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Abstract—This paper is concerned with four-point fractional
boundary value problems involving the p-Laplacian operator.
By employing the Banach contraction mapping principle, we
establish the existence of solutions for the four-point fractional
boundary value problems involving the p-Laplacian operator.
The interesting point is fractional differential equation with the
p-Laplacian operator.

Index Terms—Four-point fractional boundary value prob-
lems, P-Laplacian operator, Caputo’s fractional derivative,
Banach contraction mapping principle.

I. I NTRODUCTION

T HE aim of this paper is to consider the existence and
uniqueness of solutions for the four-point fractional

boundary value problems with the p-Laplacian operator as
follows

(φp(CDαu(t)))′ = f(t, u(t)), 0 < t < 1, 0 < α ≤ 1,
(1)

φp(CDαu(0)) = aφp(CDαu(ξ)), u(1) = bu(η), (2)

where φp is a p-Laplacian operator, i.e.,φp(s) = |s|p−2 ·
s, p > 1, (φp)−1 = φq,

1
p + 1

q = 1, CDα is the standard
Caputo derivative,0 < ξ < η < 1, 0 < a < 1, b 6= 1, f ∈
C([0, 1]×R, R) is a given nonlinear function.

Fractional differential equations arise in many mathemat-
ical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of com-
plex medium or polymer rheology. In the literature [1-3],
the derivatives of fractional order are involved. Because the
fractional order models are more accurate than integer order
models, many scholars study fractional differential equa-
tions. Furthermore, fractional derivatives provide an excellent
instrument for the description of memory and hereditary
properies of various materials and processes. This memory
term insures the history and its impact to the present and
future, see [4]. In consequence, the subject of fractional
differential equations is gaining much importance and atten-
tion. For details, see [5-12] and the reference therein. Recent
results on fractional differential equations can be seen in the
literature [13-19].

Recently, there have appeared a very large number of
papers which study the existence of solutions of boundary
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value problems and initial value problems for the fractional
differential equations. In paper [21], the authors discussed the
existence of solutions for the following fractional differential
equation with multi-point boundary condition

cDq
0+u(t) + f(t, u(t), (Ku)(t), (Hu)(t)) = 0, t ∈ (0, 1),

a1u(0)− b1u
′(0) = d1u(ξ1), a2u(1) + b2u

′(1) = d2u(ξ2),

where1 < q ≤ 2 is a real number.
In [20], by applying some standard fixed point theorems,

the authors proved the existence and uniqueness of solutions
for a four-point nonlocal boundary value problem of nonlin-
ear integro-differential equations of fractional order

cDqx(t) = f(t, x(t), (φx)(t), (ψx)(t)), 0 < t < 1, 1 < q ≤ 2,

x′(0)+ax(η1) = 0, bx′(1)+x(η2) = 0, 0 < η1 ≤ η2 < 1,

wherecDq is the Caputo’s fractional derivative.
On the other hand, the p-Laplacian operator is widely used

in analyzing mathematical models of physical phenomena,
mechanics, nonlinear dynamics and many other related fields.
In consequence, the subject of boundary value problems
with p-Laplacian operator is gaining much importance and
attention. For details, see [22-26] and the references therein.

In paper [22], the authors studied the existence of multiple
positive solutions for Sturm-Liouville-like four-point bound-
ary value problem with p-Laplacian

(φp(u′))′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,

by using a fixed-point theorem of operators on a cone.
However, as far as we know, very few papers have com-

bined the fractional differential equation with the equation
involving the p-Laplacian operator. As we all know, when
the p passing fromp = 2 to p 6= 2, difficulties appeared
immediately. For the first case, forp = 2, we can change
the differential equation into a equivalent integral equation
easily and therefore, a Green’s function exists, however,
for p 6= 2, it is impossible since the differential operator
(φp(CDαu(t)))′ is nonlinear. Inspired by the above men-
tioned works, in this paper, we study the existence and
uniqueness of solutions for the four-point fractional boundary
value problems with the p-Laplacian operator. To the best
knowledge of the authors, no work has been done to obtain
the positive solution of the problem (1), (2). It is interesting
to note that the fractional differential equation with the p-
Laplacian operator.

