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Abstract—Data envelopment analysis (DEA) has been 

extended to cross-efficiency evaluation to provide better 

discrimination and ranking of decision-making units (DMUs). 

However, the non-uniqueness of optimal solutions in CCR 

model damages the usefulness of DEA cross-efficiency 

evaluation method. To solve this problem, this paper proposes 

three secondary goal models considering the original 

efficiency value of DMUs based on the aggressive, benevolent 

and neutral idea. Finally, the numerical example proves that 

the proposed models can play a significant role in reducing the 

number of zero weights for both inputs and outputs in 

cross-efficiency evaluation.  

Index Terms—CCR, DEA Cross-efficiency evaluation, 

Secondary goal models, Original efficiency value. 

I. INTRODUCTION 

CR model proposed by Charnes, Cooper, and Rhodes 

is a non-parametric method for efficiency evaluation 

of a group of homogenous decision-making units (DMUs) 

where multiple inputs are consumed to produce multiple 

outputs [1]. For its functional ability in efficiency 

evaluation and identifying the production frontier, it has 

been widely used for efficiency evaluation of schools, 

hospitals, colleges in university and so on [2]. 

Since CCR model allows each DMU to evaluate its effic- 
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iency with its most favorable weights, more than one DMU 

is often evaluated to be DEA efficient and cannot be 

discriminated further[3]. So, lack of discrimination power 

is the major drawback that CCR suffers from. To improve 

the discrimination power of CCR, DEA cross-efficiency 

evaluation was proposed by Sexton et al. [4]. Unlike the 

CCR model where each DMU uses its own most favorable 

weights for efficiency evaluation, it employs both 

self-evaluation and peer-evaluation. In DEA 

cross-efficiency evaluation, each DMU will obtain one 

self-evaluated efficiency based on its most favorable 

weights and 1n   peer-evaluated efficiencies using the 

most favorable weights of other 1n  DMUs. Then all 

these n  efficiencies for each DMU are averaged into a 

value to be its average cross-efficiency value. Based on the 

average cross-efficiency value of each DMU, DEA 

cross-efficiency evaluation can provide a unique rank order 

to DMUs in most practical situations [5]. Due to its 

powerful discrimination, DEA cross-efficiency evaluation 

method has been widely applied in efficiency evaluation of 

countries in the Olympic Games [6], project ranking and 

preference voting [7], portfolio selection in Korean stock 

market [8] and so on. 

However, for each DMU the optimal weights solution in 

CCR model is usually not unique and the problem of 

non-uniqueness of optimal weights will undermine the 

usefulness of DEA cross-efficiency evaluation. To solve 

this problem, Sexton et al. suggested using secondary goal 

models [4]. Inspired by this idea, many secondary goal 

models have been proposed. The aggressive (benevolent) 

model proposed by Doyle and Green minimizes 

(maximizes) the average cross-efficiency of other DMUs 

while keeping the efficiency value of DMU under 

evaluation at its CCR level [9]. Based on the aggressive 
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and benevolent ideas, many other scholars offered a series 

of aggressive and benevolent models [10-12]. In most 

practical cases, the aggressive and benevolent models will 

generate different efficiency results and rank orders for 

DMUs. To avoid the choice difficulty between aggressive 

and benevolent models, neutral model was introduced 

[13-15]. Different from the aggressive and benevolent 

models, neutral model conducted optimal weights selection 

only from the viewpoint of DMU under evaluation without 

considering whether it is aggressive or benevolent to other 

DMUs. The weight-balanced model aims to lessen the 

difference in weighted data and reduce the number of zero- 

weights [16]. The models introduced by Wang, Chin, and 

Wang, Jahanshahloo et al., Ramón, Ruiz, and Sirvent are 

with similar idea [17-19]. The rank model considers that in 

some cases pursuing the best ranking is more important 

than maximizing the individual score [20, 21]. From the 

goal functions of the models mentioned above, we can 

acquire that they only consider the impact of selected 

weights to standard efficiencies of DMUs ignoring their 

impact to the original efficiencies of DMUs. 

In this paper, we will provide a new perspective to 

understand DEA and construct some new DEA 

cross-efficiency models. The proposed models here focused 

on the impact of selected weights to the original efficiency 

value of DMUs. The rest of the paper unfolds as follows. 

Section 2 briefly introduces the DEA cross-efficiency 

evaluation and offers new models. Chapter 3 gives a 

numerical example, and conclusions are given in Part 4.  

