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Positive Solutions of a Four-point Fractional
Boundary Value Problem

Hongyan Jia

Abstract—In this paper, based on the contraction map prin- Second, the unigqueness results of positive solutions are

ciple and the fixed point index theory, sufficient conditions are gbtained. Third, the Krein-Rutmann theorem is used in this
established for the uniqueness and existence results of positivepaper'

solution for four-point boundary value problem of nonlinear
differential equation with Caputo’s fractional order derivative.
It is interesting to note that the Krein-Rutmann theorem is IIl. THE PRELIMINARY LEMMAS

also used in this paper. Such investigations will provide an . . :
important platform for gaining a deeper understanding of our For the cor_we_nlenf:e of r_eaders, we provide some back
environment. ground material in this section.

Definition 2.1 [20] The Riemann-Liouville fractional in-

Index Terms—Caputo’s fractional derivative, Positive solu- . . .
tegral of ordera for function y is defined as

tion, Four-point boundary value problem, Fixed point index.
1 t

I y(t) = =— t—s) ! ds, > 0.

0+ y(t) e /0 (t—s)"""y(s)ds, a

I. INTRODUCTION finiti h s derivative for f ]
RACTIONAL derivatives arose in various fields of.S ggf;:g:jogsz.z[zow e Caputo’s derivative for function

science and engineering such as control, porous medla, .
electrochemistry, riscoelasticity, electromagnetic and othet pya 1y _ 1 / y'™ (s)ds
fields, see [1-5] and the reference therein. As we all known, 0+ F'n—a) Jo (t—s)xti-n’

many phys!cal systems can be represented more accurafgly, .o [a] denotes the integer part of real number
using fractional derivative formulations [6,7], thus many | amima 2.1[20] Let a > 0, then the fractional differential
works on the basic theory of fractional calculus and fraCtion@huation

order differential equations have been established [6-10]. € D2 u(t) = 0
Recently, there have appeared a very large number of pa- 0+

pers, which are devoted to the existence of positive solutiohgs solutions

of nonlinear initial value problem or two point boundary

value problem, and the solvability of nonlocal boundary

value problem, see [11-23] and their references. GER, i=1,2-,n,n=a]+1
However, to the best of our knowledge, there are very few

papers published on the positive solution with the nonlocal Lémma 2.2[9] Let a > 0, then

bound.ary value problem. _ _ Ig+cDg+u(t) = u(t) + e+ ot +est? oo+ ept™ !
Motivated by the above, in the present paper, we consider

the following four-point nonlocal boundary value problem#or somec; € R, i=1,2,---,n,n = [a] + 1.

of fractional order Lemma 2.3[9] Let P be a cone in a Banach spaég

and 2(P) be a bounded open set iR Suppose thafl" :

n=[a]+1,

u(t) = c1 + cat + est? + - ept™ L,

C na _
Dgyut) + f(tut) =0, 0<t <1, @) Q(P) — P is a completely continuous operator. If there
u'(0) — pu'(€) =0, wu(l)+~u'(n) =0, (2) existsug € P\{6} such that
where o is a real number withl < o < 2, 0 < ¢ < u—Tu # pug, Yu € OUP), u>0,

n<l 0<pB<1 v>0, CD3+ is the standard Caputo
fractional derivative. The functiofi € C([0, 1] x [0, +00) —

[0,4+00)). By means of contraction map principle and th
fixed point index theory, we establish the uniqueness a
existence results of positive solution for the problem (1
(2). To the best knowledge of the authors, no work has be

then the fixed point index(T", (P), P) = 0.

Lemma 2.4 Let P be a cone in a Banach spaceé
yppose that’ : P — P is a completely continuous
perator. If there exists a bounded open @éP) such that

éﬁch solution of

done to get positive solution of the problem (1), (2). It is u=o0Tu, weP, o¢cl0,1]
interesting to note that the Krein-Rutmann theorem is also . o
used in this paper. satisfies v € Q(P), then the fixed point index

The work presented in this paper has the following nef?, AP),P) = 1. _
features. First, the existence of positive solutions for the four-Lemma 2.5[9] Suppose thatd : C[0,1] — C[0,1] is
point fractional boundary value problems are considered.Completely continuous linear operator aAdr) C P. If

there exist) € C|0, 1]\(—P) and a constant > 0 such that
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Lemma 2.6 If y € C[0,1], 1 < a < 2, then the unique The proof is complete.