The organization of this paper is as follows. In section
2, we present some necessary definitions and preliminary
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results thatwill be used to prove our main results. The proofs
of our main results are given in section 3. In section 4, we
will give an example to ensure our main result.

II. T HE PRELIMINARY LEMMAS

For the convenience of readers, we provide some back-
ground material in this section.

Definition 2.1 [20] The Riemann-Liouville fractional in-
tegral of orderα for function y is defined as

Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds, α > 0.

Definition 2.2 [20] The Caputo’s derivative for functiony
is defined as

CDαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)ds

(t− s)α+1−n
, n = [α] + 1,

where[α] denotes the integer part of real numberα.
Lemma 2.1 Let α > 0, then the fractional differential

equation
CDαu(t) = 0

has solutions

u(t) = c1+c2t+c3t
2+· · ·+cntn−1, ci ∈ R, i = 1, 2, · · · , n, n = [α]+1.

Lemma 2.2 [20] Let α > 0, then

Iα CDαu(t) = u(t) + c1 + c2t + c3t
2 + · · ·+ cntn−1

for someci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.
Lemma 2.3 If φp is a p-Laplacian operator, then it has

the following properties.
(1) If 1 < p < 2, xy > 0, and |x|, |y| ≥ m > 0, then

|φp(x)− φp(y)| ≤ (p− 1)mp−2|x− y|. (3)

(2) If p > 2, |x|, |y| ≤ M, then

|φp(x)− φp(y)| ≤ (p− 1)Mp−2|x− y|. (4)

Lemma 2.4 Suppose thaty ∈ C[0, 1], a, b 6= 1. Then the
following four-point fractional boundary value problem

(φp(CDαu(t)))′ = y(t), 0 < t < 1, 0 < α ≤ 1, (5)

φp(CDαu(0)) = aφp(CDαu(ξ)), u(1) = bu(η), (6)

is equivalent to the following integral equation:

u(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1φq

(∫ τ

0

h(s)ds

+
a

1− a

∫ ξ

0

h(s)ds

)
dτ+

+
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1φq

(∫ τ

0

h(s)ds

+
a

1− a

∫ ξ

0

h(s)ds

)
dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1φq

(∫ τ

0

h(s)ds

+
a

1− a

∫ ξ

0

h(s)ds

)
dτ.

(7)

proof By the equation(φp(CDαu(t)))′ = y(t), 0 <
t < 1, we have

φp(CDαu(t)) = φp(CDαu(0)) +
∫ t

0

y(s)ds. (8)

Sinceφp(CDαu(0)) = aφp(CDαu(ξ)), we deduce that

φp(CDαu(t)) = aφp(CDαu(ξ)) +
∫ t

0

y(s)ds. (9)

We chooset = ξ in (9), we have

φp(CDαu(ξ)) = aφp(CDαu(ξ)) +
∫ ξ

0

y(s)ds,

so,

φp(CDαu(ξ)) =
1

1− a

∫ ξ

0

y(s)ds. (10)

Hence, from(9), (10), we have the following form

φp(CDαu(t)) =
a

1− a

∫ ξ

0

y(s)ds +
∫ t

0

y(s)ds,

and then

CDαu(t) = φq

[
a

1− a

∫ ξ

0

y(s)ds +
∫ t

0

y(s)ds

]
. (11)

Using Lemma2.2 to Eq. (11), we can write

u(t) = Iq

{
φq

[
a

1− a

∫ ξ

0

y(s)ds +
∫ t

0

y(s)ds

]}
+ x(0)

=
1

Γ(α)

∫ t

0

(t− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ + x(0).

(12)
Then

u(1) =
1

Γ(α)

∫ 1

0

(1− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ + x(0),

u(η) =
1

Γ(α)

∫ η

0

(η − τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ + x(0).

