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Abstract—By using some new analytical techniques and
Mawhin’s continuous theorem of coincidence degree theory,
some new sufficient conditions for the existence of positive
almost periodic solutions to a class of predator-prey system
with general functional response and time delays are estab-
lished. Secondly, by using the comparison theorem, we give
a permanence result for the model. By using the Lyapunov
method of differential equations, sufficient conditions which
guarantee uniform asymptotical stability of the model are
obtained. Finally, two examples and simulations are given to
illustrate the main result of this paper.

Index Terms—Almost periodic oscillation; Coincidence de-
gree; Predator-prey; Functional response.

I. INTRODUCTION

IT is well-known that the theoretical study of predator-
prey systems in mathematical ecology has a long history

starting with the pioneering work of Lotka and Volterra [1-
2]. The principles of Lotka-Volterra model, conservation of
mass and decomposition of the rates of change in birth and
death processes, have remained valid until today and many
theoretical ecologists adhere to these principles. This general
approach has been applied to many biological systems in
particular with functional response. In population dynamics,
a functional response of the predator to the prey density
refers to the change in the density of prey attached per
unit time per predator as the prey density changes. During
the last ten years, there has been extensively investigation
on the dynamics of predator-prey models with the differ-
ent functional responses in the literature, (see [1-15] and
references therein). In particular, the existence of positive
periodic solutions of the predator-prey system with some
monotone or non-monotone functional responses has been
studied extensively in the literature.

In [7], Wang and Li considered the following system with
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Holling III type functional response:

Ṅ1(t) = N1(t)

[
b1(t)− a1(t)N1(t− µ1(t))

−α1(t)N1(t)
1+mN2

1 (t)
N2(t− ν(t))

]
,

Ṅ2(t) = N2(t)

[
− b2(t)− a2(t)N2(t)

+
α2(t)N2

1 (t−µ3(t))

1+mN2
1 (t−µ3(t))

]
.

(1.1)

Xu et al. [9] studied the following system with Holling II
type functional response:

Ṅ1(t) = N1(t)

[
b1(t)− a1(t)N1(t− µ1(t))

−α1(t)N1(t)
1+mN1(t)N2(t)

]
,

Ṅ2(t) = N2(t)

[
− b2(t)− a2(t)N2(t− µ2(t))

+α2(t)N1(t−µ3(t))
1+mN1(t−µ3(t))

]
.

(1.2)

By using Mawhin’s continuation theorem of coincidence
degree theory, the authors [7, 9] obtained sufficient conditions
which guarantee the existence of positive periodic solution
of systems (1.1)-(1.2).

However, in real world phenomenon, if the various con-
stituent components of the temporally nonuniform environ-
ment is with incommensurable (nonintegral multiples, see
Example 1) periods, then one has to consider the environ-
ment to be almost periodic [10] since there is no a priori
reason to expect the existence of periodic solutions. Hence,
if we consider the effects of the environmental factors, almost
periodicity is sometimes more realistic and more general than
periodicity.

Example 1. Let us consider the following simple population
model:

Ṅ(t) = N(t)
[
| sin(

√
2t)| − | sin(

√
3t)|N(t)

]
. (1.3)

In Eq. (1.3), | sin(
√

2t)| is
√

2π
2 -periodic function and

| sin(
√

3t)| is
√

3π
3 -periodic function, which imply that E-

q. (1.3) is with incommensurable periods. Then there is no
a priori reason to expect the existence of positive periodic
solutions of Eq. (1.3). Thus, it is significant to study the
existence of positive almost periodic solutions of Eq. (1.3).

In view of this, now we consider the following almost pe-
riodic predator-prey system with general functional response
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and time delays:

Ṅ1(t) = N1(t)

[
b1(t)− a1(t)Nq1

1 (t− µ1(t))

−α1(t)Np−1
1 (t)

1+mNp1 (t)
N2(t− ν(t))

]
,

Ṅ2(t) = N2(t)

[
− b2(t)− a2(t)Nq2

2 (t− µ2(t))

+
α2(t)Np1 (t−µ3(t))

1+mNp1 (t−µ3(t))

]
,

(1.4)

where N1 and N2 represent the densities of the prey popu-
lation and predator population, respectively, p is a positive
constant and p ≥ 1, m is a nonnegative constant and
q1, q2 are positive constants. From systems (1.1)-(1.2), we
know that the prey population and predator population obey
the logistic growth. But many authors have suspected the
reasonableness of the logistic equations [16,17]. Hence,
some of them proposed single growth population models in
succession, such as Gilpin model [16], Smith model [17]
etc. Therefore, we consider system (1.4), which are more
general and reasonable. Let R, Z and N+ denote the sets
of real numbers, integers and positive integers, respectively.
Related to a continuous function f , we use the following
notations:

f l = inf
s∈R

f(s), fM = sup
s∈R

f(s),

|f |∞ = sup
s∈R
|f(s)|, f̄ = lim

T→∞

1

T

∫ T

0

f(s) ds.

Throughout this paper, we always make the following
assumption for system (1.4):

(F1) All the coefficients of system (1.4) are nonnegative
almost periodic functions with āi > 0 and b̄1 > 0,
i = 1, 2.

