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Abstract—In this paper, based on the contraction map prin-
ciple and the fixed point index theory, sufficient conditions are
established for the uniqueness and existence results of positive
solution for four-point boundary value problem of nonlinear
differential equation with Caputo’s fractional order derivative.
It is interesting to note that the Krein-Rutmann theorem is
also used in this paper. Such investigations will provide an
important platform for gaining a deeper understanding of our
environment.
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I. I NTRODUCTION

FRACTIONAL derivatives arose in various fields of
science and engineering such as control, porous media,

electrochemistry, riscoelasticity, electromagnetic and other
fields, see [1-5] and the reference therein. As we all known,
many physical systems can be represented more accurately
using fractional derivative formulations [6,7], thus many
works on the basic theory of fractional calculus and fractional
order differential equations have been established [6-10].

Recently, there have appeared a very large number of pa-
pers, which are devoted to the existence of positive solutions
of nonlinear initial value problem or two point boundary
value problem, and the solvability of nonlocal boundary
value problem, see [11-23] and their references.

However, to the best of our knowledge, there are very few
papers published on the positive solution with the nonlocal
boundary value problem.

Motivated by the above, in the present paper, we consider
the following four-point nonlocal boundary value problems
of fractional order

CDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, (1)

u′(0)− βu′(ξ) = 0, u(1) + γu′(η) = 0, (2)

where α is a real number with1 < α ≤ 2, 0 < ξ <
η < 1, 0 < β < 1, γ > 0, CDα

0+ is the standard Caputo
fractional derivative. The functionf ∈ C([0, 1]× [0,+∞) →
[0,+∞)). By means of contraction map principle and the
fixed point index theory, we establish the uniqueness and
existence results of positive solution for the problem (1),
(2). To the best knowledge of the authors, no work has been
done to get positive solution of the problem (1), (2). It is
interesting to note that the Krein-Rutmann theorem is also
used in this paper.

The work presented in this paper has the following new
features. First, the existence of positive solutions for the four-
point fractional boundary value problems are considered.
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Second, the uniqueness results of positive solutions are
obtained. Third, the Krein-Rutmann theorem is used in this
paper.

II. T HE PRELIMINARY LEMMAS

For the convenience of readers, we provide some back-
ground material in this section.

Definition 2.1 [20] The Riemann-Liouville fractional in-
tegral of orderα for function y is defined as

Iα
0+y(t) =

1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds, α > 0.

Definition 2.2 [20] The Caputo’s derivative for functiony
is defined as

CDα
0+y(t) =

1
Γ(n− α)

∫ t

0

y(n)(s)ds

(t− s)α+1−n
, n = [α] + 1,

where[α] denotes the integer part of real numberα.
Lemma 2.1[20] Let α > 0, then the fractional differential

equation
CDα

0+u(t) = 0

has solutions

u(t) = c1 + c2t + c3t
2 + · · ·+ cntn−1,

ci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.

Lemma 2.2 [9] Let α > 0, then

Iα C
0+ Dα

0+u(t) = u(t) + c1 + c2t + c3t
2 + · · ·+ cntn−1

for someci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.
Lemma 2.3 [9] Let P be a cone in a Banach spaceX,

and Ω(P ) be a bounded open set inP. Suppose thatT :
Ω(P ) → P is a completely continuous operator. If there
existsu0 ∈ P\{θ} such that

u− Tu 6= µu0, ∀u ∈ ∂Ω(P ), µ ≥ 0,

then the fixed point indexi(T, Ω(P ), P ) = 0.
Lemma 2.4 Let P be a cone in a Banach spaceX.

Suppose thatT : P → P is a completely continuous
operator. If there exists a bounded open setΩ(P ) such that
each solution of

u = σTu, u ∈ P, σ ∈ [0, 1]

satisfies u ∈ Ω(P ), then the fixed point index
i(T, Ω(P ), P ) = 1.