By the boundary conditionu(1) = bu(η), we can have

1
Γ(α)

∫ 1

0

(1− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds+

∫ τ

0
y(s)ds

]
dτ + x(0)

− b

Γ(α)

∫ η

0

(η − τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds+

∫ τ

0
y(s)ds

]
dτ − bx(0) = 0.

So, we get

x(0) =
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds+

∫ τ

0
y(s)ds

]
dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ.

(13)
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Substituting (13)into (12), it is easy to get that

u(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ

+
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1φq

[
a

1− a

∫ ξ

0

y(s)ds

+
∫ τ

0
y(s)ds

]
dτ.

The proof is completed.

III. M AIN RESULT

This section is devoted to give an existence and uniqueness
of solutions for the four-point fractional boundary value
problem (1), (2).
To this end, we define the operatorT0 : C[0, 1] → C[0, 1]
by

T0u(t) = φq

[
a

1− a

∫ ξ

0

f(s, u(s))ds +
∫ t

0

f(s, u(s))ds

]
,

andT1 : C[0, 1] → C[0, 1] by

T1u(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ

+
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1u(τ)dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1u(τ)dτ.

Let T = T1◦T0, thenT : C[0, 1] → C[0, 1] is a completely
continuous operator. It is clear thatu is a solution of the
fractional boundary value problem (1), (2) if and only ifu
is a fixed point ofT.
Let E = C[0, 1] be the Banach space endowed with the usual
supremum norm‖ · ‖.

Theorem 3.1Supposep > 2, 0 < a < 1, b 6= 1,let

Υ =
(
1 + | b

1−b |+ | 1
1−b |

)
Γ(λ(q−2)+2)

Γ(λ(q−2)+2+α)

+
(

aξ
1−a + | abξ

(1−a)(1−b) |+ | aξ
(1−a)(1−b) |

)
Γ(λ(q−2)+1)

Γ(λ(q−2)+1+α) (q − 1)βq−2.

and thefollowing condition holds:
(H1) There exist constantsβ > 0, α + λ(q − 2) > 0,

0 < N <
1
Υ

.

such that

βλtλ−1 ≤ f(t, u), for any (t, u) ∈ [0, 1]×R, (14)

and

|f(t, u)−f(t, v)| ≤ N |u−v|, for t ∈ [0, 1], and(u, v) ∈ R.
(15)

Then the fractional boundary value problem (1), (2) has a
unique solution.

proof By (14), we can get

βtλ ≤
∫ t

0

f(s, u)ds, for any (t, u) ∈ [0, 1]×R.

By Lemma 2.3 and the definition of operatorT0, for any
u, v ∈ E, we have

|T0u(t)− T0v(t)|
=

∣∣∣∣φq

[
a

1− a

∫ ξ

0

f(s, u(s))ds +
∫ t

0

f(s, u(s))ds

]

−φq

[
a

1− a

∫ ξ

0

f(s, v(s))ds +
∫ t

0

f(s, v(s))ds

]∣∣∣∣

≤ (q − 1)(βtλ)q−2

∣∣∣∣
a

1− a

∫ ξ

0

f(s, u(s))ds

+
∫ t

0
f(s, u(s))ds− a

1− a

∫ ξ

0

f(s, v(s))ds

− ∫ t

0
f(s, v(s))ds

∣∣∣∣

≤ (q − 1)(βtλ)q−2

(∣∣∣∣
a

1− a

∫ ξ

0

f(s, u(s))ds

− a

1− a

∫ ξ

0

f(s, v(s))ds

∣∣∣∣
+

∣∣∣
∫ t

0
f(s, u(s))ds− ∫ t

0
f(s, v(s))ds

∣∣∣
)

≤ (q − 1)(βtλ)q−2

(
a

1− a

∫ ξ

0

|f(s, u(s))− f(s, v(s))| ds

+
∫ t

0

∣∣∣f(s, u(s))ds− ∫ t

0
f(s, v(s))

∣∣∣ ds

)

≤ (q − 1)(βtλ)q−2

(
aξ

1− a
N‖u− v‖+ tN‖u− v‖

)

= N(q − 1)(βtλ)q−2

(
aξ

1− a
+ t

)
‖u− v‖.

