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The Generalized Lp—mixed Volume and the
Generalized L,-mixed Projection Body

Tongyi Ma

Abstract—In this paper, based on three classical concept of
the mixed surface area measure, the mixed volumes and the
mixed projection bodies, we introduce three new concepts of the
generalized L,-mixed surface area measure, the generalized L,-
mixed volumes and the generalized L,-mixed projection bodies
of convex bodies. In addition, some important inequalities,
such as, the Aleksandrov-Fenchel inequality for the generalized
Ly-mixed volumes, the Aleksandrov-Fenchel inequality for
the generalized L,-mixed projection bodies and the Brunn-
Minkowski inequality for polar of L,-mixed projection bodies
are established, respectively. We also give a generalization of
Pythagorean inequality and Loomis-Whitney inequality for L -
mixed volumes, respectively.

Index Terms—Convex body, surface area measure; L,-mixed
surface area measure, L,-mixed volume; projection body, L,-
mixed projection body.

I. INTRODUCTION

HE mixed volume is a central part of the Brunn-

Minkowski theory of convex bodies. The monograph by
Schneider [80] introduced the mixed volume and closely re-
lated mixed area measures, establish their fundamental prop-
erties. In the early 1960s, Firey [25] defined the Minkowski-
Firey L,-additions of convex bodies for each p > 1 and
also established the L,-Brunn-Minkowski inequality. Based
on the L,-additions, Lutwak [51] defined the L,-mixed
volume of two convex bodies and established the famous L,-
Minkowski mixed volume inequality. In the mid 1990s, study
on the volume of Minkowski-Firey L, -additions in [51] and
[52] leads to an L,-Brunn-Minkowski theory. The rapidly
developing L,-Brunn-Minkowski theory of convex bodies is
a natural extension of the Brunn-Minkowski theory (see, e.g.,
(2], [3], [4], [6], [8], [14], [15], [16], [17], [18], [21], [22],
23], [301, [31], [32], [33], [35], [40], [41], [42], [43], [44],
511, [52], [56], [58], [59], [60], [61], [62], [63], [64], [65],
66], [67], [68], [69], [701], [72], [73], [74], [75], [76], [79],
83], [85], [87], [91)).

The study of projection bodies or zonoids has a long
history [36]. An article [10] first considered this problem,
since then, considerable attention has been paid to the
projection bodies [5], [11], [13], [19], [28], [46], [47], [71],
[78], [80], [86], [89]. The related applications appeared in
[86], [7], [81], [88]. The projection bodies topic has been
focus on the intense study [1], [12], [20], [29], [45], [46],
[47], [48], [49], [50], [77], [82].

Let K™ denote the set of convex bodies (compact, convex
subsets with non-empty interiors) in R™; ', K7' denote the
subset of ™ containing the origin in their interiors and the
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subset of ™ that contains the centered (centrally symmetric
with respect to the origin) bodies, respectively.

For K, ---,K, € K", Aleksandrov-Fenchel inequality
[80] is

V(K- Kn) > [[VE; - Ky K, Ka), (D
j=1

————

the equality condition in the Aleksandrov-Fenchel inequality
is not hold. The special case holds
V(K- ,K,B--+,B,L)"7 >W;(K)"77'W;(L), (2)
—— ——
n—j—1 J
with equality if and only if K and L are homothetic.
If we take j = 0 in (2), then Minkowski inequality for
mixed volumes is
V(K- K,L)">V(K)" 'V (L), 3)
n—1

with equality if and only if K and L are homothetic.

In 1993, the Aleksandrov-Fenchel inequality and Brunn-
Minkowski inequality for the mixed projection bodies have
been established by Lutwak [45]. If K, L € K™, then

V(LK + L) 700 > V(IIK) 700 + V(L) @)

with equality if and only if K and L are homothetic.
If K17 e 7Kn—1 € ICn, then

VII(Ky, -, K1)

> [[vauK; - K, Ko, Kn1)). ()
i=1 %T,_/
In particular, taking K,,—; = --- =
0,1,---,n—2) in (5), and denotes

