , Q = r2(2r2Im2 +

Ll(G2))
−1⊗ Im1

, M = R2(2r2Im2
+Ll(G2))

−1⊗ Im1
, then

D−1 =

(
P M
MT Q

)
.

Now we are ready to calculate H .

H = L1 + r1m2In1
−
(

0n1×m1n2 −1Tm2
⊗R1

)(
P M
MT Q

)(
0m1n2×n1

−1m2 ⊗RT1

)
= L1 + r1m2In1

− m2

2 R1R
T
1 = m2+2

2 L1.

By Lemma 2.8, we have H# = 2
m2+2L

#
1 .

Next according to Lemma 2.8, we calculate −H#BD−1 and
−D−1BTH#.
Note that R(G)1 = π, where π = (d1, d2, ..., dn)T , then
−H#BD−1

= − 2
m2+2L

#
1

(
0 −1Tm2

⊗R1

)(
P M
MT Q

)

= 2
m2+2L

#
1

(
1
21Tm2

RT2 ⊗R1
1
21Tm2

⊗R1

)

= 1
m2+2L

#
1

(
πT ⊗R1 1Tm2

⊗R1

)
and

−D−1BTH#

= −
(

P M
MT Q

)(
0

−1m2
⊗RT1

)
1

m2+2L
#
1

= 1
m2+2

(
π ⊗RT1

1m2
⊗RT1

)
L#
1 .

We are ready to compute the D−1BTH#BD−1. Let W =
π ⊗RT1 , R = 1m2

⊗RT1 , then
D−1BTH#BD−1

=

(
1

2r2
π ⊗RT1

1
2 (1m2

⊗RT1 )

)
1

m2+2L
#
1

(
πT ⊗R1 1Tm2

⊗R1

)
= 1

m2+2

(
1

2r2
WL#

1 W
T 1

2r2
WL#

1 R
T

1
2RL

#
1 W

T 1
2RL

#
1 R

T

)
.

Based on Lemmas 2.3 and 2.8, the following matrix
N =(

2
m2+2

L
#
1

1
m2+2

L
#
1 W 1

m2+2
L
#
1 RT

1
m2+2

WT P + 1
2r2(m2+2)

WL
#
1 WT M + 1

2r2(m2+2)
WL

#
1 RT

1
m2+2

R MT + 1
2(m2+2)

RL
#
1 WT Q + 1

2(m2+2)
RL

#
1 RT

)

is a symmetric {1}-inverse of LG1∀G2 , where P = ( r22 In2 +
1
4L2)−1 ⊗ Im1

, Q = r2(2r2Im2
+ Ll(G2))

−1 ⊗ Im1
, M =

R2(2r2Im2
+ Ll(G2))

−1 ⊗ Im1
. Let the above N be the

Equation (4.1).
For any i, j ∈ V (G1), by Lemma 2.1 and the Equation (4.1),
we have
rij(G1∀G2)

=
2

m2 + 2
(L#

1 )ii +
2

m2 + 2
(L#

1 )jj −
4

m2 + 2
(L#

1 )ij

=
2

m2 + 2
rij(G1).

For any i, j ∈ V (G2), by Lemma 2.1 and the Equation (4.1),
we have
rij(G1∀G2)

=

(
(
r2
2
In2

+
1

4
L2)−1 ⊗ Im1

)
ii

+(
(
r2
2
In2

+
1

4
L2)−1 ⊗ Im1

)
jj

−2

(
(
r2
2
In2

+
1

4
L2)−1 ⊗ Im1

)
ij

.

For any i ∈ V (G1), j ∈ V (G2), by Lemma 2.1 and the
Equation (4.1), we have
rij(G1∀G2)

=
2

m2 + 2

(
L#
1

)
ii

+

(
(
r2
2
In2 +

1

4
L2)−1 ⊗ Im1

)
jj

− 4

m2 + 2

(
L#
1

)
ij
.

By Lemma 2.5, we have
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Kf(LG1∀G2)

= (n1 + n2 + 2m1)tr(N)− 1TN1

= (n1 + n2 + 2m1)

(
2

m2 + 2
tr(L#

1 )

+tr

(
(
r2
2
In2

+
1

4
L2)−1 ⊗ Im1

)
+ r2tr

(
(2r2Im2

+ Ll(G2))
−1 ⊗ Im1

)
+

1

2r2(m2 + 2)
tr
(

(π ⊗RT1 )L#
1 (πT ⊗R1)

)
+

1

2(m2 + 2)
tr
(

(1m2 ⊗RT1 )L#
1 (1Tm2

⊗R1))
))
− 1TN1.

