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Abstract—The application of a hybrid block method to
solving third order ordinary differential equations is considered
in this article. The hybrid method is developed for a set of
equidistant hybrid points using a new generalized linear block
method (GLBM). The equations for the GLBM takes a similar
form as the conventional linear multistep method, however
the form produces the needed family of schemes required to
simultaneously evaluate the solution of the third order ordinary
differential equations at individual grid points in a self-starting
mode. The hybrid block method obtained using GLBM is
investigated and the block method possesses good basic property
of a numerical method which is displayed in the numerical
results obtained. Furthermore, the comparison to works of the
past authors shows that the new hybrid block gives impressive
results in terms of error and consistency particularly for large
intervals.

Index Terms—Hybrid Block Method, Generalized Linear
Block Methods, Third Order, One-Step, Ordinary Differential
Equations.

I. INTRODUCTION

The direct numerical approximation of general third order
initial value problems (IVPs) of the form (1) below

y′′′ = f(x, y, y′, y′′), y(xn) = a, y′(xn) = b, y′′(xn) = c
(1)

(where a, b and c are given constants) have been vastly
considered in literature by several authors such as [1]–[7]
amongst others. These authors focused on the direct solution
of (1) due to the shortcomings of reduction to a system of
three first order initial value problems which include both
human and computational burden [8], [9].
Hybrid block methods are one of numerical methods
adopted for directly approximating (1). It is seen to perform
favourably well when numerically approximating solutions
to initial value problems as it combines the advantages of
block method and overcoming the zero stability barrier in
linear multistep method [7].
Some authors who have presented hybrid block methods
include [1], [7], [10], [11], however the generalized form
for equidistant hybrid points was not attempted. In addi-
tion, when considering large intervals, the numerical results
obtained in comparison to the exact solution can also be
improved. This informs the motivation for this article to
develop a new block method with generalized equidistant
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hybrid points rξ. A new linear block method is introduced in
the methodology and detailed explanations on the application
is discussed in the following sections.

II. DEVELOPMENT OF THE BLOCK METHOD

Consider the generalized linear block method in the equa-
tion below

yn+rξ =
2∑
i=0

(rξh)
i

i!
y(i)n +

4∑
i=0

(φξifn+ri), ξ = 1, 2, 3, 4

(2)
whose corresponding derivatives are

y
(a)
n+rξ =

∑3−(a+1)
i=0

(rξh)i

i! y
(i+a)
n +

∑4
i=0 (ωξiafn+ri);

a = 1(ξ=1,2,3,4), a = 2(ξ=1,2,3,4)
(3)

where r is the distance between consecutive hybrid points,
ξ represents the hybrid points which in this article is ξ =
1, 2, 3, 4. These equations presented in equations (2) and
(3) above are used to develop the hybrid block method for
solving third order ordinary differential equations.
Expanding (2) and (3) yields

yn+r = yn + rhy′n + (rh)2

2! y′′n
+(φ10fn + φ11fn+r + φ12fn+2r + φ13fn+3r + φ14fn+4r)

yn+2r = yn + 2rhy′n + (2rh)2

2! y′′n
+(φ20fn + φ21fn+r + φ22fn+2r + φ23fn+3r + φ24fn+4r)

yn+3r = yn + 3rhy′n + (3rh)2

2! y′′n
+(φ30fn + φ31fn+r + φ32fn+2r + φ33fn+3r + φ34fn+4r)

yn+4r = yn + 4rhy′n + (4rh)2

2! y′′n
+(φ40fn + φ41fn+r + φ42fn+2r + φ43fn+3r + φ44fn+4r)

(4)
y′n+r = y′n + (rh)y′′n + (ω101fn + ω111fn+r
+ω121fn+2r + ω131fn+3r + ω141fn+4r)
y′n+2r = y′n + (2rh)y′′n + (ω201fn + ω211fn+r
+ω221fn+2r + ω231fn+3r + ω241fn+4r)
y′n+3r = y′n + (3rh)y′′n + (ω301fn + ω311fn+r
+ω321fn+2r + ω331fn+3r + ω341fn+4r)
y′n+4r = y′n + (4rh)y′′n + (ω401fn + ω411fn+r
+ω421fn+2r + ω431fn+3r + ω441fn+4r)

y′′n+r = y′′n + (ω102fn + ω112fn+r + ω122fn+2r

+ω132fn+3r + ω142fn+4r)
y′′n+2r = y′′n + (ω202fn + ω212fn+r + ω222fn+2r

+ω232fn+3r + ω242fn+4r)
y′′n+3r = y′′n + (ω302fn + ω312fn+r + ω322fn+2r

+ω332fn+3r + ω342fn+4r)
y′′n+4r = y′′n + (ω402fn + ω412fn+r + ω422fn+2r

+ω432fn+3r + ω442fn+4r)
(5)
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To obtain the unknown φ and ω coefficients, Taylor ex-
pansion as discussed in [12] is adopted. Now, the Taylor
expansion for y(n)n+r = y(n)(xn + rh) about xn is defined as

y(n)(xn + rh) = y(n)(xn) + rhy(n+1)(xn)