solution of
CD0+u()+ () 0, 0<t<l,
u'(0) — Bu' (&) =0, u(l) +~u'(n) =0,

is )
u(t) = /O G(t, 5)y(s)ds,
where
(t _ S)a—l (1 _ s)a—l
Ma) | T()
Bty =) =5  ~(n—s)"
01— B(a—1) T(a—1)
s<E& s<t
(1—s5)! + BA+y—1t)(—s)7
{(04) - (1-p)(a-1)
4_% s<& t<s
§) — MNa-1) "’ -
G(tv ) _(t _ S)Q_P (1 _ S)a—l N ,Y(,r] _ S)a—?
I'«) I'«) MNa-1)
§<s<mn s<t
(L—s)*"" (-2
IN(e! P(a—1) Esssmtss,
(t—s)*"t (1—s)>7!
T T Ty "S%ssh
(1_3)a—1 n<s, t<s
Do) 7 ’

Proof We can apply Lemma 2.2 and Definition 2.1 to reduce
©Dg, u(t) +y(t) = 0 to an equivalent integral equation

for somecy, c2 € R. By condition (4), one has

7ﬁ ‘ —8)%2y(s)ds + ¢
s [ (€= 9 s+

1 ! a—1
T /0 (1 =9 y(s)ds+c1+ ¢

0 K ae
r(a_1)/0 (=)

so, we have

Cy = —

y(s)ds + cay = 0,

- 1 —5)% Ly(s)ds
o= e [, 1= )

B +7) 3 L
T ) €

Y K a—2
e @

e 13 o
@UﬂmW—UA@$QWM&

Therefore, thaunique solution of this problem is
u(t) = g5y Jo (= 5)° " y(s)ds
+FMJ31—sw*<>w
+ (1ﬁ(ﬁ1;{ja i) fo *y(s)ds
+ D a71 Jo ( )ds
1
= /5 G(t,s)y(s)ds.

t
/ (t —s8)* ty(s)ds + c; + cot,
0

Lemma 2.7 The functionG(t, s) defined by (5) satisfies

G(t,s) >0, for t,s € (0,1).

Proof For0 < s < ¢ <1,
(t—s)*"t (1—s)>!

gt s) = = T(a) I'() 2
LBy =0(E =92 (n—s)
(1-Pla-1) te 1
O N € ) N o (k) i
g @ U
Y(n—s
+ oy 20
For§ <s <,
(e (s Ay s)
g(t’ S) = (1]_—\(0[;&71 (11—‘(0[%04*1 I(‘(a iy 3[272
N —s n—s
=T T T T Mla—1) = '

Forn <s<1,

(t—s)*"t (1—s)>7!
s (1F(a§a71 (1F(a%a71
2T T T T

=0.

The proof is complete.

IIl. THE UNIQUENESS RESULT
Consider the Banach spaée= C[0, 1] with the norm

Jul = mase u(®)].

Let £ be endowed with the ordering < v if u(t) < v(t)
for all ¢ € [0, 1]. Denote the coné’ C E by

P={ueE: u(t)>0, tel0,1]}.
For v € P, define the operatdf’ : P — P by

= /0 G(t,s)f(s,u(s))ds, (6)

clearly the problem (1), (2) has a solutiarif and only if u
solves the operator equation= T'u.

Lemma 3.1 The operator’ : P — P defined by (6) is
completely continuous.

Proof The operator’ : P — P is continuous in view
of the continuity ofG(t,s) and f(t,u). Let B, ={u € P:

lul| <1}, L= max |f(¢,u)|+ 1, for eachu € By,
0<t<1, u€B;
we have

(Tu)®)] = |fy G(t,s)(f(s,u(s))ds’ < L [, G(t,s)ds

— 3 a—2
faare -
+ F(O;Y_ 0 (n— 5)0‘2} ds
+ f&n |:Fl(1&)(l - s)a—l + F(a’y 1) (77 - 8)a_2:| ds
—+ fnl W(l *S)a 1d$

B 1 Bl +y)Ext  met
‘L<rm+4>+<1—mrm>+'ma>)
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This shavs thatT maps bounded sets into bounded sets Denote

P. a—
Let B; C P be a bounded set;,t; € [0,1], ¢t; < to, for L= ffglﬁzlﬂ_gl;()of@)lgél__sfa_zl
anyu € B;, we have + (1= B)yL(a)(n — 5)°2w(s)ds
+ [ =BT (a—1)(1 - s)*
|(Tu)(t2) = (Tu)(t )\ +(1- ﬂ)wf(oz) n—8)*w(s)ds
= | [y (G(t2,5) = G(t1,5))(f(s,u(s))ds] + 0 (@ — 1)(1 — 8)*Yw(s)ds,
< L(fo |G t2,8) = G(ta, )|d8> we have
Lfju — o]