IL(Kq, - Kpm1—) =II(Kq, -+ Kypm1—4, B, - -
——

So, we have

V(H7(K17 Ty Kn—l—i))r

Z HV(Hi(Kj'",KjaKr+17"'aKn—1—i)>' (6)
= T

In 2004, Leng et al. [38] established the Aleksandrov-
Fenchel inequality for the polar of projection bodies as
follows

VI (K, Kpeq))"

r
S H V(H*(Kj o 'aKj7K7'+17 e aKn—l))v @)
paie —_———

T
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with equality if K7, ---, K, _1 are homothetic. In particular,
taking K,,_;, = --- = K,_1 =B (i =0,1,---,n—2) in

(7), and denotes
H:(Kla Ty K’n—l—i) - H*(Kla Ty

K7L—1—i7B7"' aB)
—

Therefore, we have

V(L (K, - Kpe1—4))"
<[Ivag(x; - K K, Knmi-i), (8)
j=1

r

with equality if K3,---, K, _1 are homothetic n-balls.
Based on the concepts of classical mixed surface area,
mixed volume and mixed projection body involving a plu-
rality of convex bodies, the purpose of this paper first is to
introduce three notions of the generalized L,-mixed surface
area measure, generalized L,-mixed volume and generalized
L,-mixed projection bodies, respectively. In addition, we will
establish the Aleksandrov-Fenchel inequality for the gen-
eralized L,-mixed volume, Aleksandrov-Fenchel inequality
for the generalized L,-mixed projection bodies and Brunn-
Minkowski inequality for polars of L,-mixed projection
bodies of convex bodies, respectively. Our findings further
enrich the architecture of L,-Brunn-Minkowski theory.
First at all, we introduce the abbreviation

(Kl"',Kl,"‘,Km"',Km) = (K][Tl],"',Km[rm]).
T1 Tm
The following is our main results.
Theorem 1. If p > 1 and Ky, .-, K,, € K7, then
V<K1a"'7Kn)T
> HV r+1; 'aKn)p
n—1 (—p)
x HVKl,--- 1K) )
Theorem 2. If p > 1 and K4, ---, K,, € K7, then
V(KL Ko )"
> lI’HV Koy K)o
n—1 17
< [V, Kuoi, K)ot (10)
j=1
Theorem 3. If p > 1 and K1, ---, K,, € K7, then
V(H*(Kl,--~ K1)
( U 1
= HV (I (K [r], K1 -+, K1) ™
n—1
(p—1)n
X V(K1 K1, Kj) 07, (11

1

<.
Il

with equality if and only if K is the line segment joining
—X;u and \u, where \; >0 (¢ =1,---,n—1).

Theorem 4. If K, L, Ky, ---,
both zero), p > 1, € Rand C' =

Kn_1 € K2, A\, ;p > 0 (not
(KQ, ceey, Kn_l), then
4V, i(IT(AK + pL,C)) 7
< ATpalIT° (K. C)7 + (1T (L, C))77.(12)
with equality if and only if II(K, C) = II(L, C).
Next, we use the methods to give a generalization of

Pythagorean inequality for mixed volumes obtained by Firey
[24].

Theorem 5. Let p > 0 and Ky,---,K,_1 € K. Assume
that wq,---,u,, isS a sequence of unit vectors in R"™ and
c1,- -+, Cm be a sequence of positive numbers satisfying

m
E ciu; @ up = I,
i=1

where I, is the identity mapping on R™. Then, for any u €
Sn—l’

13)

Vp(Kla 'aanla[u])%
< S V(K Ko ), (14)
=1

where [u] denotes the unit segments in the direction u, with
equality if and only if

|u - uq
[ACRE

_ _ [t U |

aanla[ul]) B B V}’(Kla"’»anla[um]).

The classical Loomis-Whitney inequality [39] shows the
relation between the volume of a convex body and the
geometric mean of its shadows. The Loomis-Whitney in-
equality is one of the fundamental inequalities in convex
geometry and has been studied intensively. We generalize
the Loomis-Whitney inequality to the following form of L -
mixed volume associated with John basis.