The initial conditions of system (1.4) are of the form

Ni(s) = ψi(s), s ∈ [−µ, 0], ψi(0) > 0,

ψi ∈ C([−µ, 0], [0,+∞)), i = 1, 2,

where µ := maxi=1,2,3{µMi , νM}.
It is well known that Mawhin’s continuation theorem

of coincidence degree theory is an important method to
investigate the existence of positive periodic solutions of
some kinds of non-linear ecosystems (see [7-14]). However,
it is difficult to be used to investigate the existence of
positive almost periodic solutions of non-linear ecosystems.
Therefore, to the best of the author’s knowledge, so far, there
are scarcely any papers concerning with the existence of
positive almost periodic solutions of system (1.4). Motivated
by the above reason, the main purpose of this paper is to
establish some new sufficient conditions on the existence of
positive almost periodic solutions of system (1.4) by using
Mawhin’s continuous theorem of coincidence degree theory.

The paper is organized as follows. In Section 2, we
give some basic definitions and necessary lemmas which
will be used in later sections. In Section 3, we obtain
some new sufficient conditions for the existence of at least
one positive almost periodic solution of system (1.4) by
way of Mawhin’s continuous theorem of coincidence degree

theory. Two illustrative examples and simulations are given
in Section 4.

II. PRELIMINARIES

Definition 1. ([18,19]) x ∈ C(R,Rn) is called almost
periodic, if for any ε > 0, it is possible to find a real
number l = l(ε) > 0, for any interval with length l(ε),
there exists a number τ = τ(ε) in this interval such that
‖x(t + τ) − x(t)‖ < ε, ∀t ∈ R, where ‖ · ‖ is arbitrary
norm of Rn. τ is called to the ε-almost period of x, T (x, ε)
denotes the set of ε-almost periods for x and l(ε) is called
to the length of the inclusion interval for T (x, ε). The
collection of those functions is denoted by AP (R,Rn). Let
AP (R) := AP (R,R).

Lemma 1. ([18,19]) If x ∈ AP (R), then x is bounded and
uniformly continuous on R.

Lemma 2. ([18,19]) If x ∈ AP (R), then
∫ t

0
x(s) ds ∈

AP (R) if and only if
∫ t

0
x(s) ds is bounded on R.

Lemma 3. ( [21]) Assume that x ∈ AP (R) ∩ C1(R) with
ẋ ∈ C(R). For arbitrary interval [a, b] with b− a = ω > 0,
let ξ, η ∈ [a, b] and

I =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
, J =

{
s ∈ [a, η] : ẋ(s) ≥ 0

}
,

then ones have

x(t) ≤ x(ξ) +

∫
I

ẋ(s) ds, ∀t ∈ [ξ, b],

x(t) ≥ x(η)−
∫
J

ẋ(s) ds, ∀t ∈ [a, η].

Lemma 4. ( [21]) If x ∈ AP (R), then for arbitrary interval
[a, b] with b− a = ω > 0, there exist ξ ∈ [a, b], ξ ∈ (−∞, a]
and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 5. ( [21]) If x ∈ AP (R), then for arbitrary interval
[a, b] with I = b − a = ω > 0, there exist η ∈ [a, b], η ∈
(−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 6. ( [21]) If x ∈ AP (R), then for ∀n ∈ N+,
there exist αn, βn ∈ R such that x(αn) ∈

[
x∗ − 1

n , x
∗]

and x(βn) ∈
[
x∗, x∗ + 1

n

]
, where x∗ = sups∈R x(s) and

x∗ = infs∈R x(s).

For x ∈ AP (R), we denote by

x̄ = m(x) = lim
T→∞

1

T

∫ T

0

x(s) ds,

a(x,$) = lim
T→∞

1

T

∫ T

0

x(s)e−i$s ds,

Λ(x) =

{
$ ∈ R : lim

T→∞

1

T

∫ T

0

x(s)e−i$sds 6= 0

}
the mean value and the set of Fourier exponents of x,
respectively.

Lemma 7. ( [21]) Assume that x ∈ AP (R) and x̄ > 0, then
for ∀t0 ∈ R, there exists a positive constant T0 independent
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of t0 such that

1

T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,

3x̄

2

]
, ∀T ≥ T0.

The method to be used in this paper involves the appli-
cations of the continuation theorem of coincidence degree.
This requires us to introduce a few concepts and results from
Gaines and Mawhin ( [20]).

Mawhin’s Continuous Theorem. ( [20]) Let Ω ⊆ X be an
open bounded set, L be a Fredholm mapping of index zero
and N be L-compact on Ω̄. If all the following conditions
hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);
(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;
(c) deg{JQN,Ω∩KerL, 0} 6= 0, where J : ImQ→ KerL

is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Under the invariant transformation (N1, N2)T =
(eu, ev)T , system (1.4) reduces to

u̇(t) = b1(t)− a1(t)eq1u(t−µ1(t))

−α1(t)e(p−1)u(t)

1+mepu(t)
ev(t−ν(t)),

v̇(t) = −b2(t)− a2(t)eq2v(t−µ2(t))

+α2(t)epu(t−µ3(t))

1+mepu(t−µ3(t)) .

(2.1)

Set X = Y = V1

⊕
V2, where

V1 =

{
z = (u, v)T ∈ AP (R,R2) :

∀$ ∈ Λ(u) ∪ Λ(v), |$| ≥ γ0

}
,

V2 =
{
z = (u, v)T ≡ (k1, k2)T , k1, k2 ∈ R

}
,

where γ0 is a given positive constant. Define the norm

‖z‖X = max

{
sup
s∈R
|u(s)|, sup

s∈R
|v(s)|

}
, ∀z ∈ X = Y.