[(Tu — To)(t)] <

G(t, s) is uniformly continuous iff0, 1] x [0, 1] because of the
continuity of G(¢, s). So, for anye > 0, there exists) > 0,

whenever|ty —t1| < 0, we have|G(ta,s) — G(t1,s)| < £. consequently,
So, |(Tu)(ts) — (Tw)(t1)| < e, which implies that{Tu : |(T?u — T?v)(t)]
u € B;} is equicontinuous. = fo (t,9)|f(s,(Tu)(s)) — f(s,(Tv)(s))|ds
Therefore, the operatd@f : P — P is completely continuous Llju — UH 1
by the Arzela-Ascoli theorem. < A= AT(aa—1) J, G(t, s)w(s)ds
Theorem 3.2Assume thatf (¢, u) satisfies - Liju—v]|
(1 =B (@) (e —1))?
[f(tu)=f(t0)] <w@®)u—v], t€[0,1], u,ve [0’+(X(% S5 = BT (a - 1)(1 — s)o
If + 81+ (e)(§ — )2
+ &1 [— 6)76F)(Igé()(77 - ;zaQ}c;(S)ds
€11 — B (cr — sa-1 + [0 = B)l(a—1)(1 —s)*
o ate - e +(3 = 9T@)n - )7 ulo)ds
+ (L= BT (a)(n - 5)**Jw(s )ds + 11 = B — 1)1 — 5)*Yw(s)ds
+frn 1 - )F( 1)(1 . ) (8) ! LQHufUH
(fl - B ( )(7] 1;21 Jw )( s)ds ] (5)ds = (1 — B)T(a)l(a — 1))2'
(1 — ﬁ)l“( ) ( —1). By induction,we have

|(T"u—T"v)(t)\ < LnHu_UH
Then problem (1), (2) has a unique positive solution. (1 =BT () (a— 1))

Proof In the following, we will proveT™ is a contraction Takinginto account (8), choose sufficiently large, we have
operator forn sufficiently large under the condition (7) and

(8). Indeed, foru,v € P, we have L < 1’
(I=pr(@)(a—1))" 2
(Tu—To)(t)| = [y G(t,5)|f(s,u(s)) — f(s,0(s))|ds ~ and therefore,
1 1
<|lu—wv 1—s)o ! N — Tl < =l —
[ 5(1||£f0)[r( )( )" |T"u =T 0] < Zllu—v].
’y a—2 . .
4+ 7 (f—5 which gives the proof.
i-ra-n¢ "
+ F(aA/— 0 (n—5)*"?|w(s)ds IV. EXISTENCE OF POSITIVE SOLUTIONS
a1 . 1 In this section, we impose some growth conditions fon
+f£ r(a)( 5) which allow us to apply some fixed point index lemmas
n ¥ ( 1o=2| w(s)d to establish the existence results of positive solutions for
T(a—1) 1% w998 problem (1), (2).
n lel X )(1 B s)(’_lw(s)ds Define an operatod : £ — E by
1
_ lu— o] (A)(t) = / Gt 5)(s)ds. ©)
(1= (a)l(a—1) 0

Then A is a completely continuous linear operator and

3 -1
1-0)T(a—-1)(1—s)”
Jo =BT (=11 =) A(P) C P. By virtue of the Krein-Rutmann theorem, we

+ (1 + ) () (& — 5)*72 have the following lemma.
+ (1= B (a)(n — 8)* 2|w(s ) Lemma 4.1SupposeA is defined by (9), then the spectral
4—‘[5 [(1-)T(a—1)(1—s5)* radiusr(A) > 0 and A has a positive eigenfunction;
+ (1 B)'yl"( )(n— s)*w(s)ds corresponding to its first eigenvalug = (r(A))~'.
Proof By Lemma 2.7, we have(t,s) > 0 for s,t €
f P(a—1)(1 —)* Hw(s)ds ). (0,1). Choose[t,t2] € (0,1) and ¢ € C[0,1] such that

(Advance online publication: 27 May 2019)
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( o(t) > 0, Vt € (t1,t2) and ¢(t) =

Then fort € [tl,tQ]

which ), is the first eigenvalue of the operator defined by

0, t € [0,1],
( (9). Then problem (1), (2) has at least one positive solution.

) >
, Vit (;é tl,tz

to
/ G(t,s)¢p(s)ds > G(t,s)p(s)ds > 0,

so there exists a constant > 0 such thatc(Ag¢)(t) >

o(t), t € ¥

proof.
Theorem 4.2 Suppose thatf(¢,0) # 0, t € (0,1).
Furthermore,
— f(t u) 1
0 S hmu_,_,_oo maxte[O’l] <
u INa+1) . (0)

(= Al@) I
Then problem(1), (2) has at least one positive S({Iution.
Proof By (10), there exisb > 0, 0 < N < (M +
B+
(1=0)(e)  T(a)
0< f(t,u) < Nu+b, t €[0,1], u € [0,+00).