Theorem 6. Suppose that K,---,K,,_1 € K", {u;}["; is
a sequence of unit vectors in R", and {¢;}/", is a sequence
of positive numbers such that ZZ” 1 Gty @ u; = I,. Then

for p > 1,

m

p—1
Uj Uq Uq ™—
[] ( | | V(KPR K R

i=1

X

Up([(fi7...,

n(1-p)

n- o V(K- 5)

Contents of the paper. For our studies, we state some
relevant knowledge for the convex geometric analysis in
Section 2. In Section 3, we propose two new concepts for
the generalized L,,-mixed volumes and generalized L,-mixed
quermassintegrals, discuss some of their related properties.
Simultaneously, we introduce a new concept for the L,-
mixed projection bodies. Section 4, we prove Theorems 1-
6 which stated in the beginning of this paper, respectively.
As an application, we give a generalization of Pythagorean
inequality for mixed volumes, which has been obtained
by Firey [24]. In addition, we established a generalized
inequality of Loomis-Whitney inequality.
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II. BACKGROUND MATERIAL

The setting for this paper is n-dimensional Euclidean
space R"(n > 2). Let u denotes unit vector, and B denotes
unit ball centered at the origin, the surface of B is .S n—1 For
u € S" 1, let B, denote the hyperplane, through the origin,
that is orthogonal to u. We use K* to denote the image of
K under an orthogonal projection onto the hyperplane FE,,.
[u] denotes the line segment joining {Au : |[A| < 1}. Let
V(K) denote the n-dimensional volume of a body K, and
let = - y denote the usual inner product for = and y in R".
For z € R™\{o0}, the notation z ® x represents the linear
operator of the rank 1 on R" that takes y to (z - y)z. Let
GL(n) denote non-singular affine (or linear) transformation
group, ¢! denotes the transpose of ¢, and ¢~ denotes the
inverse of the transpose of ¢

A. Support function, radial function, polar of convex body
and Minkowski linear combination

Let h(K,-) : R® — (0,00) denote the support function
of K € K", defined by h(K,z) = max{z -y : y € K}.
If ¢ € GL(n), then for the support function of the image
oK = {¢x : x € K}, we easily have

hoi (x) = hi(¢'x).

For K, L € K™, Hausdorff metric 6 of K and L is defined
by

(16)

S(K, L) = sup{|hg (u) — hr(u)| : u € S"1}.
For K € K™ and a nonnegative scalar A\, A\K = {\x : x €

K}. For K; € K™ ) \; > 0(i = 1,---,7), Minkowski linear
combination Y _,_, \;K; € K" is defined by

ZT:)\iKi = {zr:)\ll‘l GIC":xi EKi,i: 1,~-~,’I“}.
i=1 i=1

It is trivial to verify that

h(z K, ) = Z N (K, ).
1=1 1=1

For K,L € KI,p > 1 and A\, > 0 (not both zero), the
Firey L,-combination \- K +, i1- L € K7} is defined by (see
[25])

a7

If K € K7, we define the polar body of K € K, K* =
{r e R" : -y < 1,forall y € K}. Obviously, for ¢ €
GL(n), (pK)* = ¢"'K*.If K € K" we have that K* € K"
and (K*)* = K (see [80]).

If K is a compact star-shaped (about the origin) in R",
its radial function, p(K,-) : R™\{o} — [0, c0) is defined by
p(K,x) = max{\ > 0 : Az € K}. If px is positive and
continuous, then K is called a star body. Let S}’ denote the
set of star bodies (about the origin) in R™. Obviously, for
r#0and ¢ € GL(n), psxc(2) = pic (6 'a).

Together the support function, the radial function with
polar body, it follows obviously that for K € KV

p(K, ')71 = h(K",:) and h(K, ')71 = p(K™). (19)

B. Mixed volumes, L,-mixed volumes, mixed surface area
measure and L,,-mixed quermassintegrals

If Ky,---,K, € K" and Ay, -+, \, are nonnegative real
numbers, then the volume of MKy + --- + N\ K, is a
homogeneous polynomial in Ay, ---, A, (see [80])

VK + o+ MK = Y XA, Vi, (20)
11 in

where the sum is taken over all n-tuples (iy,---,%,) of
positive integers not exceeding r. The coefficient V; .. ;
depends only on the bodies Kj,,---, K;, and is uniquely
determined by (20), it is called the mixed volume of
K;, -, K, and is written as V (K, ,---, K, ).