Lemma 8. ( [21]) Let x ∈ AP (R). For ∀$ ∈ Λ(x) with
|$| ≥ γ0 > 0, then

∫ t
0
x(s) ds ∈ AP (R).

Lemma 9. ( [21]) Let f ∈ AP (R) such that f(t) ∼∑
a(f, λn)eiλnt with |λn| ≥ γ0 > 0. If g is the integral of f

with a(g, 0) = 0, then there exists a constant D independent
of f , g and γ0 such that |g|∞ ≤ D|f |∞.

Lemma 10. ( [21]) X and Y are Banach spaces endowed
with ‖ · ‖X.

Lemma 11. ( [21]) Let L : X → Y, Lz = L(u, v)T =
(u̇, v̇)T , then L is a Fredholm mapping of index zero.

Lemma 12. ( [21]) Define N : X → Y, P : X → X and
Q : Y→ Y by

Nz = N

(
u
v

)
=


b1(t)− a1(t)eq1u(t−µ1(t))

−α1(t)e(p−1)u(t)

1+mepu(t)
ev(t−ν(t))

−b2(t)− a2(t)eq2v(t−µ2(t))

+α2(t)epu(t−µ3(t))

1+mepu(t−µ3(t))

 ,

P z = P

(
u
v

)
=

(
m(u)
m(v)

)
= Qz, ∀z ∈ X = Y.

Then N is L-compact on Ω̄(Ω is an open and bounded subset
of X).

III. MAIN RESULTS

Now we are in the position to present and prove our result
on the existence of at least one positive almost periodic
solution for system (1.4).

Take
l0 := max{sup

s∈R
µ1(s), sup

s∈R
µ2(s)}.

From (F1) and Lemma 7, for ∀k ∈ R, there exists a
constant ω0 ∈ (2l0,+∞) independent of k such that

1

T

∫ k+T

k

ai(s) ds ∈
[
āi
2
,

3āi
2

]
,

1

T

∫ k+T

k

b1(s) ds ∈
[
b̄1
2
,

3b̄1
2

]
, (3.1)

where ∀T ≥ ω0

2 , i = 1, 2.
Let

ρ1 := ln

[
6b̄1
ā1

] 1
q1

+ bM1 ω0,

ρ2 := ln

[
4αM2 epρ1

(1 +mepρ1)ā2

] 1
q2

+
αM2 epρ1ω0

1 +mepρ1
.

Therefore, we may introduce a assumption as follows:

(F2) Φ̄1 := lim
T→+∞

1

T

∫ T

0

[
b1(s) − e(p−1)ρ1+ρ2α1(s)

]
ds >

0.

Similar to (3.1), for ∀k ∈ R, there exists a constant τ0 ∈
(ω0,+∞) independent of k such that

1

T

∫ k+T

k

Φ1(s) ds ∈
[

Φ̄1

2
,

3Φ̄1

2

]
, ∀T ≥ τ0. (3.2)

Theorem 1. Assume that (F1), (F2) and the following
condition hold:

(F3) Φ̄2 := lim
T→+∞

1

T

∫ T

0

[
epρ3

1 +mepρ3
α2(s) − b2(s)

]
ds >

0, where

ρ3 := ln

[
Φ̄1

4aM1

] 1
q1

− bM1 π0,

π0 := max

{
τ0,

4aM1 eq1ρ1 l0
Φ̄1

}
.

Then system (1.4) admits at least one positive almost peri-
odic solution.

Proof: It is easy to see that if system (2.1) has one
almost periodic solution (ū, v̄)T , then (N̄1, N̄2)T=(eū, ev̄)T

is a positive almost periodic solution of system (1.4). There-
fore, to complete the proof it suffices to show that system
(2.1) has one almost periodic solution.

In order to use the Mawhin’s continuous theorem, we set
the Banach spaces X and Y as those in Lemma 10 and
L,N, P,Q the same as those defined in Lemmas 11 and
12, respectively. It remains to search for an appropriate open
and bounded subset Ω ⊆ X.

Corresponding to the operator equation Lz = λz, λ ∈
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(0, 1), we have

u̇(t) = λ

[
b1(t)− a1(t)eq1u(t−µ1(t))

−α1(t)e(p−1)u(t)

1+mepu(t)
ev(t−ν(t))

]
,

v̇(t) = λ

[
− b2(t)− a2(t)eq2v(t−µ2(t))

+α2(t)epu(t−µ3(t))

1+mepu(t−µ3(t))

]
.

(3.3)

Suppose that (u, v)T ∈ DomL ⊆ X is a solution of system
(3.3) for some λ ∈ (0, 1), where DomL = {z = (u, v)T ∈
X : u, v ∈ C1(R), u̇, v̇ ∈ C(R)}. By Lemma 6, there exist
two sequences {Tn : n ∈ N+} and {Pn : n ∈ N+} such that

u(Tn) ∈
[
u∗ − 1

n
, u∗
]
, u∗ = sup

s∈R
u(s), n ∈ N+,(3.4)

v(Pn) ∈
[
v∗ − 1

n
, v∗
]
, v∗ = sup

s∈R
v(s), n ∈ N+.(3.5)

For ∀n0 ∈ N+, we consider [Tn0
− ω0, Tn0

] and [Pn0
−

ω0, Pn0
], where ω0 is defined as that in (3.1). By Lemma

4, there exist ξ ∈ [Tn0
− ω0, Tn0

], ξ ∈ (−∞, Tn0
− ω0] and

ξ̄ ∈ [Tn0 ,+∞) such that

u(ξ) = u(ξ̄) and u(ξ) ≤ u(s), ∀s ∈ [ξ̄, ξ]. (3.6)

Integrating the first equation of system (3.3) from ξ to ξ̄ leads
to ∫ ξ̄

ξ

(
b1(s)− a1(s)eq1u(s−µ1(s))

−α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

)
ds = 0,

which yields that∫ ξ̄

ξ+l0

a1(s)eq1u(s−µ1(s)) ds ≤
∫ ξ̄

ξ

a1(s)eq1u(s−µ1(s)) ds

≤
∫ ξ̄

ξ

b1(s) ds.