Lemma 2.5 [9] Suppose thatA : C[0, 1] → C[0, 1] is
a completely continuous linear operator andA(P ) ⊂ P. If
there existψ ∈ C[0, 1]\(−P ) and a constantc > 0 such that
cAψ ≥ ψ, then the spectral radiusr(A) 6= 0 and A has a
positive eigenfunctionφ1 corresponding to its first eigenvalue
λ1 = (r(A))−1.
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Lemma 2.6 If y ∈ C[0, 1], 1 < α ≤ 2, then the unique
solution of

CDα
0+u(t) + y(t) = 0, 0 < t < 1, (3)

u′(0)− βu′(ξ) = 0, u(1) + γu′(η) = 0, (4)

is

u(t) =
∫ 1

0

G(t, s)y(s)ds,

where

G(t, s) =





− (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)

+
β(1 + γ − t)(ξ − s)α−2

(1− β)Γ(α− 1)
+

γ(η − s)α−2

Γ(α− 1)
,

s ≤ ξ, s ≤ t,
(1− s)α−1

Γ(α)
+

β(1 + γ − t)(ξ − s)α−2

(1− β)Γ(α− 1)

+
γ(η − s)α−2

Γ(α− 1)
, s ≤ ξ, t ≤ s,

− (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
+

γ(η − s)α−2

Γ(α− 1)
,

ξ ≤ s ≤ η, s ≤ t,
(1− s)α−1

Γ(α)
+

γ(η − s)α−2

Γ(α− 1)
, ξ ≤ s ≤ η, t ≤ s,

− (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
, η ≤ s, s ≤ t,

(1− s)α−1

Γ(α)
, η ≤ s, t ≤ s.

(5)
Proof We can apply Lemma 2.2 and Definition 2.1 to reduce
CDα

0+u(t) + y(t) = 0 to an equivalent integral equation

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds + c1 + c2t,

for somec1, c2 ∈ R. By condition (4), one has

c2 = − β

Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds + c2β,

− 1
Γ(α)

∫ 1

0

(1− s)α−1y(s)ds + c1 + c2

− γ

Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds + c2γ = 0,

so, we have

c1 =
1

Γ(α)

∫ 1

0

(1− s)α−1y(s)ds

+
β(1 + γ)

(1− β)Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds

+
γ

Γ(α− 1)

∫ η

0

(η − s)α−2y(s)ds

c2 =
−β

(1− β)Γ(α− 1)

∫ ξ

0

(ξ − s)α−2y(s)ds.

Therefore, theunique solution of this problem is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1y(s)ds

+ 1
Γ(α)

∫ 1

0
(1− s)α−1y(s)ds

+ β(1+γ−t)
(1−β)Γ(α−1)

∫ ξ

0
(ξ − s)α−2y(s)ds

+ γ
Γ(α−1)

∫ η

0
(η − s)α−2y(s)ds

=
∫ 1

0
G(t, s)y(s)ds.

The proof is complete.
Lemma 2.7 The functionG(t, s) defined by (5) satisfies

G(t, s) ≥ 0, for t, s ∈ (0, 1).
Proof For 0 ≤ s ≤ ξ ≤ 1,

g(t, s) ≥ − (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)

+
β(1 + γ − t)(ξ − s)α−2

(1− β)Γ(α− 1)
+

γ(η − s)α−2

Γ(α− 1)

≥ − (1− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
+

βγ(ξ − s)α−2

(1− β)Γ(α− 1)

+
γ(η − s)α−2

Γ(α− 1)
≥ 0.

For ξ ≤ s ≤ η,

g(t, s) ≥ − (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
+

γ(η − s)α−2

Γ(α− 1)

≥ − (1− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
+

γ(η − s)α−2

Γ(α− 1)
≥ 0.

For η ≤ s ≤ 1,

g(t, s) ≥ − (t− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)

≥ − (1− s)α−1

Γ(α)
+

(1− s)α−1

Γ(α)
= 0.

The proof is complete.

III. T HE UNIQUENESS RESULT

Consider the Banach spaceE = C[0, 1] with the norm

‖u‖ = max
t∈[0,1]

|u(t)|.

Let E be endowed with the orderingu ≤ v if u(t) ≤ v(t)
for all t ∈ [0, 1]. Denote the coneP ⊂ E by

P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]} .

For u ∈ P, define the operatorT : P → P by

(Tu)(t) =
∫ 1

0

G(t, s)f(s, u(s))ds, (6)

clearly the problem (1), (2) has a solutionu if and only if u
solves the operator equationu = Tu.

Lemma 3.1 The operatorT : P → P defined by (6) is
completely continuous.