+ (rh)2

2! y(n+2)(xn) + . . .
(6)

where y(q)(xn) = dqy
dxq |x=xn

, q = 1, 2, . . .
Expanding each individual term in the first expression of
equation (4) using equation (6) above gives

yn + (rh)y′n + (rh)2

2! y′′n + (rh)3

3! y′′′n + (rh)4

4! yivn + (rh)5

5! yvn
+ (rh)6

6! yvin + (rh)7

7! yviin + · · · = yn + (rh)y′n + (rh)2

2! y′′n
+(φ10y

′′′
n + φ11(y

′′′
n + (rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin
+ (rh)4

4! yviin + . . . ) + φ12(y
′′′
n + (2rh)yivn + (2rh)2

2! yvn
+ (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + φ13(y
′′′
n + (3rh)yivn

+ (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . ) + φ14(y
′′′
n

+(4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

which can be written in the matrix form Ax1 = B1 where

A =


1 1 1 1 1

0 (rh)1

1!
(2rh)1

1!
(3rh)1

1!
(4rh)1

1!

0 (rh)2

2!
(2rh)2

2!
(3rh)2

2!
(4rh)2

2!

0 (rh)3

3!
(2rh)3

3!
(3rh)3

3!
(4rh)3

3!

0 (rh)4

4!
(2rh)4

4!
(3rh)4

4!
(4rh)4

4!

 ,

x1 =


φ10
φ11
φ12
φ13
φ14

 , B1 =



(rh)3

3!
(rh)4

4!
(rh)5

5!
(rh)6

6!
(rh)7

7!


Adopting matrix inverse approach, the φ−coefficients are
obtained to be

[φ10, φ11, φ12, φ13, φ14]
T

=
[
113r3h3

1120 , 107r
3h3

1008 ,− 103r3h3

1080 , 43r
3h3

1680 ,− 47r3h3

10080

]T
(7)

Similarly, expanding each individual term in the second
expression of equation (4) using equation (6) yields

yn + (2rh)y′n + (2rh)2

2! y′′n + (2rh)3

3! y′′′n + (2rh)4

4! yivn + (2rh)5

5! yvn
+ (2rh)6

6! yvin + (2rh)7

7! yviin + · · · = yn + (2rh)y′n + (2rh)2

2! y′′n
+(φ20y

′′′
n + φ21(y

′′′
n + (rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin
+ (rh)4

4! yviin + . . . ) + φ22(y
′′′
n + (2rh)yivn + (2rh)2

2! yvn
+ (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + φ23(y
′′′
n + (3rh)yivn

+ (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . ) + φ24(y
′′′
n

+(4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

with corresponding matrix form Ax2 = B2 where

x2 =


φ20
φ21
φ22
φ23
φ24

 , B2 =



(2rh)3

3!
(2rh)4

4!
(2rh)5

5!
(2rh)6

6!
(2rh)7

7!



The resulting φ−coefficients from matrix inverse approach
are

[φ20, φ21, φ22, φ23, φ24]
T

=
[
331r3h3

630 , 332r
3h3

315 ,− 8r3h3

21 , 52r
3h3

315 ,− 19r3h3

630

]T (8)

Considering the third expression of equation (4), individual
terms are expanded using equation (6) to obtain

yn + (3rh)y′n + (3rh)2

2! y′′n + (3rh)3

3! y′′′n + (3rh)4

4! yivn
+ (3rh)5

5! yvn + (3rh)6

6! yvin + (3rh)7

7! yviin + · · · = yn + (3rh)y′n
+ (3rh)2

2! y′′n + (φ30y
′′′
n + φ31(y

′′′
n + (rh)yivn + (rh)2

2! yvn
+ (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + φ32(y
′′′
n + (2rh)yivn

+ (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + φ33(y
′′′
n

+(3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . )

+φ34(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin
+ (4rh)4

4! yviin + . . . )

having matrix form Ax3 = B3 with

x3 =


φ30
φ31
φ32
φ33
φ34

 , B3 =



(3rh)3

3!
(3rh)4

4!
(3rh)5

5!
(3rh)6

6!
(3rh)7

7!


and

[φ30, φ31, φ32, φ33, φ34]
T

=
[
1431r3h3

1120 , 1863r
3h3

560 ,− 243r3h3

560 , 45r
3h3

112 ,− 81r3h3

1120

]T
(9)