Associated with Kq,---, K,,_1 € K" is Borel measure,
S(Ky,-+,K,_1), on S*71, called the mixed surface area
measure of Ki,---, K,_1, which has the property that for
each L € K™ (see [37]),

V(K17"'5Kn—1aL)
1
- E/ WL, W)dS(Ky, - Kn_yiu). 1)
Snfl

For A, > 0, if K; is replaced by AK7 + pL1, then we
have

S()\KI + ML1> e aanl; )
= )\S(Klv o K )
+uS(La, -y Kn—15°). (22)
An important fact [26] is
/ udS(Ky, -+, Kp_1;u) = 0.
Sn—1
We noted that the mixed area measure S(K7y, -+, K,_1;-)

also satisfies the hypothesis of Minkowski’s existence theo-
rem. Thus, for Kq,---,K,_1 € K", there exists a convex
body denoted by [Ki,---,K,_1], whose area function is

S(Ki,--+, Ky—1;-), namely,
S<[K1’“.’K”—1]7') :S<Kla"'aKn—l;')7
where [K, -, K] = K.

A direct consequence of (21) is following

V([Kla"'vKn—lHn_ 1}7Kn)
= V(Kl?”')Kn—laK’n)- (23)
Since
V([Klv"'aanl})
= V([Klv"'aKn—l][n_l]a[Klv"'7Kn—1])a
(23) implies that
V(K1 Kyea])
— V(Kla"'vanlv[Klv"'vK’nfl])v (24)
V(Kla"'aKi7"'aKj7"'aKn>
= V(Kla"'7Kj7"'7Ki7"'7Kn)' (25)
fFK, =+ =K,_;-1 = Kad K,_; = -+ =
K,_1 =B, then S(Ky,---,K,_1,-) is written as S;(K, ),
V(Ky, -+, Kp_1,L) is written as W;(K,L). If L = K,
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Wi (K, K) is written as W;(K) that is called ith quermass-
integrals of convex body K i.e.,

Wi(K) = - /S B ) (K ).

(26)

We recall that Wy (K) is V(K).

In [37], Lutwak proved that if K;,---, K, € K", and
¢ € GL(n), then

Suppose K,L € K, then for p > 1, the L,-mixed
volume, V,(K, L), of K and L is defined by (see [51])

EV,,(K,L) — lim V(K—&-ps-L)—V(K).
p

e—0t £

(28)

For K € K7, there is a positive Borel measure, S,(K, -), on
S™~1 such that (see [51])
1
Q) =1 [ h@uras,(K.w.

n

for each Q € K. The measure S,(K,-) is just the L,-
surface area measure of K, which is absolutely continuous
with respect to classical surface area measure S(K,-), and
process Radon-Nikodym derivative

dS,(K, ")
it follows from (30) that Sy (K, ) is just S(K, ).
The L,-Minkowski inequality was given by Lutwak [52].
If K,L € K and p > 1, then
n—p P

Vp(K,L) > V(K)™= V(L)~,

with equality for p = 1 if and only if K and L are
homothetic, for p > 1 if and only if K and L are dilates.

For K,L € K},e > 0 and real p > 1, the L,-mixed
quermassintegrals, W, ;(K,L)(i = 0,1,...,n — 1), of K
and L is defined by (see [51])

W,:(K,L) = lim WilK +pe- L) = Wi(K)

e—0t €
The W, o(XK, L) is just L,-mixed volume V,(K, L), namely
Wy o(K, L) = Vp(K, L). In [51], Lutwak has shown that, for
p > land each K € K7, there exists a positive Borel measure
Spi(K,) (i = 0,1,---,n — 1) on S™71, such that the
L,-mixed quermassintegrals W, ;(K, L) has the following
integral representation

1
W0 = [ B 0)d8,(K.0),

(29)

= h'P(K,-), (30)

€1V

n—1

. (32)

(33)

n

for all L € K. It turns out that the measure S, ;(K,-) (i =

0,1,...,n—1) on S"! is absolutely continuous with respect
to S;(K,-), and has the Radon-Nikodym derivative
dSP i(K7 ) 1—
: =h"P(K,- 34
dS,L (K, .) ( b )? ( )

where S; (K, -) is a classical positive Borel measure on S™ 1
(see [51]). Obviously, Spo(K,-) = Sp(K,-). The Formula
(34) has shown that, for p > 1,9 =10,1,---,n — 1, and each
K € K", there exists a positive Borel measure on S"~1, by
(see [51])

&AKw:/MKm“%MKm, 35)

w

for each Borel w ¢ S™!.