Proof The operatorT : P → P is continuous in view
of the continuity ofG(t, s) andf(t, u). Let Bl = {u ∈ P :
‖u‖ ≤ l}, L = max

0≤t≤1, u∈Bl

|f(t, u)| + 1, for eachu ∈ Bl,

we have

|(Tu)(t)| =
∣∣∣
∫ 1

0
G(t, s)(f(s, u(s))ds

∣∣∣ ≤ L
∫ 1

0
G(t, s)ds

≤ L

(∫ ξ

0

[
1

Γ(α)
(1− s)α−1

+
β(1 + γ)

(1− β)Γ(α− 1)
(ξ − s)α−2

+
γ

Γ(α− 1)
(η − s)α−2

]
ds

+
∫ η

ξ

[
1

Γ(α)
(1− s)α−1 +

γ

Γ(α− 1)
(η − s)α−2

]
ds

+
∫ 1

η

1
Γ(α)

(1− s)α−1ds

= L

(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)
.
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This shows thatT maps bounded sets into bounded sets in
P.
Let Bl ⊂ P be a bounded set,t1, t2 ∈ [0, 1], t1 < t2, for
any u ∈ Bl, we have

|(Tu)(t2)− (Tu)(t1)|
= | ∫ 1

0
(G(t2, s)−G(t1, s))(f(s, u(s))ds|

≤ L

(∫ 1

0
|G(t2, s)−G(t1, s)|ds

)
.

G(t, s) is uniformly continuous in[0, 1]×[0, 1] because of the
continuity of G(t, s). So, for anyε > 0, there existsδ > 0,
whenever|t2 − t1| < δ, we have|G(t2, s)−G(t1, s)| < ε

L .
So, |(Tu)(t2) − (Tu)(t1)| < ε, which implies that{Tu :
u ∈ Bτ} is equicontinuous.
Therefore, the operatorT : P → P is completely continuous
by the Arzela-Ascoli theorem.

Theorem 3.2Assume thatf(t, u) satisfies

|f(t, u)−f(t, v)| < ω(t)|u−v|, t ∈ [0, 1], u, v ∈ [0,+∞).
(7)

If

∫ ξ

0
[(1− β)Γ(α− 1)(1− s)α−1

+ β(1 + γ)Γ(α)(ξ − s)α−2

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds
+

∫ η

ξ
[(1− β)Γ(α− 1)(1− s)α−1

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds

+
∫ 1

η
[(1− β)Γ(α− 1)(1− s)α−1]ω(s)ds

< (1− β)Γ(α)Γ(α− 1).

(8)

Then problem (1), (2) has a unique positive solution.

Proof In the following, we will proveTn is a contraction
operator forn sufficiently large under the condition (7) and
(8). Indeed, foru, v ∈ P, we have

|(Tu− Tv)(t)| = ∫ 1

0
G(t, s) |f(s, u(s))− f(s, v(s))| ds

< ‖u− v‖
(∫ ξ

0

[
1

Γ(α)
(1− s)α−1

+
β(1 + γ)

(1− β)Γ(α− 1)
(ξ − s)α−2

+
γ

Γ(α− 1)
(η − s)α−2

]
ω(s)ds

+
∫ η

ξ

[
1

Γ(α)
(1− s)α−1

+
γ

Γ(α− 1)
(η − s)α−2

]
ω(s)ds

+
∫ 1

η

1
Γ(α)

(1− s)α−1ω(s)ds

=
‖u− v‖

(1− β)Γ(α)Γ(α− 1)(∫ ξ

0
[(1− β)Γ(α− 1)(1− s)α−1

+ β(1 + γ)Γ(α)(ξ − s)α−2

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds
+

∫ η

ξ
[(1− β)Γ(α− 1)(1− s)α−1

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds

+
∫ 1

η
[(1− β)Γ(α− 1)(1− s)α−1]ω(s)ds

)
.

Denote

L =
∫ ξ

0
[(1− β)Γ(α− 1)(1− s)α−1

+ β(1 + γ)Γ(α)(ξ − s)α−2

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds
+

∫ η

ξ
[(1− β)Γ(α− 1)(1− s)α−1

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds

+
∫ 1

η
[(1− β)Γ(α− 1)(1− s)α−1]ω(s)ds,

we have

|(Tu− Tv)(t)| < L‖u− v‖
(1− β)Γ(α)Γ(α− 1)

,

consequently,

|(T 2u− T 2v)(t)|
=

∫ 1

0
G(t, s) |f(s, (Tu)(s))− f(s, (Tv)(s))| ds

<
L‖u− v‖

(1− β)Γ(α)Γ(α− 1)

∫ 1

0

G(t, s)ω(s)ds

<
L‖u− v‖

((1− β)Γ(α)Γ(α− 1))2(∫ ξ

0
[(1− β)Γ(α− 1)(1− s)α−1

+ β(1 + γ)Γ(α)(ξ − s)α−2

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds
+

∫ η

ξ
[(1− β)Γ(α− 1)(1− s)α−1

+ (1− β)γΓ(α)(η − s)α−2]ω(s)ds

+
∫ 1

η
[(1− β)Γ(α− 1)(1− s)α−1]ω(s)ds

)

=
L2‖u− v‖

((1− β)Γ(α)Γ(α− 1))2
.