Likewise, considering the fourth and last expression of
equation (4), individual terms are expanded using equation
(6) to obtain

yn + (4rh)y′n + (4rh)2

2! y′′n + (4rh)3

3! y′′′n + (4rh)4

4! yivn
+ (4rh)5

5! yvn + (4rh)6

6! yvin + (4rh)7

7! yviin + · · · = yn

+(4rh)y′n + (4rh)2

2! y′′n + (φ40y
′′′
n + φ41(y

′′′
n + (rh)yivn

+ (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + φ42(y
′′′
n

+(2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . )

+φ43(y
′′′
n + (3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin
+ (3rh)4

4! yviin + . . . ) + φ44(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn
+ (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

written in the matrix form Ax4 = B4,

x4 =


φ40
φ41
φ42
φ43
φ44

 , B4 =



(4rh)3

3!
(4rh)4

4!
(4rh)5

5!
(4rh)6

6!
(4rh)7

7!


and The φ−coefficients are obtained as

[φ40, φ41, φ42, φ43, φ44]
T

=
[
248r3h3

105 , 2176r
3h3

315 , 32r
3h3

105 , 128r
3h3

105 ,− 8r3h3

63

]T (10)

Moving on to obtaining the ω−coefficients in equation (5).
Expanding each individual term in the first expression of
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equation (5) using equation (6) above gives

y′n + (rh)y′′n + (rh)2

2! y′′′n + (rh)3

3! yivn + (rh)4

4! yvn + (rh)5

5! yvin
+ (rh)6

6! yviin + · · · = y′n + (rh)y′′n + (ω101y
′′′
n + ω111(y

′′′
n

+(rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin + . . . )

+ω121(y
′′′
n + (2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin
+ . . . ) + ω131(y

′′′
n + (3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin
+ (3rh)4

4! yviin + . . . ) + ω141(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn
+ (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

which can be written in the matrix form Ax5 = B5 where

x5 =


ω101

ω111

ω121

ω131

ω141

 , B5 =



(rh)2

2!
(rh)3

3!
(rh)4

4!
(rh)5

5!
(rh)6

6!


and The matrix inverse approach is also adopted to obtain
the ω−coefficients as

[ω101, ω111, ω121, ω131, ω141]
T

=
[
367r2h2

1440 , 3r
2h2

8 ,− 47r2h2

240 , 29r
2h2

360 ,− 7r2h2

480

]T (11)

For the second expression in equation (5), each individual
term are likewise expanded using equation (6) to obtain

y′n + (2rh)y′′n + (2rh)2

2! y′′′n + (2rh)3

3! yivn + (2rh)4

4! yvn
+ (2rh)5

5! yvin + (2rh)6

6! yviin + · · · = y′n + (2rh)y′′n + (ω201y
′′′
n

+ω211(y
′′′
n + (rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin
+ . . . ) + ω221(y

′′′
n + (2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin
+ (2rh)4

4! yviin + . . . ) + ω231(y
′′′
n + (3rh)yivn + (3rh)2

2! yvn
+ (3rh)3

3! yvin + (3rh)4

4! yviin + . . . ) + ω241(y
′′′
n + (4rh)yivn

+ (4rh)2

2! yvn + (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

which can be written in the matrix form Ax6 = B6 where

x6 =


ω201

ω211

ω221

ω231

ω241

 , B6 =



(2rh)2

2!
(2rh)3

3!
(2rh)4

4!
(2rh)5

5!
(2rh)6

6!


and

[ω201, ω211, ω221, ω231, ω241]
T

=
[
53r2h2

90 , 8r
2h2

5 ,− r
2h2

3 , 8r
2h2

45 ,− r
2h2

30

]T (12)

Moving to the third expression in equation (5). In same
manner, equation (6) and (7) are adopted to expand its
individual terms to obtain

y′n + (3rh)y′′n + (3rh)2

2! y′′′n + (3rh)3

3! yivn + (3rh)4

4! yvn
+ (3rh)5

5! yvin + (3rh)6

6! yviin + · · · = y′n + (3rh)y′′n
+(ω301y

′′′
n + ω311(y

′′′
n + (rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin
+ (rh)4

4! yviin + . . . ) + ω321(y
′′′
n + (2rh)yivn + (2rh)2

2! yvn
+ (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + ω331(y
′′′
n + (3rh)yivn

+ (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . ) + ω341(y
′′′
n

+(4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

in the matrix form Ax7 = B7 where

x7 =


ω301

ω311

ω321

ω331

ω341

 , B7 =



(3rh)2

2!
(3rh)3

3!
(3rh)4

4!
(3rh)5

5!
(3rh)6

6!


and

[ω301, ω311, ω321, ω331, ω341]
T

=
[
147r2h2

160 , 117r
2h2

40 , 27r
2h2

80 , 3r
2h2

8 ,− 9r2h2

160

]T (13)