C. Dual mixed volume

If K; € S} (i =1,---,n), then the dual mixed volume
of Ki,---, K, is defined by (see [53])
~ 1
V(e Ko) =5 [ ) plu)dS(w), 56
Sn—l

where dS(u) denotes the area element of S™~' at u. Note
that V;(K,L) = V(K[n — i], L[i]). Thus, if i is any real,
then V;(K, L) is said the dual mixed volume of K, L € S,
and

D = [ oKL wasw. 6D
In 37), let L = B and we write V;(K,B) = W;(K),
together with p(B,u) = 1 for all u € S™~!, the definition of
dual quermassintegrals can be stated that: For K € 87,7 €
R, the dual quermassintegrals, W;(K), of K is defined by
(see [27])

—~ 1

Wi(K) = — /S - p(K,u)" " dS (u). (38)

n
We recall that the polar coordinate formula for volume of
K eK"is V(K) = Wy(K).

III. THE MAIN CONCEPTS AND THEIR RELATED
PROPERTIES

A. Generalized Ly,-mixed surface area and generalized L, -
mixed volumes

In this section, we first proposed the two concepts of the
generalized L,-mixed surface area and the generalized L -
mixed volume. Motivated by (35), we introduce the following
definitions.

Definition 7. For p > 0 and K, --, K,,_1 € K7, the Borel
measure Sy, (K1, -+, K,_1;-) on S"! is defined by

Sp(K1, - Kn_13w)
_ /(h(Kl,u).-.h(Kn,l,u))i%’i
xoaS(Kl, e Ko u), (39)
for each Borel w C S™~ !, where S(K7,---, K, _1;-) is the
classical the mixed surface area measure of Ky, -, K, 1.

From (39), we easily obtain that

dSp(Kla"'aKn—l;’) o 1;7117
dS(K]J"',an]_;‘) - (h’(K1? ) h(K’n—lv )) . (40)

Associated with K4, -, K,_1 € K? is a Borel measure,
Sp(Ky,-++, Kn_1;-), on S"~1, called the generalized L,-
mixed surface area measure of Kq,---, K, 1.

Taking K7 = --- = K,,_1 = K in (40), then (40) reduces
to (30), where S, (K, ) := S,(K,---,K;-) and S(K,-) :=
S(K, -, K;").

Definition 8. For p > 0 and Ky,---,K,_1,L € K7,
the generalized L,-mixed volume, V, (K7, - -+, K,,—1,L), is
defined by
‘/p(K17 Ty KTL—la L)
1
= *‘/ h(Lau)pdSp(Klv'";Kn—l;u), (41)
n Jgn-1

where the Borel measure S, (K1, - -
on the bodies K1, - - -
(39).

, K,,—1;+) depends only
, K,,—1, and is uniquely determined by

(Advance online publication: 12 August 2019)
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Some properties of V, (K7, -, K,,) are as follows
(i) (Conmtinuity) If K; € K? (i = 1,---,n), then
Vp(K1,- -+, Ky) is continuous for p;
(ii) (Positive definite property) If K; € K7 (i =
1,---,n), then V,(Ky, -+, K,) > 0;
(iii) (Positive definite homogeneity) If \; > 0, K; €

Kr(i=1,---,n), then
VoMK, A Ky)
= (A A1) TN V(K K
(iv) (p-additivity) If K, € K (i = 1,---,n),L € K7,

and A, u > O(not both zero), then
VZD(Kla"Wanla)\'Kn +p,U/L)
- A‘/;z)(Klv"'aKn—laKn)
+,u‘/p(K17 e 7Kn—17L);
(v) (Monotonicity) If K; e K (i =1, - -,
K7, then
KclL = Vp(Kl,-",Kn_l,K)
S Vp(Kla Tt aKn—17L)7

n—1),K,L €

with equality if and only if h(K,u) = h(L,u) for all u in
the support of the measure S(K1,- -, K,—1;-).
Remark 9. The condition in (v) is in general not equivalent
to K = L, since the support of S(K7y,- -, K, _1;-) can be
a proper closed subset of the unit sphere.
It will be helpful to introduce some additional notation.
For x € R", let (x) = x/|z|, whenever = # 0.
Definition 10. (see [56]) Given a measure du(u) on S"~1, a
real p > 0, and a ¢ € GL(n), define the measure du(?)(¢u)
on "~ ! by

/ F(w)dp® (gu) = / 67 ul? F((6 ) dp(u),
sn—l S‘n.—l

for each f € C(S™71).