By the integral mean value theorem and (3.1), there exists
s0 ∈ [ξ + l0, ξ̄] (s0 − µ1(s0) ∈ [ξ, ξ̄]) such that

ā1

4
eq1u(s0−µ1(s0))

≤
ξ̄ − ξ − l0
ξ̄ − ξ

ā1

2
eq1u(s0−µ1(s0))

≤
ξ̄ − ξ − l0
ξ̄ − ξ

eq1u(s0−µ1(s0)) 1

ξ̄ − ξ − l0

∫ ξ̄

ξ+l0

a1(s) ds

=
1

ξ̄ − ξ

∫ ξ̄

ξ+l0

a1(s)eq1u(s−µ1(s)) ds

≤ 1

ξ̄ − ξ

∫ ξ̄

ξ

b1(s) ds

≤ 3b̄1
2
,

which implies from (3.6) that

u(ξ) ≤ ln

[
6b̄1
ā1

] 1
q1

. (3.7)

Let I1 = {s ∈ [ξ, Tn0 ] : u̇(s) ≥ 0}. It follows from system
(3.3) that∫

I1

u̇(s) ds =

∫
I1

λ

[
b1(s)− a1(s)eq1u(s−µ1(s))

−α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

]
ds

≤
∫
I1

λb1(s) ds ≤
∫ Tn0

Tn0
−ω0

b1(s) ds

≤ bM1 ω0. (3.8)

By Lemma 3, it follows from (3.7)-(3.8) that

u(t) ≤ u(ξ) +

∫
I1

u̇(s) ds ≤ ln

[
6b̄1
ā1

] 1
q1

+ bM1 ω0 := ρ1,

∀t ∈ [ξ, Tn0 ], which implies that

u(Tn0) ≤ ρ1.

In view of (3.4), letting n0 → +∞ in the above inequality
leads to

u∗ = lim
n0→+∞

u(Tn0) ≤ ρ1. (3.9)

Also, by Lemma 4, there exist ζ ∈ [Pn0 − ω0, Pn0 ], ζ ∈
(−∞, Pn0 − ω0] and ζ̄ ∈ [Pn0 ,+∞) such that

v(ζ) = v(ζ̄) and v(ζ) ≤ v(s), ∀s ∈ [ζ, ζ̄]. (3.10)

Integrating the second equation of system (3.3) from ζ to ζ̄
leads to ∫ ζ̄

ζ

(
− b2(s)− a2(s)eq2v(s−µ2(s))

+
α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))

)
ds = 0, (3.11)

which yields that∫ ζ̄

ζ+l0

a2(s)eq2v(s−µ2(s)) ds ≤
∫ ζ̄

ζ

a2(s)eq2v(s−µ2(s)) ds

≤
∫ ζ̄

ζ

α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))
ds.

By a similar argument as that in (3.7), there exists c0 ∈
[ζ + l0, ζ̄] (c0 − µ2(c0) ∈ [ζ, ζ̄]) such that

ā2

4
eq2v(c0−µ2(c0)) ≤ 1

ζ̄ − ζ

∫ ζ̄

ζ+l0

a2(s)eq2v(s−µ2(s)) ds

≤ 1

ζ̄ − ζ

∫ ζ̄

ζ

α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))
ds

≤ αM2 epρ1

1 +mepρ1
,

which implies from (3.10) that

v(ζ) ≤ ln

[
4αM2 epρ1

(1 +mepρ1)ā2

] 1
q2

. (3.12)

IAENG International Journal of Applied Mathematics, 49:2, IJAM_49_2_03

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



Let I2 = {s ∈ [ζ, Pn0 ] : v̇(s) ≥ 0}. It follows from system
(3.3) that∫

I2

v̇(s) ds =

∫
I2

λ

[
− b2(s)− a2(s)eq2v(s−µ2(s))

+
α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))

]
ds

≤
∫
I2

λ
α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))
ds

≤
∫ Pn0

Pn0−ω0

α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))
ds

≤ αM2 epρ1ω0

1 +mepρ1
. (3.13)

By Lemma 3, it follows from (3.12)-(3.13) that

v(t) ≤ v(ζ) +

∫
I2

v̇(s) ds

≤ ln

[
4αM2 epρ1

(1 +mepρ1)ā2

] 1
q2

+
αM2 epρ1ω0

1 +mepρ1

:= ρ2, ∀t ∈ [ζ, Pn0
],

which implies that

v(Pn0
) ≤ ρ2.