Note that the Laplacian eigenvalues of ( r22 In2
+ 1

4L2) are
1
4µ1(G2) + r2

2 ,
1
4µ2(G2) + r2

2 , ...,
1
4µn2

(G2) + r2
2 .

Then
tr(( r22 In2

+ 1
4L2)−1 ⊗ Im1

)−1

= m1

∑n2

i=1( 1
4µi(G2) + r2

2 )
= m1

∑n2

i=1
1

1
4µi(G2)+

r2
2

.

By Lemma 2.6, then

tr((2r2Im2
+ Ll(G2))

−1 ⊗ Im1
) =

m1

∑n2

i=1
1

2r2+µi(G2)
+ m1(n2−m2)

4r2
. .

By direct computation and Lemma 2.7,
tr(π ⊗RT1 )L#

1 (πT ⊗R1)

= (
∑n1

i=1 d
2
i )tr(R

T
1 L

#
1 R1)

= (
∑n1

i=1 d
2
i )
∑
i<j,ij∈E(G)

(
L#
ii + L#

jj + 2L#
ij

)
= (

∑n1

i=1 d
2
i )
∑
i<j,ij∈E(G)

(
2L#

ii + 2L#
jj − rij(G1)

)
= 2(

∑n1

i=1 d
2
i )tr(DG1

L#
G1

)− (
∑n1

i=1 d
2
i )(n1 − 1)

= 2n1r
3
1tr(L

#
G1

)− n1r21(n1 − 1),

.

and

tr(1m2
⊗RT1 )L#

1 (1Tm2
⊗R1)

= m2tr(R
T
1 L

#
1 R1)

= m2

∑
i<j,ij∈E(G)

[
L#
ii + L#

jj + 2L#
ij

]
= m2tr(2L

#
ii + 2L#

jj − rij(G1))

= m2(tr(DG1L
#
G1

)− (n1 − 1))

= m2(r1tr(L
#
G1

)− (n1 − 1)).

.

Next, we calculate the 1T (L
(1)
G1∨G2

)1. Since L#
G1 = 0, then

1T (L
(1)
G1∀G2

)1

= 1T ((
r2
2
In2

+
1

4
L2)−1 ⊗ Im1

)1 + r21T (2r2Im2

+Ll(G2))
−1 ⊗ Im11

+1T (R2(2r2Im2 + Ll(G2))
−1 ⊗ Im1)1

+1T ((2r2Im2
+ Ll(G2)R

T
2 )−1 ⊗ Im1

)1

+
1

2r2(n2 + 2)
1T (π ⊗RT1 )L#

1 (πT ⊗R1)1

+
1

2r2(n2 + 2)
1T (π ⊗RT1 )L#

1 (1Tm2
⊗R1)1

+
1

2(m2 + 2)
1T (1m2

⊗RT1 )L#
1 (πT ⊗R1)1

+
1

2(m2 + 2)
1T (1m2 ⊗RT1 )L#

1 (1Tm2
⊗R1)1.

Similarly, 1T (( r22 In2 + 1
4L2)−1 ⊗ Im1)−11 = 2m1n2

r2
,

1T (2r2Im2
+ Ll(G2))

−11 = m2

2r2
, 1T (R2(2r2Im2

+

Ll(G2))
−1⊗Im1

)1 = 1T ((2r2Im2
+Ll(G2))

−1RT2 ⊗Im1
)1 =

m1m2

r2
.

By direct computation, 1T (π ⊗ RT1 )L#
1 (πT ⊗ R1)1 =

n211TRT1 L
#
1 R11 = n21r

2
21TL#

1 1 = 0.
Similarly, 1T (π ⊗ RT1 )L#

1 (1Tm2
⊗ R1)1 = 1T (1m2 ⊗

RT1 )L#
1 (πT ⊗R1)1 = 1T (1m2

⊗RT1 )L#
1 (1Tm2

⊗R1)1 = 0.

So

1T (G1∀G2)1 =
2m1n2
r2

+
m2

2
+

2m1m2

r2

=
4m1n2 +m2r2 + 4m1m2

2r2
.

Lemma 2.5 implies that

Kf(G1∀G2) = (n1 + n2 + 2m1)tr(N)− 1TN1.

Then plugging tr(L(1)
G1∀G2

) and 1T (L
(1)
G1∀G2

)1 into the equa-
tion above, we obtain the required result.

V. CONCLUSION

In this paper, we give the closed-form formulas for resistance
distance and Kirchhoff index of the edge-subdivision-vertex
and edge-subdivision-edge corona. This method is a general
method. The resistance distance and Kirchhoff index of
the the edge-subdivision-vertex corona and edge-subdivision-
edge corona can obtain in terms of the resistance distance and
Kirchhoff index of the factor graph.
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