II. CROSS-EFFICIENCY EVALUATION AND NEWLY PROPOSED 

MODELS 

Suppose that there are n  DMUS to be evaluated where 

m  inputs are consumed to produce s  outputs. The 

inputs and outputs value of ( 1, , )jDMU j n L  are 

denoted by ( 1, , )ijx i m K  and ( 1, , )rjy r s  . The 

ratio 
1 1

/
s m

r rj i ijr i
u y v x

    denotes the efficiency value 

of jDMU . The efficiency value of kDMU  under CCR is 

calculated by model (1), Where 

 1, ,k nDMU DMU DMU K  is the decision-making unit 

( DMU ) under evaluation, the inputs and outputs weights 
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are denoted by ( 1, , )ikv i m K and ( 1, , )rku r s K . If 

( 1, , )rku r s  K  and ( 1, , )ikv i m    are the optimal 

solution to the above CCR model, the 
1

s

kk rk rkr
u y  




will be the CCR efficiency value of kDMU .  If kk 
 is 

equal to 1, the kDMU  will be referred to as DEA efficient; 

Otherwise, it will be non-DEA efficient. 

1 1
/

s m

jk rk rj ik ijr i
u y v x  

 
   is referred to as a 

cross-efficiency of jDMU  and reflects the peer 

evaluation of kDMU to jDMU ( 1, , , ).j n j k K  

CCR model (1) is solved for each of n  DMUS 

respectively. As a result, there will be n  sets of inputs and 

outputs weights available for n  DMUs and based on them, 

each DMU will gain n  efficiency values which include 1 

self-evaluated efficiency value and 1n   peer-evaluated 

efficiency values, which form a cross-efficiency matrix 

shown in table 1. They are usually aggregated by equal 

weights to obtain average cross-efficiency (ACE) value for 

each DMU, and based on which the DMUS can be fully 

ranked. 

TABLE I 

CROSS-EFFICIENCY MATRIX 

DMU 
Target DMU 

Average Cross-Efficiency 
1 2 K  n  

1 
11  12  L  

1n  11

1 n

kkn


  

2 
21  22  L  

2n  21

1 n

kkn


  

M M M M M M 

n  
1n  2n  L  

nn  
1

1 n

nkkn


  

It is noticed that the optimal solution in the CCR model (1) 

may be not unique that will damage the usefulness of 
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cross-efficiency evaluation. To handle this problem, Sexton 

et al. [4] introduce the concept of secondary goal model. 

Inspired by this idea, many secondary goal models have 

been proposed. Among them, the aggressive, benevolent 

and neutral models are widely used. Their formulations are 

as stated by the model (2), (3) and (4). The aggressive 

(benevolent) model minimizes (maximizes) the average 

efficiency value of other DMUs while keeping the 

efficiency value of DMU under evaluation at its CCR 

efficiency. The neutral model selects the unique set of 

weights only from the viewpoint of DMU under evaluation 

without considering whether it is aggressive or benevolent 

to other DMUs. The above neutral model searches for a set 

of input and output weights to maximize its efficiency as a 

whole and at the same time to make its each output being as 

efficient as possible to produce sufficient efficiency as an 

individual [13]. From the formulations of the above models, 

it is clearly shown that the weights in models need to assure 

the efficiency values of all DMUs not more than 1. That 

means the efficiency results calculated by the CCR model 

are standard values and the existing DEA cross-efficiency 

models selected the weights only considering their impact 

to standard efficiency values of DMUs ignoring their 

impact to the original efficiencies of DMUs. Different from 

them, we proposed models from an original efficiency 

viewpoint. Under the original efficiency perspective, the 

above CCR model will be reformulated to be model (5).         

Different from the model (1) the weights in model (5) are 

denoted by new letters. It means if there exists no less than 

one set of weights meeting the restraint in above model that 

can make the efficiency value of kDMU  maximal among 

all DMUs, the kDMU  will be DEA efficient. We let r  

be equal to 
1

s

r rr
u u

 , i be equal to 
1

m

i ii
v v

  and   
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the model (5) will be transformed to be the linear model (1) 

through Charnes-Cooper transformation. The two models 

are equivalent. Because the weights of two models are 

one-to-one correspondence, accordingly the original 

efficiency values and standard values are also one-to-one 

correspondence. Considering the original efficiency values, 

the DMU under evaluation will minimize (maximize) the 

average original efficiency value of other DMUs while 

selecting unique set of weights among many weights 

solutions in CCR model based on aggressive (benevolent) 

idea. The DMU under evaluation will maximize its original 

efficiency value based on neutral idea. The modeling 

mechanism is more transparent and more accessible to 

understand than that considering standard efficiency values. 