Now consider the fourth expression in equation (5), which is
the last expression for the first derivative schemes. Individual
terms are also expanded using equation (6) to obtain

y′n + (4rh)y′′n + (4rh)2

2! y′′′n + (4rh)3

3! yivn + (4rh)4

4! yvn
+ (4rh)5

5! yvin + (4rh)6

6! yviin + · · · = y′n + (4rh)y′′n
+(ω401y

′′′
n + ω411(y

′′′
n + (rh)yivn + (rh)2

2! yvn + (rh)3

3! yvin
+ (rh)4

4! yviin + . . . ) + ω421(y
′′′
n + (2rh)yivn + (2rh)2

2! yvn
+ (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + ω431(y
′′′
n + (3rh)yivn

+ (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . ) + ω441(y
′′′
n

+(4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

which can be written in the matrix form Ax8 = B8 where

x8 =


ω401

ω411

ω421

ω431

ω441

 , B8 =



(4rh)2

2!
(4rh)3

3!
(4rh)4

4!
(4rh)5

5!
(4rh)6

6!


with resulting ω−coefficients obtained to be

[ω401, ω411, ω421, ω431, ω441]
T

=
[
56r2h2

45 , 64r
2h2

15 , 16r
2h2

15 , 64r
2h2

45 , 0
]T (14)

The fifth expression in equation (5) is the first expression for
the second derivative schemes. Expanding each individual
term in this fifth expression of equation (5) using equation
(6) above gives

y′′n + (rh)y′′′n + (rh)2

2! yivn + (rh)3

3! yvn + (rh)4

4! yvin + (rh)5

5! yviin
+ · · · = y′′n + (ω102y

′′′
n + ω112(y

′′′
n + (rh)yivn + (rh)2

2! yvn
+ (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + ω122(y
′′′
n + (2rh)yivn

+ (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . ) + ω132(y
′′′
n

+(3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin + . . . )

+ω142(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin
+ (4rh)4

4! yviin + . . . )

implying the matrix form Ax9 = B9 with

x9 =


ω102

ω112

ω122

ω132

ω142

 , B9 =



(rh)1

1!
(rh)2

2!
(rh)3

3!
(rh)4

4!
(rh)5

5!


The ω−coefficients are obtained to be

[ω102, ω112, ω122, ω132, ω142]
T

=
[
251rh
720 , 323rh320 ,− 11rh

30 , 53rh360 ,−
19rh
720

]T (15)
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Similarly, expanding each individual term in the sixth ex-
pression in equation (5) using equation (6) yields

y′′n + (2rh)y′′′n + (2rh)2

2! yivn + (2rh)3

3! yvn + (2rh)4

4! yvin
+ (2rh)5

5! yviin + · · · = y′′n + (ω202y
′′′
n + ω212(y

′′′
n + (rh)yivn

+ (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + ω222(y
′′′
n

+(2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . )

+ω232(y
′′′
n + (3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin
+ (3rh)4

4! yviin + . . . ) + ω242(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn
+ (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

with corresponding matrix form Ax10 = B10 where

x10 =


ω202

ω212

ω222

ω232

ω242

 , B10 =



(2rh)1

1!
(2rh)2

2!
(2rh)3

3!
(2rh)4

4!
(2rh)5

5!


and

[ω202, ω212, ω222, ω232, ω242]
T

=
[
29rh
90 , 62rh45 , 4rh15 ,

2rh
360 ,−

rh
90

]T (16)

For the seventh expression in equation (5), individual terms
are expanded using equation (6) to obtain

y′′n + (3rh)y′′′n + (3rh)2

2! yivn + (3rh)3

3! yvn + (3rh)4

4! yvin
+ (3rh)5

5! yviin + · · · = y′′n + (ω302y
′′′
n + ω312(y

′′′
n + (rh)yivn

+ (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + ω322(y
′′′
n

+(2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . )

+ω332(y
′′′
n + (3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin + (3rh)4

4! yviin
+ . . . ) + ω342(y

′′′
n + (4rh)yivn + (4rh)2

2! yvn + (4rh)3

3! yvin
+ (4rh)4

4! yviin + . . . )

written in the matrix form Ax11 = B11 where

x11 =


ω302

ω312

ω322

ω332

ω342

 , B11 =



(3rh)1

1!
(3rh)2

2!
(3rh)3

3!
(3rh)4

4!
(3rh)5

5!


and

[ω302, ω312, ω322, ω332, ω342]
T

=
[
27rh
80 , 51rh40 , 9rh10 ,

21rh
40 ,− 3rh

80

]T (17)

Finally, for the eighth expression in equation (5) which is the
last expression for the derivative schemes, individual terms
are also expanded using equation (6) as given

y′′n + (4rh)y′′′n + (4rh)2

2! yivn + (4rh)3

3! yvn + (4rh)4

4! yvin
+ (4rh)5

5! yviin + · · · = y′′n + (ω402y
′′′
n + ω412(y

′′′
n + (rh)yivn

+ (rh)2

2! yvn + (rh)3

3! yvin + (rh)4

4! yviin + . . . ) + ω422(y
′′′
n

+(2rh)yivn + (2rh)2

2! yvn + (2rh)3

3! yvin + (2rh)4

4! yviin + . . . )