By induction,we have

|(Tnu− Tnv)(t)| ≤ Ln‖u− v‖
((1− β)Γ(α)Γ(α− 1))n

.

Taking into account (8), choosen sufficiently large, we have

Ln

((1− β)Γ(α)Γ(α− 1))n
<

1
2
,

and therefore,

‖Tnu− Tnv‖ ≤ 1
2
‖u− v‖,

which gives the proof.

IV. EXISTENCE OF POSITIVE SOLUTIONS

In this section, we impose some growth conditions onf
which allow us to apply some fixed point index lemmas
to establish the existence results of positive solutions for
problem (1), (2).

Define an operatorA : E → E by

(Aψ)(t) =
∫ 1

0

G(t, s)ψ(s)ds. (9)

Then A is a completely continuous linear operator and
A(P ) ⊂ P. By virtue of the Krein-Rutmann theorem, we
have the following lemma.

Lemma 4.1SupposeA is defined by (9), then the spectral
radius r(A) > 0 and A has a positive eigenfunctionφ1

corresponding to its first eigenvalueλ1 = (r(A))−1.
Proof By Lemma 2.7, we haveG(t, s) > 0 for s, t ∈

(0, 1). Choose[t1, t2] ⊂ (0, 1) and φ ∈ C[0, 1] such that

IAENG International Journal of Applied Mathematics, 49:2, IJAM_49_2_09

(Advance online publication: 27 May 2019)

 
______________________________________________________________________________________ 



φ(t) ≥ 0, t ∈ [0, 1], φ(t) > 0, ∀t ∈ (t1, t2) and φ(t) =
0, ∀t /∈ (t1, t2). Then for t ∈ [t1, t2],

(Aφ)(t) =
∫ 1

0

G(t, s)φ(s)ds ≥
∫ t2

t1

G(t, s)φ(s)ds > 0,

so there exists a constantc > 0 such thatc(Aφ)(t) ≥
φ(t), t ∈ [0, 1]. In view of Lemma 2.5, we complete the
proof.

Theorem 4.2 Suppose thatf(t, 0) 6≡ 0, t ∈ (0, 1).
Furthermore,

0 ≤ limu→+∞maxt∈[0,1]
f(t, u)

u
<

{
1

Γ(α + 1)

+
β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

}−1 . (10)

Then problem(1), (2) has at least one positive solution.

Proof By (10), there existb > 0, 0 < N <

(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)−1

, such that

0 ≤ f(t, u) < Nu + b, t ∈ [0, 1], u ∈ [0,+∞).

Let

Bh = {u ∈ P |‖u− b

∫ 1

0

G(t, s)ds‖ ≤ h}

be a convex, bounded and closed subset of the Banach Space
E. For u ∈ Bh, we have

‖u‖ ≤ b‖
∫ 1

0

G(t, s)ds‖+ h

≤ h + b

(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)

and

|Tu(t)− b
∫ 1

0
G(t, s)ds|

≤ ∫ 1

0
G(t, s) |f(s, u(s))− b| ds

≤ N‖u‖ ∫ 1

0
G(t, s)ds

≤ N‖u‖
(

1
Γ(α + 1)

+
β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)

≤ N

(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)

{
h + b

(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)

< (Nh + b)(
1

Γ(α + 1)
+

β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)

< h

as long as

h >
b(

1
Γ(α + 1)

+
β(1 + γ)ξα−1

(1− β)Γ(α)
+

γηα−1

Γ(α)

)−1

−N

,

so we have T (Bh) ⊂ Bh. Using Schauder fixed point
theorem,T has at least one fixed point inBh, which is a
positive solution of problem (1), (2).