First note that for any convex bodies K, ---, K,—1 and
each ¢ € GL(n) for the classical mixed surface area measure
we have

dS((bKla ) ¢Kn—1; U)
= |det¢|dSYW(Ky,- -, Kn_1;0'u).  (42)
To see this note that for any convex bodies K1, ---, K, _1 it

follow from Definition 10, the homogeneity of hq, (16) and
(27) that

/ ho(u)dSW (K, -, K,_1; ¢tu)
Sn—l
[l ulho((@ S (.- Ko
Snfl
= / hQ(¢7tu)dS(Kl7“'aKn—l;u)
Sn—l

= / h¢-1Q(u)dS(K1,-~-7Kn,1;u)
Sn— 1

= Jdet™| [

Proposition 11. If K, ---,
then for ¢ € GL(n),

dSp(¢K17 U ade’ﬂ—l;u)
= |det ¢p[dSP (K1, -, Kn_1;¢"u).

dS ¢K17 '7¢K’nfl;u)'

K,—1 € K and real p > 0,

Proof. If f € C(S™"!), then from Definition 7, (16),
(42), Definition 10, the homogeneity of hg, (42) again, and
Definition 10 again, we have

(G R
|t hon, ()
S’n. 1

-Pp

1
h(banl (u)> n-t

XdS ¢K1a 3¢Kn 1,U )
= |detd)] / w)(hic, ($10) -+ hic,,_, (@) F=%
xdSW (K1, K, 1; dtu)

= Jdets) [l (07 )

X (i (61 (610)) -+ hrc,._, ({6~ u))) ¥
xdS(Ky, -+, Kp_1;u)
= Jdeta] [ o7t (o)
% (hig () by () FdS(K, -, K1)
= Jdetal [l (o)
de K1,~- K,_1;u)
= |det¢| / (w)dSP) (K1, -+, Kno1;0'u).

An immediate result of Proposition 11 is:
Corollary 12. If K;,---,K,_1,L € K, real p > 0 and
¢ € GL(n), then

Vp(¢Kla o '3¢Kn—17L)

= |det¢|Vp(K1, -+, Kn_1,0 *L). (43)

Proof. From Definition 8, Proposition 11, Definition 10,
the homogeneity of the support function, (16), and finally
Definition 8 again, we have

n‘/p((z)Kla Ty ¢Kn—1aL)

:/ (L, w)PdS, (S, -, dKn_1;0)
Snfl

= ‘det ¢| - h(Lau)pdSI(ap)(Kla"'7Kn71;¢tu)
= Jdeta] [t Ph(EL (7 )

XdS Kl, .. 7, 1,U )
= \det¢|/ ;DdS (Kl,"',anl;u)
= ‘det¢| h’(¢_1L7u)pdSp(K17"'7K’nfl;u)

Sn—l
n|det ¢|V,(Kq,- -,

anla ¢71L)'

Corollary 12 shows that for K7, - - -, K,, are convex bodies
that contain the origin in their interiors, real p > 0, and

¢ € GL(n),

Vp(9Kq, -+, ¢pK,) = |det ¢|V, (K1, -+, Kp). (44)
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B. Generalized ith Ly,-mixed surface area and generalized
ith Ly,-mixed quermassintegrals

Definition 13. Let p > 0, and K1 = --- = K,,_1_; €
Kl Ky i=--=K,1=B@G=0,1,---,n—2), define
the Borel measure Sy, ; (K4, -+, K,—1-4;-) on Sn=1 by
Spi(Ky, o K15 w)
- /(h(Kl,u)-.-h(Kn_l_i,u))%
x“éiSi(Kh s K1), (45)
for each Borel w C S™!, where we denote
Si(Ky, - Kno1-i5+) == S(K1, -+, Kyo1-4, Blil; ),
Spi(K1, - Kp1-4;+) == Sp(Kq, -+, Ky—1-4, Bli]; -).
From (45), it is easily to obtain that
dSp (K1, Kn-1-i;")
dSi(Ky, -, Kn—1-4;")
= (K)o (Ko )) T (@6