+ω432(y
′′′
n + (3rh)yivn + (3rh)2

2! yvn + (3rh)3

3! yvin
+ (3rh)4

4! yviin + . . . ) + ω442(y
′′′
n + (4rh)yivn + (4rh)2

2! yvn
+ (4rh)3

3! yvin + (4rh)4

4! yviin + . . . )

with corresponding matrix form Ax12 = B12 where

x12 =


ω402

ω412

ω422

ω432

ω442

 , B12 =



(4rh)1

1!
(4rh)2

2!
(4rh)3

3!
(4rh)4

4!
(4rh)5

5!


and

[ω402, ω412, ω422, ω432, ω442]
T

=
[
14rh
45 , 64rh45 , 8rh15 ,

64rh
45 , 14rh45

]T (18)

Substituting the values obtained for the unknown coefficients
in equations (7), (8), (9) and (10), into equation (4) gives the
block form

I4Ynr = A1Zn +A2Zn1 +A3Zn2 +B1Fn +B2Fnr (19)

where

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Ynr =


yn+r
yn+2r

yn+3r

yn+4r

 ,

A1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , Zn =


yn−3r
yn−2r
yn−r
yn



A2 =


0 0 0 rh
0 0 0 2rh
0 0 0 3rh
0 0 0 4rh

 , Zn1 =


y′n−3r
y′n−2r
y′n−r
y′n

 ,

A3 =


0 0 0 (rh)2

2!

0 0 0 (2rh)2

2!

0 0 0 (3rh)2

2!

0 0 0 (4rh)2

2!

 , Zn2 =


y′′n−3r
y′′n−2r
y′′n−r
y′′n



B1 =


0 0 0 113r3h3

1120

0 0 0 331r3h3

630

0 0 0 1431r3h3

1120

0 0 0 248r3h3

105

 , Fn =


fn−3r
fn−2r
fn−r
fn

 ,

B2 =


107r3h3

1008 − 103r3h3

1680
43r3h3

1680 − 47r3h3

10080
332r3h3

315 − 8r3h3

21
52r3h3

315 − 19r3h3

630
1863r3h3

560 − 243r3h3

560
45r3h3

112 − 81r3h3

1120
2176r3h3

315
32r3h3

105
128r3h3

105 − 8r3h3

63

 ,

and Fnr =


fn+r
fn+2r

fn+3r

fn+4r

 .

Substituting the values obtained for the unknown coefficients
in equations (10)-(18), into equation (5) gives the block form

I4Y
(1)
nr = A1Zn1 +A2Zn2 +B

(1)
1 Fn +B

(1)
2 Fnr

I4Y
(2)
nr = A1Zn2 +B

(2)
1 Fn +B

(2)
2 Fnr

(20)
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where

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Y
(1)
nr =


y′n+r
y′n+2r

y′n+3r

y′n+4r

 ,

A1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , Zn1 =


y′n−3r
y′n−2r
y′n−r
y′n



A2 =


0 0 0 rh
0 0 0 2rh
0 0 0 3rh
0 0 0 4rh

 , Zn2 =


y′′n−3r
y′′n−2r
y′′n−r
y′′n

 ,

B
(1)
1 =


0 0 0 367r2h2

1440

0 0 0 53r2h2

90

0 0 0 147r2h2

160

0 0 0 56r2h2

45

 , Fn =


fn−3r
fn−2r
fn−r
fn

 ,

B
(1)
2 =


3r2h2

8 − 47r2h2

240
29r2h2

360 − 7r2h2

480
8r2h2

5 − r
2h2

3
8r2h2

45 − r
2h2

30
117r2h2

40
27r2h2

80
3r2h2

8 − 9r2h2

160
64r2h2

15
16r2h2

15
64r2h2

45 0

 ,

Fnr =


fn+r
fn+2r

fn+3r

fn+4r

 , Y
(2)
nr =


y′′n+r
y′′n+2r

y′′n+3r

y′′n+4r

 ,

B
(2)
1 =


0 0 0 251rh

720

0 0 0 29rh
90

0 0 0 27rh
80

0 0 0 14rh
45

 , and

B
(2)
2 =


323rh
360 − 11rh

30
53rh
360 − 19rh

720
62rh
45

4rh
15

2rh
45 − rh90

51rh
40

9rh
10

21rh
40 − 3rh

80
64rh
45

8rh
15

64rh
45

14rh
45

 .

III. ANALYSIS OF THE BLOCK METHOD

In this section, the properties investigated for the block
method will be limited to the properties needed to ensure
the block method is convergent. As conventionally known, a
linear multistep method is convergent iff it is consistent and
zero-stable [13]

Definition 3.1: A linear multistep method is consistent if
it has order p ≥ 1.