Inspired by this, the formulations of newly proposed 

aggressive, benevolent and neutral models are illustrated by 

model (6), (7) and (8) respectively. The goal functions of 

the above models concern the original efficiencies of 

DMUs. 
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 III.  NUMERICAL EXAMPLE 

This part will provide a numerical example to 

demonstrate the efficiency results difference between the 

proposed models and the models considering standard 

efficiency value of DMUs. 

Numerical example: Efficiency evaluation of seven 

departments in a university [22]. Seven academic 

departments are needed to be evaluated with three inputs 

and three outputs. The inputs are number of academic staff, 

academic staff salaries in thousands of pounds and support 

staff salaries in thousands of pounds. The outputs are 

number of undergraduate students, number of postgraduate 

students, number of research papers. Table 2 shows the 

input and output data and CCR results of DMUs. From it, it 

is clearly shown that six of seven are DEA efficient and 

efficient DMUs cannot be further distinguished. Table 3 

shows the efficiency evaluation results through aggressive, 

benevolent, neutral and proposed models. The results are 

shown to be different which can indicate the difference 

between considering original efficiency values and 

considering standard values when constructing DEA 

cross-efficiency secondary goal models. To further 

illustrate their difference, table 4 to 9 shows the unique set 

of weights selected by the models and they are obviously 

different. Moreover, it also clearly shows that the weights 

selected by aggressive, benevolent and neutral models 

contain many zero weights. Meantime, the zero weights 

chosen by the neutral model are only in inputs part. That 

means many inputs and outputs information are ignored 

when generating cross-efficiencies through aggressive, 

benevolent and neutral models. This situation can result in 

the ultimate efficiency results to be unreasonable. From 

table 7 to 9, it clearly shows the proposed models can 

significantly reduce the number of zero weights. That 

indicates the efficiency results generated by the proposed 

models to be more reasonable because in reality each input 

or output is critical and none of them can be ignored.  
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INPUTS AND OUTPUTS DATA AND CCR VALUES  

DMUs 

Inputs Outputs 

CCR 

1x  2x  3x  1y  2y  3y  

1 12 400 20 65 35 17 1 

2 19 750 70 139 41 40 1 

3 42 1500 70 225 68 75 1 

4 15 600 100 90 12 17 0.8197 

5 45 2000 250 253 145 130 1 

6 19 730 50 132 45 45 1 

7 41 2350 600 305 159 97 1 

IV. CONCLUSION 

Aiming at solving the problem of non-uniqueness of 

optimal weights in DEA cross-efficiency evaluation, we 

propose three DEA cross-efficiency models considering the 

original efficiency values of DMUs based on aggressive, 

benevolent and neutral notions. 

The proposed models bring at least three contributions to 

DEA. Firstly, the concept of original efficiency values of 

DMUs is incorporated into DEA cross-efficiency 

evaluation. Secondly, the modeling mechanism of proposed 

models is more precise. Thirdly, the proposed models can 

significantly reduce the number of zero weights, so the 

efficiency results generated by them are more reasonable. 

About the further research direction based on this paper, the 
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interesting readers can enrich the models considering the 

original efficiency values of DMUs based on other ideas 

such as the idea of the rank model and so on.  
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TABLE III 

EFFICIENCY EVALUATION RESULTS THROUGH THE MODELS 

DMUs Aggressive Benevolent Neutral Model (6) Model (7) Model (8) 

1 0.8788 (1) 0.9442 (3) 0.9362 (2) 0.8919(2) 0.8350(3) 0.8302 (3) 

2 0.7219 (4) 0.9486 (2) 0.9026 (3) 0.8529(3) 0.8879(2) 0.8458 (2) 

3 0.7301 (3) 0.7827 (6) 0.7763 (6) 0.7770(5) 0.8268(4) 0.7991 (4) 

4 0.4018 (7) 0.6160 (7) 0.5649 (7) 0.5067(7) 0.5648(7) 0.5226 (7) 

5 0.6259 (5) 0.8534 (5) 0.8272 (5) 0.8171(4) 0.7122(5) 0.7366 (5) 