In view of (3.5), letting n0 → +∞ in the above inequality
leads to

v∗ = lim
n0→+∞

v(Pn0
) ≤ ρ2. (3.14)

On the other hand, by Lemma 6, there exists a sequence
{Hn : n ∈ N+} such that

u(Hn) ∈
[
u∗, u∗ +

1

n

]
, u∗ = inf

s∈R
u(s), n ∈ N+.(3.15)

For ∀n0 ∈ N+, we consider [Hn0
, Hn0

+ π0]. By Lemma
4, there exist η ∈ [Hn0

, Hn0
+ π0], η ∈ (−∞, Hn0

] and
η̄ ∈ [Hn0

,+∞) such that

u(η) = u(η̄) and u(η) ≥ u(s), ∀s ∈ [η, η̄]. (3.16)

Integrating the first equation of system (3.3) from η to η̄
leads to ∫ η̄

η

(
b1(s)− a1(s)eq1u(s−µ1(s))

−α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

)
ds = 0, (3.17)

which yields from (3.9) and (3.14) that∫ η̄

η

[
b1(s)− α1(s)e(p−1)ρ1eρ2

]
ds

≤
∫ η̄

η

[
b1(s)− α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

]
ds

=

∫ η̄

η

a1(s)eq1u(s−µ1(s)) ds

=

∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds

+

∫ η+l0

η

a1(s)eq1u(s−µ1(s)) ds

≤
∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds+ aM1 eq1ρ1 l0,

which implies from (3.2) that

Φ̄1

2
≤ 1

η̄ − η

∫ η̄

η

[
b1(s)− α1(s)e(p−1)ρ1eρ2

]
ds

≤ 1

η̄ − η

∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds+
aM1 eq1ρ1 l0
η̄ − η

≤ 1

η̄ − η

∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds+
aM1 eq1ρ1 l0

π0

≤ 1

η̄ − η

∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds+
Φ̄1

4
. (3.18)

In view of (3.18), by the integral mean value theorem and
(3.16), there exists s1 ∈ [η + l0, η̄] (s1 − µ1(s1) ∈ [η, η̄])
such that

Φ̄1

4
≤ eq1u(s1−µ1(s1))

η̄ − η

∫ η̄

η+l0

a1(s) ds

≤ aM1 eq1u(η)
η̄ − η − l0
η̄ − η

≤ aM1 eq1u(η), (3.19)

which implies that

u(η) ≥ ln

[
Φ̄1

4aM1

] 1
q1

. (3.20)

Let J = {s ∈ [Hn0 , η] : u̇(s) ≥ 0}. It follows from system
(3.3) that∫

J

u̇(s) ds =

∫
J

λ

[
b1(s)− a1(s)eq1u(s−µ1(s))

−α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

]
ds

≤
∫
J

λb1(s) ds ≤
∫ Hn0+π0

Hn0

b1(s) ds

≤ bM1 π0. (3.21)

By Lemma 3, it follows from (3.19)-(3.20) that

u(t) ≥ u(η)−
∫
J

u̇(s) ds ≥ ln

[
Φ̄1

4aM1

] 1
q1

− bM1 π0

:= ρ3, ∀t ∈ [Hn0
, η],(3.22)

which implies that

u(Hn0
) ≥ ρ3.

In view of (3.16), letting n0 → +∞ in the above inequality
leads to

u∗ = lim
n0→+∞

u(Hn0
) ≥ ρ3. (3.23)

Take

σ1 := max

{
π0,

4aM2 eq2ρ2 l0
Φ̄2

}
.

From (F3) and Lemma 7, for ∀k ∈ R, there exists a constant
σ0 ∈ (σ1,+∞) independent of k such that

1

T

∫ k+T

k

Φ2(s) ds ∈
[

Φ̄2

2
,

3Φ̄2

2

]
, ∀T ≥ σ0. (3.24)

Also, there exist ς ∈ [n0σ0, n0σ0 + σ0](∀n0 ∈ Z), ς ∈
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(−∞, n0σ0] and ς̄ ∈ [n0σ0 + σ0,+∞) such that

v(ς) = v(ς̄) and v(ς) ≥ v(s), ∀s ∈ [ς, ς̄]. (3.25)

Integrating the second equation of system (3.3) from ς to ς̄
leads to ∫ ς̄

ς

(
− b2(s)− a2(s)eq2v(s−µ2(s))

+
α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))

)
ds = 0,

which yields that∫ ς̄

ς

[
epρ3

1 +mepρ3
α2(s)− b2(s)

]
ds

≤
∫ ς̄

ς

[
− b2(s) +

α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))

]
ds

=

∫ ς̄

ς

a2(s)eq2v(s−µ2(s)) ds

=

∫ ς̄

ς+l0

a2(s)eq2v(s−µ2(s)) ds

+

∫ ς+l0

ς

a2(s)eq2v(s−µ2(s)) ds

≤
∫ ς̄

ς+l0

a2(s)eq2v(s−µ2(s)) ds+ aM2 eq2ρ2 l0.