A. Order of the Block Method

To obtain the order of the block method, the y and f−
values in equation (19) are expanded to obtain∑7

i=0
(rξh)i

i! y
(i)
n −

∑2
i=0

(rξh)i

i! y
(i)
n

−
(∑4

j=0 φξj

(∑7
i=3

(rξh)i

i! y
(i)
n

))
; ξ = 1, 2, 3, 4

= [0, 0, 0, 0]

(21)

This gives the order of the block method to be of order
[5, 5, 5, 5]T with error constants [ 139r

8

40320 ,
r8

45 ,
243r8

4480 ,
32r8

315 ]

B. Zero-Stability of the Block Method

To analyze the block method (19) for zero stability, the
roots of the first characteristic polynomial ρ(r) = |rI4 −A1|
must be simple or less than one. This implies that

ρ(r) = |rI4 −A1|

=

∣∣∣∣∣∣∣∣r


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


∣∣∣∣∣∣∣∣ = r3(r − 1)

which has roots r = 0, 0, 0, 1 and this implies that the block
method is zero-stable.

C. Convergence of the Block Method

The block method is consistent and zero-stable, hence the
block method is convergent.

IV. NUMERICAL EXAMPLES

Problem 1: y′′′ + ex = 0, y(0) = 1, y′(0) =
−1, y′′(0) = 3.
Exact solution: y(x) = 2x2 − ex + 2 with h = 0.1.
This third order initial value problem was solved by [7]
using an hybrid block method of order 5.

Problem 2: y′′′ + 4y′ = x, y(0) = y′(0) =
0, y′′(0) = 1.
Exact solution: y(x) = 3

16 (1− cos 2x) + 1
8x

2

This third order initial value problem was solved by [11]
using a combination of predictor of order 6 and the corrector
of order 7 and also [2].

Problem 3: y′′′ + y = 0, y(0) = 1, y′(0) =
−1, y′′(0) = 1, [0, 1].
Exact solution: y(x) = e−x + 2 with h = 0.1.
This third order initial value problem was solved by [5] and
[7] using block methods of order 8 and 5 respectively. The
maximum error at the end of the interval is considered

Problem 4: y′′′ − xy′′ + x2y2 = xsinx − cosx +
x2sin2x, y(0) = 0, y′(0) = 1, y′′(0) = 0, [0, 1].
Exact solution: y(x) = sinx with h = 0.1.
This nonlinear initial value problem in third order ordinary
differential equation was sourced from [14].

Problem 5: y′′′ = 3
8y5 , y(x0) = 0, y′(x0) =

1
2 , y′′(x0) = − 1

4 where 0 ≤ x ≤ 2.
Exact solution: y(x) =

√
1 + x with h = 0.1.

This special nonlinear initial value problem in third order
ordinary differential equation was sourced from [15]. The
authors did not provide a numerical approximation of this
problem, thus Table 5 displays only the numerical solution
using the hybrid block method in comparison to the exact
solution.
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Table 1: Comparison of results with [7] for solving
Problem 1
x Exact Solution Computed Solution

with r = 1
4

Error [7] Error (Hybrid
Block
Method)

0.1 0.91482908192435231 0.91482908192436851 1.110223E-14 1.620926E-14
0.2 0.85859724183983022 0.85859724183989627 1.607603E-13 6.605827E-14
0.3 0.83014119242399698 0.83014119242414974 6.310508E-13 1.527667E-13
0.4 0.82817530235872971 0.82817530235900927 1.623146E-12 2.795542E-13
0.5 0.85127872929987181 0.85127872930032200 3.359091E-12 4.501954E-13
0.6 0.89788119960949109 0.89788119961015944 6.084133E-12 6.683543E-13
0.7 0.96624729252952335 0.96624729253046260 1.006994E-11 9.392487E-13
0.8 1.05445907150753240 1.05445907150879940 1.561595E-11 1.266987E-12
0.9 1.16039688884305030 1.16039688884470800 2.305356E-11 1.657785E-12
1.0 1.28171817154095450 1.28171817154307190 3.274958E-11 2.117417E-12