6 0.8126 (2) 0.9801 (1) 0.9493 (1) 0.9363(1) 0.9579(1) 0.9309 (1) 

7 0.5966 (6) 0.8992 (4) 0.8552 (4) 0.6766(6) 0.6591(6) 0.6515 (6) 

 

TABLE IV 

 WEIGHTS SELECTED BY AGGRESSIVE MODEL 

DMUs 1x  2x  3x  1y  2y  3y  

1 0 0 0.0009 0 0.0005 0 

2 0 0.0001 0.0001 0.0007 0 0 

3 0 0 0.0009 0.0003 0 0 

4 0.0054 5.3E-06 0 0.0008 0 0 

5 0.0043 0 0.0004 0 0 0.0023 

6 0.0010 0 0.0007 0 0 0.0012 

7 0.0066 0 0 0 0.0017 0 

 

TABLE V 

WEIGHTS SELECTED BY BENEVOLENT MODEL 

DMUs 1x  2x  3x  1y  2y  3y  

1 0.0020 8.1E-05 0 0.0003 0.0009 0.0003 

2 0.0029 6.6E-05 0 0.0006 0.0006 0 

3 0 2.9E-05 0.0007 0 0.0002 0.0010 

4 0.0054 5.3E-06 0 0.0008 0 3.2E-11 

5 0.0025 0.0001 0 0.0004 0.0011 0.0004 

6 0.0021 8.4E-05 0 0.0003 0.0009 0.0003 

7 0.0025 0.0001 0 0.0004 0.0012 0.0004 
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TABLE VI 

WEIGHTS SELECTED BY NEUTRAL MODEL 

DMUs 
1x  2x  3x  1y  2y  3y  

1 0 0.0017 0.0162 0.0056 0.0095 0.0196 

2 0.0371 0.0004 0 0.0053 0.0032 0.0033 

3 0 0 0.0143 0.0008 0.0026 0.0085 

4 0.0642 6.29E-05 0 0.0091 1.60E-10 1.13E-10 

5 0.0108 0.0003 0 0.0013 0.0023 0.0026 

6 0 0.0014 0 0.0025 0.0074 0.0074 

7 0.0174 0.0001 0 0.0011 0.0021 0.0034 

 

TABLE VII 

 WEIGHTS SELECTED BY MODEL (6) 

DMUs 1x  2x  3x  1y  2y  3y  

1 0.1724 0.1061 0.3219 0.1847 1.0442 0.1951 

2 0.0000 0.2259 0.0000 1.0915 0.2854 0.1497 

3 0.0004 7.7997 165.7457 0.0002 0.0006 310.6892 

4 0.2648 0.0731 0.0018 0.4274 0.0045 0.0073 

5 0.7942 0.5732 0.0048 0.1530 3.0743 5.3753 

6 1.4935 1.0691 0.4550 3.9806 2.9201 3.8835 

7 2.1224 0.0566 0.0046 0.0542 1.1923 0.1716 

 

TABLE VIII 

WEIGHTS SELECTED BY MODEL (7)

DMUs 1x  2x  3x  1y  2y  3y  

1 1.5088 0.0252 1.0635 0.6674 0.2683 0.0005 

2 1.5577 0.0559 0.0061 0.4302 0.1793 0.1195 

3 0.1732 0.1108 3.3974 1.5306 0.1822 0.7264 

4 4.3444 0.0043 0.0000 0.6172 0.0000 0.0001 

5 1.9763 0.0208 0.0084 0.0043 0.3013 0.6754 

6 1.9357 0.0012 0.7566 0.4728 0.0915 0.1997 

7 3.5260 0.0203 0.0028 0.5313 0.1954 0.0082 

 

TABLE IX 

WEIGHTS SELECTED BY MODEL (8)

DMUs 1x  2x  3x  1y  2y  3y  

1 0.5233 0.0868 0.8751 0.1983 1.1951 0.2820 

2 1.1679 0.0878 0.0004 0.5685 0.1449 0.0775 

3 0.1871 0.0134 1.3189 0.0635 0.2586 1.1791 

4 1.6167 0.0016 0 0.2297 0 0 

5 2.9180 0.0224 0.0287 0.0579 0.3724 0.8820 

6 9.8724 0.0063 4.2159 2.8648 0.3116 0.2404 

7 2.9744 0.0104 0.0017 0.3479 0.0497 0.3441 
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