Similar to the argument as that in (3.18), we obtain that

Φ̄2

2
≤ 1

ς̄ − ς

∫ ς̄

ς+l0

a2(s)eq2v(s−µ2(s)) ds+
Φ̄2

4
. (3.26)

In view of (3.24), by the integral mean value theorem and
(3.23), there exists c1 ∈ [ς+ l0, ς̄] (c1−µ2(c1) ∈ [ς, ς̄]) such
that

Φ̄2

4
≤ eq2v(c1−µ2(c1))

ς̄ − ς

∫ ς̄

ς+l0

a2(s) ds

≤ aM2 eq2v(ς) ς̄ − ς − l0
ς̄ − ς

≤ aM2 eq2v(ς),

which implies that

v(ς) ≥ ln

[
Φ̄2

4aM2

] 1
q2

. (3.27)

Further, we obtain from system (3.3) that∫ n0σ0+σ0

n0σ0

|v̇(s)|ds

=

∫ n0σ0+σ0

n0σ0

λ

∣∣∣∣− b2(s)− a2(s)eq2v(s−µ2(s))

+
α2(s)epu(s−µ3(s))

1 +mepu(s−µ3(s))

∣∣∣∣ds
≤ [bM2 + aM2 eq2ρ2 + αM2 epρ1 ]σ0 := Θ2. (3.28)

It follows from (3.25)-(3.26) that

v(t) ≥ v(ς)−
∫ n0σ0+σ0

n0σ0

|v̇(s)|ds

≥ ln

[
Φ̄2

4aM2

] 1
q2

−Θ2

:= ρ4, ∀t ∈ [n0σ0, n0σ0 + σ0]. (3.29)

Obviously, ρ4 is a constant independent of n0. So it follows
from (3.27) that

v∗ = inf
s∈R

v(s) = inf
n0∈Z

{
min

s∈[n0σ0,n0σ0+σ0]
v(s)

}
≥ inf
n0∈Z
{ρ4} = ρ4. (3.30)

Set K = |ρ1| + |ρ2| + |ρ3| + |ρ4| + 1, then ‖z‖X =
‖(u, v)T ‖ < K. Clearly, K is independent of λ ∈ (0, 1).
Consider the algebraic equations QNz0 = 0 for z0 =
(u0, v0)T ∈ R2 as follows: 0 = b̄1 − ā1e

q1u
0 − ᾱ1e

(p−1)u0

1+mepu0
ev

0

,

0 = −b̄2 − ā2e
q2v

0

+ ᾱ2e
pu0

1+mepu0
.

Similar to the arguments as that in (3.9), (3.14), (3.21) and
(3.28), we can easily obtain that

ρ3 ≤ u0 ≤ ρ1, ρ4 ≤ v0 ≤ ρ2.

Then ‖z0‖X = |u0| + |v0| < K. Let Ω = {z ∈ X : ‖z‖X <
K}, then Ω satisfies conditions (a) and (b) of Mawhin’s
continuous theorem.

Finally, we will show that condition (c) of Mawhin’s
continuous theorem is satisfied. Let us consider the homotopy

H(ι, z) = ιQNz + (1− ι)Fz, (ι, z) ∈ [0, 1]× R2,

where

Fz = F

(
u
v

)
=

(
b̄1 − ā1e

q1u

−b̄2 − ā2e
q2v + ᾱ2e

pu

1+mepu

)
.

From the above discussion it is easy to verify that H(ι, z) 6=
0 on ∂Ω ∩ KerL. By the invariance property of homotopy,
we have

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
,

where deg(·, ·, ·) is the Brouwer degree and J is the identity
mapping since ImQ = KerL.

Note that the equations of the following system{
b̄1 − ā1e

q1u = 0,

−b̄2 − ā2e
q2v + ᾱ2e

pu

1+mepu = 0

has a solution:

(u∗, v∗) =

(
ln

[
b̄1
ā1

] 1
q1

, ln

[ ᾱ2e
pu∗

1+mepu∗
− b̄2

ā2

] 1
q2
)
∈ Ω.

It follows that

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
= sign

∣∣∣∣∣∣
−q1ā1e

q1u 0
d

du

[
ᾱ2e

pu

1 +mepu

]
−q2ā2e

q2v

∣∣∣∣∣∣
(u,v)=(u∗,v∗)

= sign
(
eq1u

∗
eq2v

∗)
= 1.

Obviously, all the conditions of Mawhin’s continuous
theorem are satisfied. Therefore, system (2.1) has one almost
periodic solution, that is, system (1.4) has at least one
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positive almost periodic solution. This completes the proof.

Theorem 2. Assume that (F1) and the following conditions
hold:

(F4) p > 1 +mepρ1 .

(F5) Ψ̄1 := lim
T→+∞

1

T

∫ T

0

[
b1(s)− e

(p−1)ρ1+ρ2

1 +mepρ1
α1(s)

]
ds >

0.

(F6) Ψ̄2 := lim
T→+∞

1

T

∫ T

0

[
epρ̃3

1 +mepρ̃3
α2(s) − b2(s)

]
ds >

0, where

ρ̃3 := ln

[
Ψ̄1

4aM1

] 1
q1

− bM1 π̃0,

π̃0 := max

{
τ0,

4aM1 eq1ρ1 l0
Ψ̄1

}
.

Then system (1.4) admits at least one positive almost peri-
odic solution.

Proof: Let

L(x) =
xp−1

1 +mxp
, ∀x ∈ (0, eρ1 ].

By (F4), we are easily obtain that

L̇(x) =
xp−2(p− 1−mxp)

(1 +mxp)2
> 0, ∀x ∈ (0, eρ1 ],

which implies that

max
x∈(0,eρ1 ]

L(x) =
e(p−1)ρ1

1 +mepρ1
. (3.31)

By the same arguments as that in Theorem 1, we have (3.10),
(3.15)-(3.18). In view of (3.18), it follows from (3.10), (3.15)
and (3.30) that

Ψ̄1

2
≤ 1

η̄ − η

∫ η̄

η

[
b1(s)− α1(s)

e(p−1)ρ1+ρ2

1 +mepρ1

]
ds

≤ 1

η̄ − η

∫ η̄

η

[
b1(s)− α1(s)e(p−1)u(s)

1 +mepu(s)
ev(s−ν(s))

]
ds

=

∫ η̄

η

a1(s)eq1u(s−µ1(s)) ds

≤ 1

η̄ − η

∫ η̄

η+l0

a1(s)eq1u(s−µ1(s)) ds+
Ψ̄1

4
.