Table 2: Comparison of results for solving Problem
2

Awoyemi (2003) Zanariah et al (2012) Hybrid Block Method with
r = 1

4
Step-
size

b TS Maximum
Error

b TS Maximum
Error

b TS Maximum Error

0.025 5.0 200 3.94E-6 5.0 46 4.66E-7 5.0 46 1.20E-10
56 9.14E-8 56 3.69E-11
88 1.53E-10 88 2.44E-12

0.025 10.0 400 3.80E-6 10.0 61 4.66E-7 10.0 61 5.54E-09
91 2.43E-8 91 5.04E-10
136 1.53E-10 136 4.53E-11

0.025 15.0 600 2.29E-6 15.0 76 4.66E-7 15.0 76 2.67E-08
110 2.63E-8 110 2.91E-09
180 1.54E-10 180 1.52E-10

0.025 20.0 800 1.30E-6 20.0 91 4.66E-7 20.0 91 5.29E-08
129 2.63E-8 129 6.54E-09
204 1.28E-9 204 4.19E-10

Table 3: Comparison of results with [5] and [7] for
solving Problem 3

Maximum Error [5] 8.200535E-11
Maximum Error [7] 3.443523E-12
Maximum Error (Hybrid Block
Method with r = 1

4 )
1.184275E-12

Table 4: Comparison of results for solving Problem
4
x Exact Solution Computed Solution

with r = 1
4

Error (Hybrid
Block
Method)

0.1 0.099833416646828155 0.099833416646827489 6.661338E-16
0.2 0.198669330795061220 0.198669330795057300 3.913536E-15
0.3 0.295520206661339600 0.295520206661327170 1.243450E-14
0.4 0.389418342308650520 0.389418342308621660 2.886580E-14
0.5 0.479425538604203010 0.479425538604146990 5.601075E-14
0.6 0.564642473395035370 0.564642473394938450 9.692247E-14
0.7 0.644217687237691020 0.644217687237536360 1.546541E-13
0.8 0.717356090899522680 0.717356090899290090 2.325917E-13
0.9 0.783326909627483300 0.783326909627148680 3.346212E-13
1.0 0.841470984807896390 0.841470984807431990 4.644063E-13

Problems 1 to 5 have considered sample third order
ODEs ranging from linear to nonlinear problems. The
results displayed of each Problem are displayed in Tables
1 to 5 respectively and the hybrid block methods shows
impressive accuracy when compares to other authors.
For Problem 5, [15] displayed the maximum error for
solving Problem 5 using a five-step explicit method as
1.02939× 10−7 over the defined interval.

Table 5: Comparison of results for solving Problem
5
x Exact Solution Computed Solution

with r = 1
4

Error (Hybrid
Block
Method)

0.1 1.048808848170151600 1.048808848176159900 6.008305E-12
0.2 1.095445115010332100 1.095445115032145100 2.181300E-11
0.3 1.140175425099138100 1.140175425143080500 4.394241E-11
0.4 1.183215956619923200 1.183215956690615500 7.069234E-11
0.5 1.224744871391588900 1.224744871492748900 1.011600E-10
0.6 1.264911064067351800 1.264911064202180800 1.348290E-10
0.7 1.303840481040529700 1.303840481211909800 1.713800E-10
0.8 1.341640786499873800 1.341640786710470700 2.105969E-10
0.9 1.378404875209022100 1.378404875461343400 2.523213E-10
1.0 1.414213562373095100 1.414213562669522500 2.964273E-10
1.1 1.449137674618943700 1.449137674961753900 3.428102E-10
1.2 1.483239697419132600 1.483239697810508700 3.913760E-10
1.3 1.516575088810310000 1.516575089252350800 4.420408E-10
1.4 1.549193338482966800 1.549193338977691300 4.947245E-10
1.5 1.581138830084189800 1.581138830633542500 5.493528E-10
1.6 1.612451549659710000 1.612451550265563600 6.058536E-10
1.7 1.643167672515498400 1.643167673179656700 6.641583E-10
1.8 1.673320053068151300 1.673320053792351400 7.242000E-10
1.9 1.702938636592640200 1.702938637378554900 7.859147E-10
2.0 1.732050807568877400 1.732050808418116800 8.492393E-10

Therefore, the new hybrid block method has better
accuracy with its maximum error of 8.492393× 10−10.
To further show the usability of the hybrid block method,
certain benchmark models of third order ODEs are
considered as discussed in the following sections.
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V. APPLICATION TO SOLVE NONLINEAR GENESIO
EQUATION

The section considers the non-linear chaotic system from
[16]

x′′′ +Ax′′ +Bx′ − f(x(t)) = 0 (22)

with
f(x(t)) = −Cx(t) + x2(t) (23)

subject to the following conditions:

x(0) = 0.2, x′(0) = −0.3, x′′(0) = 0.1, t ∈ [0, b]

where A = 1.2, B = 2.92 and C = 6 are positive
constants satisfying AB < C to guarantee the existence
of the solution of (22). The new hybrid block method
is adopted to solve (22) in self-starting mode where the
block method simultaneously integrates (22) at all grid
points. The numerical results obtained from the new hybrid
block method are compared with the solutions obtained in
[17]–[19]. Table 6 shows the comparison in the numerical
approximation of x at the end points b = 1 and b = 4. It
is the observed that the new hybrid block method obtains
convergent results as [17] variable step three-point block
multistep method and [19] block hybrid collocation method.
Figure 2 displays the numerical solutions for the nonlinear
Genesio equation (22) in the interval [0, 4.5] as depicted
in the separate works of [18] and [19]. The numerical
approximations obtained by the new hybrid block method is
further seen to be in agreement with the authors.