Hence,

|Tu(t)− Tv(t)| = |T1(T0u)(t)− T1(T0v)(t)|
=

∣∣∣∣
1

Γ(α)

∫ t

0

(t− τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

+
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

∣∣∣∣

≤
(

1
Γ(α)

∫ t

0

(t− τ)α−1τλ(q−2)

(
aξ

1− a
+ τ

)
dτ

+
∣∣∣∣

b

(1− b)Γ(α)

∣∣∣∣
∫ η

0
(η − τ)α−1τλ(q−2)

(
aξ

1−a + τ
)

dτ

+
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
∫ 1

0
(1− τ)α−1τλ(q−2)

(
aξ

1−a + τ
)

dτ

)

N(q − 1)βq−2‖u− v‖
=

(
1

Γ(α)

∫ 1

0

tα−1(1− τ)α−1tλ(q−2)+1τλ(q−2)+1tdτ

+ aξ
(1−a)Γ(α)

∫ 1

0
tα−1(1− τ)α−1tλ(q−2)τλ(q−2)tdτ

+
∣∣∣ b
(1−b)Γ(α)

∣∣∣
∫ 1

0
ηα−1(1− τ)α−1ηλ(q−2)+1τλ(q−2)+1ηdτ

+
∣∣∣ abξ
(1−a)(1−b)Γ(α)

∣∣∣
∫ 1

0
ηα−1(1− τ)α−1ηλ(q−2)τλ(q−2)ηdτ

+
∣∣∣ 1
(1−b)Γ(α)

∣∣∣
∫ 1

0
(1− τ)α−1τλ(q−2)+1dτ

+
∣∣∣ aξ
(1−a)(1−b)Γ(α)

∣∣∣
∫ 1

0
(1− τ)α−1τλ(q−2)dτ

)

N(q − 1)βq−2‖u− v‖
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=
(

1
Γ(α)

tα+1+λ(q−2)B(λ(q − 2) + 2, α)

+ aξ
(1−a)Γ(α) t

α+λ(q−2)B(λ(q − 2) + 1, α)

+
∣∣∣ b
(1−b)Γ(α)

∣∣∣ ηα+1+λ(q−2)B(λ(q − 2) + 2, α)

+
∣∣∣ abξ
(1−a)(1−b)Γ(α)

∣∣∣ ηα+λ(q−2)B(λ(q − 2) + 1, α)

+
∣∣∣ 1
(1−b)Γ(α)

∣∣∣ B(λ(q − 2) + 2, α)

+
∣∣∣ aξ
(1−a)(1−b)Γ(α)

∣∣∣ B(λ(q − 2) + 1, α)
)

N(q − 1)βq−2‖u− v‖

<

((
1

Γ(α)
+

∣∣∣∣
b

(1− b)Γ(α)

∣∣∣∣ +
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
)

B(λ(q − 2) + 2, α)
+

(
aξ

(1−a)Γ(α) +
∣∣∣ abξ
(1−a)(1−b)Γ(α)

∣∣∣ +
∣∣∣ aξ
(1−a)(1−b)Γ(α)

∣∣∣
)

B(λ(q − 2) + 1, α)
)

N(q − 1)βq−2‖u− v‖

=
((

1 +
∣∣∣ b
(1−b)

∣∣∣ +
∣∣∣ 1
(1−b)

∣∣∣
)

Γ(λ(q−2)+2)
Γ(λ(q−2)+2+α)

+
(

aξ
(1−a) +

∣∣∣ abξ
(1−a)(1−b)

∣∣∣ +
∣∣∣ aξ
(1−a)(1−b)

∣∣∣
)

Γ(λ(q−2)+1)
Γ(λ(q−2)+1+α)

)

N(q − 1)βq−2‖u− v‖
= L‖u− v‖,

where

L =
(

1 +
∣∣∣∣

b

1− b

∣∣∣∣ +
∣∣∣∣

1
1− b

∣∣∣∣
)

Γ(λ(q − 2) + 2)
Γ(λ(q − 2) + 2 + α)

+
(

aξ

1− a
+

∣∣∣∣
abξ

(1− a)(1− b)

∣∣∣∣ +
∣∣∣∣

aξ

(1− a)(1− b)

∣∣∣∣
)

Γ(λ(q − 2) + 1)
Γ(λ(q − 2) + 1 + α)

N(q − 1)βq−2.