Similar to the argument as that in (3.20), we have

u(η) ≥ ln

[
Ψ̄1

4aM1

] 1
q1

.

The remaining proof is similar to Theorem 1, so we omit it.
This completes the proof.

From the proves of Theorems 1-2, we can show that

Corollary 1. Assume that (F1)-(F3) hold. Suppose further
that ai, bi, αi, µj and ν are continuous nonnegative periodic
functions with different periods, i = 1, 2, j = 1, 2, 3, then
system (1.1) admits at least one positive almost periodic
solution.

Remark 1. By Corollary 1, it is easy to obtain the existence
of at least one positive almost periodic solution of Eq. (1.3)
in Example 1, although there is no a priori reason to expect
the existence of positive periodic solutions of Eq. (1.3).

Corollary 2. Assume that (F1), (F4)-(F6) hold. Suppose
further that ai, bi, αi, µj and ν are continuous nonnegative
periodic functions with different periods, i = 1, 2, j = 1, 2, 3,
then system (1.1) admits at least one positive almost periodic
solution.

Assume that all coefficients of system (1.4) are ω-periodic
functions, let

ρ̂1 := ln

[
b̄1
ā1

] 1
q1

+ b̄1ω,

ρ̂2 := ln

[
αu2e

pρ̂1

(1 +mepρ̂1)ā2

] 1
q2

+ min

{
(B̄2 + b̄2)ω,

ᾱ2e
pρ̂1ω

1 +mepρ̂1

}
.

From the proves of Theorems 1-2, we can show that

Corollary 3. Assume that (F1) and the following conditions
hold:

(F7) b̄1 > e(p−1)ρ̂1+ρ̂2 ᾱ1,
(F8) epρ̂3 ᾱ2 > (1 +mepρ̂3)b̄2, where

ρ̂3 := ln

[
b̄1 − e(p−1)ρ̂1+ρ̂2 ᾱ1

ā1

] 1
q1

− b̄1ω.

Then system (1.4) admits at least one positive ω-periodic
solution.

Corollary 4. Assume that (F1) and the following conditions
hold:

(F9) p > 1 +mepρ̂1 ,
(F10) (1 +mepρ̂1)b̄1 > e(p−1)ρ̂1+ρ̂2 ᾱ1,
(F11) ep~ρ3 ᾱ2 > (1 +mep~ρ3)b̄2, where

~ρ3 := ln

[
b̄1 − e(p−1)ρ̂1+ρ̂2

1+mepρ̂1
ᾱ1

ā1

] 1
q1

− b̄1ω.

Then system (1.4) admits at least one positive ω-periodic
solution.

IV. Uniform persistence

Our object in this section is to prove the uniform persis-
tence of system (1.4).

Theorem 3. Let p = q1 = q2 = 1 in system (1.4). Assume
that

(H1) b−1 > α+
1 M2, (1 +mM1)−1α−2 N1 > b+2 ,

then for any positive solution (N1, N2)T of system (1.4)
satisfies

Ni ≤ Ni(t) ≤Mi, i = 1, 2,

where Ni and Mi are defined as those in (4.1)-(4.4), i =
1, 2, 3. That is, system (1.4) is uniformly persistent.

Proof: We have from the first equation of system (1.4)
that

Ṅ1(t) ≤ N1(t)
[
b+1 − a

−
1 N1(t)

]
.

By Lemmas 2.3 and 2.4 in [22], we have from (4.1) that

N1(t) ≤ b+1
a−1

:= M1. (4.1)
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We have from the second equation of system (1.4) that

Ṅ2(t) ≤ N2(t)
[
m−1α+

2 − a
−
2 N2(t)

]
.

By Lemmas 2.3 and 2.4 in [22], we have from (4.1) that

N2(t) ≤ m−1α+
2

a−2
:= M2. (4.2)

In view of the first equation of system (1.4), it follows that

Ṅ1(t) ≥ N1(t)

[
b−1 − α

+
1 M2 − a+

1 N1(t)

]
,

which implies that

N1(t) ≥ b−1 − α
+
1 M2

a+
1

:= N1. (4.3)

Similar to the argument as that in (4.3), we obtain from the
second equation of system (1.4) that

N2(t) ≥ (1 +mM1)−1α−2 N1 − b+2
a+

2

:= N2. (4.4)

The proof is completed.

V. UNIFORM ASYMPTOTICAL STABILITY

The main result of this paper concerns the uniformly
asymptotically stable of system (1.4).

Theorem 4. Let p = q1 = q2 = 1 and µ1 = µ2 = µ3 = ν ≡
0 in system (1.4). Suppose (H1) and the following condition
hold:

(H2) there exists a constant µ such that

a−1 − α
+
1 mM1 − α+

2 > µ,

a−2 − α
+
2 > µ,

where M1 is defined as that in Theorem 3. Then system (1.4)
is uniformly asymptotically stable.

Proof: Suppose that Z(t) = (lnN1(t), lnN2(t))T and
Z∗(t) = (lnN∗1 (t), lnN∗2 (t))T are any two solutions of
system (1.4). Let V (t) = V1(t) + V2(t), where V1(t) =
| lnN1(t)− lnN∗1 (t)| and V2(t) = | lnN2(t)− lnN∗2 (t)|.