Table 6: Comparison of results for the nonlinear Genesio
equation (22)

Mehrkanoon (2011) Yap et al (2014) Hybrid Block Method with r = 1
4

b TS x b TS x b TS x
1.0 17 -0.054005 1.0 4 -0.05400408324564678 1.0 4 -0.054004085662849158

26 -0.054003 34 -0.05400408355473926 17 -0.054004083555107996
26 -0.054004083554779522
34 -0.054004083554757297

4.0 23 -0.067921 4.0 13 -0.06763059062408930 4.0 13 -0.067630605172017799
45 -0.067692 133 -0.06763060515900272 23 -0.067630605159560306

45 -0.067630605159147886
133 -0.067630605159140614

Fig. 1. Solutions obtained for (22) using seven- and eight-order Runge
Kutta method (RK78), homotopy analysis method (HAM), new variant of
HAM (NHAM) [18] and block hybrid collocation method [19]
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VI. APPLICATION TO SOLVE PROBLEM IN THIN FILM
FLOW

Consider the problem concerned with the flow of thin films
of viscous fluid with a free surface in which surface tension
effects play a role typically leading to third-order ordinary
differential equations governing the shape of the free surface
of the fluid, y = y(x). One of such equation is the fluid
dynamics problem formulated as an autonomous third order
ODE

y′′′ = f(y) (24)

where

f(y) = −1 + y−2,
f(y) = −1 + (1 + δ + δ2)y−2 − (δ + δ2)y−3,
f(y) = y−2 − y−3,
f(y) = y−2.

(25)

Numerical methods for solving third order ODEs have been
extended to solve these resultant third order ODE problem
in thin film flow [20] of the form

y′′′ = y−k (26)

with initial conditions y(0) = y′(0) = y′′(0) = 1 for the
cases k = 2 and k = 3.
[20] applied the three-stage fifth order Runge Kutta method
to solve the third order physical problem (27) directly while
[21] adopted the seven-stage fifth-order Runge-Kutta. The
new hybrid block method is also applied to solve (27)
directly. The results are presented in the following tables in
comparison to [21] and [20].

Table 7: Numerical results for problem in Thin Film Flow
(27) with h = 0.01, k = 2
x Exact Solu-

tion
Error [21] Error [20] Error (Hybrid

Block
Method)

0.0 1.000000000 1.0000000000 1.0000000000 1.0000000000
0.2 1.221211030 1.2212100045 1.2212100045 1.2212100045
0.4 1.488834893 1.4888347799 1.4888347799 1.4888347799
0.6 1.807361404 1.8073613977 1.8073613977 1.8073613977
0.8 2.179819234 2.1798192339 2.1798192339 2.1798192339
1.0 2.608275822 2.6082748676 2.6082748676 2.6082748676

Table 7 demonstrates that the new hybrid block method is
suitable to solve the thin film flow model with h = 0.01 and
k = 2. This is observed in the convergent results between
the [21], [20] and the new hybrid block method.
The next case considered if for k = 3 with h = 0.01. This
case actual has no analytic solution. Table 8 shows the
numerical results.

Table 8: Numerical results for problem in Thin Film Flow
(27) with h = 0.01, k = 3
x Error [21] Error [20] Error (Hybrid

Block Method)
0.0 1.0000000000 1.0000000000 1.0000000000
0.2 1.2211551424 1.2211551423 1.2211551424
0.4 1.4881052842 1.4881052838 1.4881052842
0.6 1.8042625481 1.8042625471 1.8042625481
0.8 2.1715227981 2.1715227960 2.1715227981
1.0 2.5909582591 2.5909582556 2.5909582591

As a result of the inability to obtain the exact solution to
(27) for k = 3, comparison is made between the adopted
approaches. Further convergence is also displayed by the

new hybrid block method in Table 8. The results obtained by
the hybrid block method are exactly same to [21] although
the three-stage fifth order Runge Kutta method by [20] also
gave close results.

VII. CONCLUSION

From the tables above, the hybrid block method has
shown better accuracy with less and equal number of steps in
comparison to [2] and [11] respectively. Also, in comparison
to previous existing methods having equal and higher order
[5], [7], [15], the hybrid block method has also competed
favourably. The properties of convergence and consistency
can also been seen from the numerical results. In addition,
the suitability of the hybrid block method in application to
the nonlinear Genesio equation and the physical problem
modelling thin film flow was also investigated. Convergence
in solution and improved accuracy were properties displayed
by the hybrid block method when solving these additional
models. Thus, this new generalized hybrid block method
suitable for numerical approximation of third order initial
value problems.
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