By the condition(H1) of this theorem, we can get that0 <
L < 1, then

‖Tu− Tv‖ ≤ L‖u− v‖.
This implies thatT : E → E is a contraction mapping. In
view of the Banach contraction mapping principle, we get
that T has a unique fixed point inE, that is the boundary
value problem (1), (2) has a unique solution. The proof is
completed.

Theorem 3.2Suppose1 < p < 2, 0 < a < 1, b 6= 1, let

Θ = (q − 1)
(

H
1−a

)q−2

(
1

Γ(α)
+

∣∣∣∣
b

(1− b)Γ(α)

∣∣∣∣ +
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
) (

1
α(α+1) + aξ

1−a
1
α

)

and thefollowing condition holds:
(H2) There exists a nonnegative functionh ∈ L[0, 1] and
H :=

∫ 1

0
h(t)dt > 0 such that

|f(t, u)| ≤ h(t), for any (t, u) ∈ [0, 1]×R, (16)

and there exists a constantN with

0 < N <
1
Θ

with

|f(t, u)−f(t, v)| ≤ N |u−v|, for t ∈ [0, 1], and(u, v) ∈ R.
(17)

Then the fractional boundary value problem (1), (2) has a
unique solution.

proof By (16), for t ∈ [0, 1], we have
∣∣∣∣
∫ t

0

f(s, u(s))ds

∣∣∣∣ ≤
∫ 1

0

|f(s, u(s))| ds ≤
∫ 1

0

h(s)ds = H.

From Lemma 2.3 and (17), and for anyu, v ∈ E, we have

|T0u(t)− T0v(t)|
=

∣∣∣∣φq

[
a

1− a

∫ ξ

0

f(s, u(s))ds +
∫ t

0

f(s, u(s))ds

]

−φq

[
a

1− a

∫ ξ

0

f(s, v(s))ds +
∫ t

0

f(s, v(s))ds

]∣∣∣∣

≤ (q − 1)
(

H
1−a

)q−2
∣∣∣∣

a

1− a

∫ ξ

0

f(s, u(s))ds

+
∫ t

0
f(s, u(s))ds− a

1− a

∫ ξ

0

f(s, v(s))ds−
∫ t

0

f(s, v(s))ds

∣∣∣∣

≤ (q − 1)
(

H
1−a

)q−2
(∣∣∣∣

a

1− a

∫ ξ

0

f(s, u(s))ds

− a

1− a

∫ ξ

0

f(s, v(s))ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

f(s, u(s))ds−
∫ t

0

f(s, v(s))ds

∣∣∣∣
)

≤ (q − 1)
(

H
1−a

)q−2
(

a

1− a

∫ ξ

0

|f(s, u(s))− f(s, v(s))| ds

+
∫ t

0

∣∣∣f(s, u(s))ds− ∫ t

0
f(s, v(s))

∣∣∣ ds

)

≤ (q − 1)
(

H
1−a

)q−2
(

aξ

1− a
N‖u− v‖+ tN‖u− v‖

)

= N(q − 1)
(

H
1−a

)q−2
(

aξ

1− a
+ t

)
‖u− v‖.