Calculating the upper right derivative of V1(t) along the
solution of system (1.4), we have

D+V1(t) ≤ −a−1 |N1(t)−N∗1 (t)|
+α+

1 mM1|N1(t)−N∗1 (t)|
+α+

1 |N2(t)−N∗2 (t)|,

similarly,

D+V2(t) ≤ −a−2 |N2(t)−N∗2 (t)|
+α+

2 |N1(t)−N∗1 (t)|.

Then

D+V (t)

≤ [−a−1 + α+
1 mM1 + α+

2 ]|N1(t)−N∗1 (t)|
+[−a−2 + α+

2 ]|N2(t)−N∗2 (t)|
≤ −µV (t). (5.1)

Therefore, V is non-increasing. Integrating (5.1) from 0

to t leads to

V (t) + µ

∫ t

0

V (s) ds ≤ V (0) < +∞, ∀t ≥ 0,

that is, ∫ +∞

0

V (s) ds < +∞,

which implies that

lim
s→+∞

|N1(t)−N∗1 (t)| = lim
s→+∞

|N2(t)−N∗2 (t)| = 0.

Thus, system (1.4) is uniformly asymptotically stable. This
completes the proof.

VI. EXAMPLES AND SIMULATIONS

Example 2. Consider the following delayed predator-prey
system:

Ṅ1(t) = N1(t)

[
1− | sin

√
3t|N2

1 (t− 0.8)

− N1(t)
2e10[1+N2

1 (t)]
N2(t− 0.8)

]
,

Ṅ2(t) = N2(t)

[
− e−18

2+2e−18 − cos2(
√

2t)N2
2 (t− 0.8)

+
N2

1 (t−0.8)

1+N2
1 (t−0.8)

]
.

(6.1)

Corresponding to system (1.4), we have b̄1 = 1, b̄2 =
e−18

2+2e−18 , ā1 = 2
π , ā2 = 1

2 , l0 = e−10, m = 1, q1 = q2 =

p = 2. Further, for ∀k ∈ R, we can choose ω0 = 2
√

3π
3 so

that (3.1) holds, that is,

1

T

∫ k+T

k

a1(s) ds ∈
[

1

π
,

3

π

]
,

1

T

∫ k+T

k

a2(s) ds ∈
[

1

4
,

3

4

]
, ∀T ≥ ω0 =

2
√

3π

3
.

By a easy calculation, we obtain that

ρ1 ≈ 5.1253, ρ2 ≈ 5.0695.

Hence Φ1(t) ≡ 1
2 , ∀t ∈ R, which implies that (F2) holds.

Take τ0 = 2π. So π0 = 8 and

ρ3 ≈ −9,

which yields that

Φ̄2 := lim
T→+∞

1

T

∫ T

0

[
e−18

1 + e−18
− e−18

2 + 2e−18

]
ds > 0,

which implies that (F3) holds. Therefore, all the conditions
of Corollary 1 are satisfied. By Corollary 1, system (6.1)
admits at least one positive almost periodic solution (see
Figures 1-2). It is easy to verify that all the conditions of
Theorems 2-3 are satisfied. By Theorems 2-3, system (6.1)
is permanent and uniform asymptotical stability.

Remark 2. In system (6.1), corresponding to system (1.4)
and Corollary 3.3, ϕ1 = π√

3
, ϕ2 = π√

2
, βi, γi, σj and ψ are

arbitrary constants, i = 1, 2, j = 1, 2, 3. So system (6.1) is
with incommensurable periods. Through all the coefficients
of system (6.1) are periodic functions, the positive periodic
solutions of system (6.1) could not possibly exist. However,
by Corollary 1, the positive almost periodic solutions of
system (6.1) exactly exist.
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Fig. 1 State variable N1 of system (6.1)
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Fig. 2 State variable N2 of system (6.1)

Example 3. Consider the following delayed almost periodic
predator-prey system:

Ṅ1(t) = N1(t)

[
1− | sin

√
2t|+| sin

√
3t|

2 N2
1 (t− 0.8)

− N1(t)
2e10[1+N2

1 (t)]
N2(t− 0.8)

]
,

Ṅ2(t) = N2(t)

[
− e−18

2+2e−18

− cos2(
√

2t)+cos2(
√

3t)
2 N2

2 (t− 0.8)

+
N2

1 (t−0.8)

1+N2
1 (t−0.8)

]
.

(6.2)

In system (6.2), | sin
√

2t|+| sin
√

3t|
2 and cos2(

√
2t)+cos2(

√
3t)

2 are
almost periodic functions, which are not periodic functions.
Similar to the argument as that in Example 2, by Theorem
1, it is easy to obtain that system (6.2) admits at least one
positive almost periodic solution (see Figures 3-4).
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Fig. 3 State variable N1 of system (6.2)
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Fig. 4 State variable N2 of system (6.2)

VII. CONCLUSION

In this paper we have obtained the uniform permanence
and existence of a positive almost periodic solution for a
delayed predator-prey system with general functional re-
sponse. The approach is based on the continuation theorem
of coincidence degree theory and the comparison theorem.
And Lemma 2 in Section 2 and Lemmas 2.3-2.4 in [22] are
critical to study the permanence of the biological model. It
is important to notice that the approach used in this paper
can be extended to other types of biological model such as
epidemic models, Lotka-Volterra systems and other similar
models of first order.
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