Theorem 4.3Assume that

lim
u→0+

min
t∈[0,1]

f(t, u)
u

> λ1, (11)

lim
u→+∞

max
t∈[0,1]

f(t, u)
u

< λ1, (12)

which λ1 is the first eigenvalue of the operator defined by
(9). Then problem (1), (2) has at least one positive solution.

Proof By (11), there existsl1 > 0 such that

f(t, u) ≥ λ1u, 0 ≤ t ≤ 1, 0 ≤ u ≤ r1.

Let ψ∗ be the positive eigenfunction ofA corresponding to
λ1, thusλ1Aψ∗ = ψ∗. For eachψ ∈ Bl1 ∩ P, onehas

(Tψ)(t) ≥ λ1

∫ 1

0

G(t, s)ψ(s)ds = λ1(Aψ)(t), t ∈ [0, 1].

(13)
Suppose thatT has no fixed point on∂Bl1 ∩ P, now we
prove that

ψ − Tψ 6= µψ∗, ∀ψ ∈ ∂Bl1 ∩ P, µ ≥ 0. (14)

If (14) is not true, there existψ1 ∈ ∂Bl1 ∩ P and µ0 > 0
such thatψ1 − Tψ1 = µ0ψ

∗, so

ψ1 = Tψ1 + µ0ψ
∗ ≥ µ0ψ

∗. (15)

Set µ∗ = sup{µ|ψ1 ≥ µψ∗}, clearly 0 < µ0 ≤ µ∗ < +∞,
andψ1 ≥ µ∗ψ∗ and therefore,λ1Aψ1 ≥ µ∗λ1Aψ∗ = µ∗ψ∗.
Therefore, by (13) and (15),

ψ1 = Tψ1 + µ0ψ
∗ ≥ λ1Aψ1 + µ0ψ

∗ ≥ µ∗ψ∗ + µ0ψ
∗,

which contradicts the definition ofµ. Hence, (14) holds.
Lemma 2.3 implies that

i(T, Bl1 ∩ P, P ) = 0. (16)

On the other hand, by (12), there exists0 < σ < 1 and
l2 > l1 such that

f(t, u) ≤ σλ1u, 0 ≤ t ≤ 1, u ≥ l2.

Let A1ψ = σλ1Aψ, ψ ∈ C[0, 1]. Then A1 : C[0, 1] →
C[0, 1] is a bounded linear operator andA1(P ) ⊂ P. Let

N = sup
u∈Bl2∩P, s∈[0,1]

f(s, u(s)) max
t∈[0,1]

∫ 1

0

G(t, s)ds,

clearly 0 < N < +∞. Let

S = {ψ ∈ P |ψ = µAψ, 0 ≤ µ ≤ 1}.
In the following, we prove thatS is bounded. For anyψ ∈ S,
set ψ(t) = min{ψ(t), l2} and E(ψ) = {t ∈ [0, 1]|ψ(t) >
l2},then

ψ(t) = µAψ(t) ≤ (Tψ)(t) ≤ ∫ 1

0
G(t, s)f(s, ψ(s))ds

=
∫

E(ψ)
G(t, s)f(s, ψ(s))ds

+
∫
[0,1]\E(ψ)

G(t, s)f(s, ψ(s))ds

≤ ∫ 1

0
G(t, s)σλ1ψ(s)ds +

∫ 1

0
G(t, s)f(s, ψ(s))ds

≤ (A1ψ)(t) + N, t ∈ [0, 1].

Thus ((I − A1)ψ)(t) ≤ N, t ∈ [0, 1]. Since λ1 is the
first eigenvalue ofA and 0 < σ < 1, so (r(A1))−1 > 1.
Therefore,(I −A1)−1 exists and

(I −A1)−1 = I + A1 + A2
1 + · · ·+ An

1 + · · ·.
It follows from A1(P ) ⊂ P that (I − A1)−1 ⊂ P. So,
ψ(t) ≤ (I − A1)−1N, t ∈ [0, 1]. Therefore,S is bounded.
Choosel3 > max{l2, ‖(I−A1)−1N‖}. By Lemma2.4, we
have

i(T, Bl3 ∩ P, P ) = 1. (17)
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In view of (16),(17), one has

i(T, (Bl3 ∩ P )\(Bl1 ∩ P ), P )
= i(T,Bl3 ∩ P, P )− i(T,Bl1 ∩ P, P ) = 1.

ThenT has at least one fixed point on(Bl3 ∩P )\(Bl1 ∩P ),
which meansthat problem (1), (2) has at least one positive
solution.
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