Therefore,

|Tu(t)− Tv(t)| = |T1(T0u)(t)− T1(T0v)(t)|
=

∣∣∣∣
1

Γ(α)

∫ t

0

(t− τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

+
b

(1− b)Γ(α)

∫ η

0

(η − τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

− 1
(1− b)Γ(α)

∫ 1

0

(1− τ)α−1 ((T0u)(τ)− (T0v)(τ)) dτ

∣∣∣∣

≤
(

1
Γ(α)

∫ t

0

(t− τ)α−1

(
aξ

1− a
+ τ

)
dτ

+
∣∣∣∣

b

(1− b)Γ(α)

∣∣∣∣
∫ η

0
(η − τ)α−1

(
aξ

1−a + τ
)

dτ

+
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
∫ 1

0
(1− τ)α−1

(
aξ

1−a + τ
)

dτ

)

N(q − 1)
(

H
1−a

)q−2

‖u− v‖

=
[

1
Γ(α)

(
tα+1

α(α + 1)
+

aξ

1− a

tα

α

)

+
∣∣∣∣

b

(1− b)Γ(α)

∣∣∣∣
(

ηα+1

α(α+1) +
aξ

1− a

ηα

α

)

+
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
(

1
α(α+1) +

aξ

1− a

1
α

)]

N(q − 1)
(

H
1−a

)q−2

‖u− v‖
= N(q − 1)

(
H

1−a

)q−2

(
1

Γ(α)
+

∣∣∣∣
b

(1− b)Γ(α)

∣∣∣∣ +
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
)

(
1

α(α+1) + aξ
1−a

1
α

)
‖u− v‖

= L1‖u− v‖,
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where

L1 = N(q−1)
(

H

1− a

)q−2 (
1

Γ(α)
+

∣∣∣∣
b

(1− b)Γ(α)

∣∣∣∣+
∣∣∣∣

1
(1− b)Γ(α)

∣∣∣∣
)

(
1

α(α + 1)
+

aξ

1− a

1
α

)
.

According tothe condition(H2) of this theorem, we can get
that 0 < L1 < 1, then

‖Tu− Tv‖ ≤ L1‖u− v‖.

This implies thatT : E → E is a contraction mapping. In
view of the Banach contraction mapping principle, we get
that T has a unique fixed point inE, that is the boundary
value problem (1), (2) has a unique solution. The proof is
completed.

IV. EXAMPLE

Example We consider the following nonlinear fractional
boundary value problem

(φ 3
2
(CD

1
2 u(t)))′ =

√
π

32
3t2cos2 u

3
, 0 < t < 1, (18)

φ 3
2
(CD

1
2 u(0)) =

2
3
φ 3

2
(CD

1
2 u(

1
3
)), u(1) = 3u(

2
3
), (19)

where

p =
3
2
, α =

1
2
, ξ =

1
3
, η =

2
3
, a =

2
3
, b = 3,

f(t, u) =
√

π

32
3t2cos2 u

3
∈ C([0, 1]×R, R).

Chooseh(t) =
√

π
32 3t2, then

∫ 1

0
h(t)dt =

∫ 1

0

√
π

32 3t2 =
√

π
32 >

0, we obtainH =
∫ 1

0
h(t)dt =

√
π

32 . Taking N =
√

π
32 , in

view of Γ( 1
2 ) =

√
π, q = 3, we have

0 < N <
2
3
,

and

L1 = N(q − 1)
(

H
1−a

)q−2
(

1
Γ(α)

+
∣∣∣∣

b

(1− b)Γ(α)

∣∣∣∣
+

∣∣∣∣
1

(1− b)Γ(α)

∣∣∣∣
) (

1
α(α+1) + aξ

1−a
1
α

)
= 3

√
π

64 < 1.

We can check that the nonlinear termf(t, u) satisfies:
(1) |f(t, u)| ≤

√
π

32 3t2 = h(t), for (t, u) ∈ [0, 1]×R, ;

(2)
|f(t, u)− f(t, v)| =

∣∣∣
√

π
32 3t2cos2 u

3 −
√

π
32 3t2cos2 v

3

∣∣∣
≤

√
π

32 3t2
∣∣cos2 u

3 − cos2 v
3

∣∣
≤

√
π

32 t2|u− v| ≤
√

π
32 |u− v| = N |u− v|.

for t ∈ [0, 1], u, v ∈ R. Then all assumptions of Theorem 3.2
are satisfied. Therefore, by Theorem 3.2, fractional boundary
value problem (18), (19) has a unique solution.
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