L Sl S s }_1
a)

a—1

—1
) , such that

Let L
By = {ue Pl|u— b/ G(t, s)ds|| < h)
0

be a convex, bounded and closed subset of the Banach S

E. Foru € By, we have
1
Jul <] [ Gle.s)as] + 1
0

1 paA+yEt !
Tat+1) - (1-B)a) & r<a>)

<o

and

[Tu(t) —bfo (t, s)ds|
<f0 ts\fsu( )) — blds
<N||u\|f0 (t,s)ds

1
< Nl (I‘(oz—|— nt

B(1+v)ert +7n“‘1)
T L T
v n
= <F(a +11)+ (;aﬁ)rgg_j F(ag_)l
v n
h“’(r(am TN r(a))

(Nh +b)
pA+yET !
(1—B)(a) r<a>)

<
(F(al-i- 1)

aslong as

L b

1 B+~ et
MNa+1) (1-p8)T () I'a)
so we have T'(By) C By.

1 ’
- N

positive solution of problem (1), (2).
Theorem 4.3 Assume that

lim min M > Aq, (11)
u—0+ t€[0,1] u
_ t

i max 209 (12)

u—+00 t€[0,1] u

[0,1]. In view of Lemma 2.5, we complete the);, thus \; Ay*

Using Schauder fixed poin
theorem,T" has at least one fixed point iB;, which is a

Proof By (11), there exist$; > 0 such that

flt,u) > Mu, 0<t<1, 0<u<r.

Let ¥* be the positive eigenfunction of corresponding to
= o*. For eachy) € B;, N P, onehas

€ [0,1].

(13)
Suppose thafl" has no fixed point ordB;, N P, now we
prove that

¢ =T # i, (14)

If (14) is not true, there exist; € 0B;, NP andug > 0
such thaty, — Ty, = poyp™*, SO

Py = TP1 + po™ > po™.

Setu* = sup{ulir > wp*}, clearly 0 < po < p* < +oo,
andiy; > p** and thereforeh; Ay, > p* M\ Av* = p*o*.
Therefore, by (13) and (15),

1 = TPy + po™ > M AL + po™ > p* Y™ + o™,

which contradicts the definition ofi. Hence, (14) holds.

1
(TY)(®) > M / G(t, s)(s)ds = s (Au)(8).

Vi) € 9B, NP, u>0.

(15)

daetr@ma 2.3 implies that

i(T, B, N P, P) =0. (16)

On the other hand, by (12), there exifts< ¢ < 1 and
I > 11 such that

flt,u) < oAu,

Let A1) = oM AY, ¢ € C[0,1]. Then 4, :
C0,1] is a bounded linear operator add (P) C

/Gt
clearly0 < N < +oo0. Let
S={¢yePlY=pAy, 0<p<1}.

In the following, we prove tha$' is bounded. For amy € S,

sety(t) = min{y(t),lo} and E(v) = {t € [0,1]4(t) >
lo},then

0<t<1, u>ls.

Clo,1] —
C P. Let
N = sup
w€B, NP, s€(0, 1]

max
fE [0,1]

V() = pAp(t) < (T)(t) < [y Glt,9)f(s,1(s))ds
= [ G P
+f[01\E(1p) G(t,5)f (s, ())
< fo (t,8)o A9 (s )ds+f0 s)f(s,1(s))ds
< (Aﬂ/J)( )+ N, telo, 1]
Thus (I — Aw)(t) < N, t € [0,1]. Since )\, is the

¢ first eigenvalue ofA and0 < o < 1, so (r(A;))~" > 1.

Therefore,(I — A;)~! exists and

(IT—A) P =T+A +A+- - + AT +

It follows from A,(P) c P that (I — A;)~!' c P. So,
Y(t) < (I —A;)"'N, t € [0,1]. Therefore,S is bounded.
Choosél > max{ls, ||(I—A;)"'N|}. By Lemma2.4, we
have

i(T,B,, N P,P) =1. (17)

(Advance online publication: 27 May 2019)
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In view of (16),(17), one has

i(T, (B, N P)\(B;, N P), P)
= i(T, B, N P,P)—i(T,B, NP,P) =1.

ThenT has at least one fixed point ¢, N P)\(B;, N P),
which meanghat problem (1), (2) has at least one positive
solution.
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