Taking K1 = -+ = K,_1—; = K in (46), then (46)
reduces to (34).
LCtKli"': n_l_?;:Kand Kn_1::

K, _1 = B, and introducing the abbreviation
Wp,i(Kla Ty Kn—l—i)L) = ‘/p(Klv e 7Kn—1—7la B[Z]a L)

Definition 14. For p > 0, and K3, ---,K,_1-4,L € KU
(¢ =0,1,---,n — 2), we define the generalized L,-mixed
quermassintegrals, W, ;(K1,---, Kp_1_4, L), by

Wp,i(Ky, -+, Ky_1-4,L)
1

= 7\/ h(Lau)pdSp,i(Klv"' ;Kn—l—i;u)a(47)
n Jgn-1

where the Borel measure S, (K1, -, K,_1—;;-) depends
only on the bodies Ki,---,K,_1_;, and is uniquely de-
termined by (45), it is called the generalized ith L,-mixed
surface area measure of Kq,---, K, _1_;.

Remark 15. By Definition 14 with that (47), we can deduce
that the Definition 8 with that (41) but not vice versa.
Therefore, Definition 14 with that (47) extend some known
ones in the sense of the Definition 8 with that (41).

C. Generalized L,-mixed projection bodies

In this section, we first introduce the concept of general-
ized L,-mixed projection body.
Definition 16. If p > 0 and K; € K7 (i = 1,---,n —
1), then for u € S™~!, the generalized L,-mixed projection

body,IL, (K1, -+, K1), of K;(i =1,---,n—1) is defined
by
ALy (K, -+, K1), u)”
1
= o |u'U|pdSp(K1a"'7Kn—1;U)7 (48)
2P Jgn—1

where S, (K1, --,K,_1,-) depends only on the bodies
K, --,K,_1, and is uniquely determined by (40).

When p = 1, then (48) reduces to the following definition
of mixed projection bodies introduced by Lutwak [57]:

h(H(Kl, e ,Kn_l),u)

1

_ f/ - o[dS(Ky, - Ko yiv). (49
2 Sn—l

This is equivalent to

'U(Kita"'vK:zL—l):nV(Kh"'aKn—la[uD' (50)
Additional, it follow from (41) and (49) that
h(Hp(K17 e 7Kn—1)7u)p = n‘/p(Klv e 7Kn—1; [UD (51)

Remark 17. If p # 1, it follows that

’UP(K]{J? e 7K1'7;‘—1) 7é nVP(Kla Tty Kn—l7 [U])

In fact, a function of K3, the right-hand side is (under
dilatation) homogeneous of degree ==, while the left-hand
side is homogeneous of degree ”;i;p . Further, a function
of K,_1, the right-hand side is homogeneous of degree
==L, while the left-hand side is homogeneous of degree p.
However, from (40), (41) and Holder’s inequality (58) in the

back, we have that for p > 1

U:D(K% T :ffl)
Z nV(Klv"'aanla[qu

n—2
x [[ V(K K1, Koo, [u]) =2, (52)
j=1

for 0 < p < 1, the inequality (52) is reversed. Equality holds
in either if and only if p = 1.

We use I3 (K1, -, K;,—1) to denote the polar body of
I, (K4, -, K,_1) called the polar of generalized L,-mixed
projection body of Ky, -+, K,,_1.

D. Generalized ith Ly-mixed projection bodies

Definition 18. If p > 0,Kq, -, K,-1—; € K i =
0,1,---,n — 2), then the generalized ith L,-mixed projec-
tion body of K; (j = 1,---,n — 1 — i) is defined by
IT, ;(Ky,- -, K,—1-;), and whose support function is given,
for u € S"1, by

1
R N
’ 2p gn—1
XdSp,i(K17'"7Kn717i;v)7u S S"L—l’ (53)
where S, (K1, -+, Kp_1-4;-) is uniquely determined by
(46).
From Definition 14 and Definition 18, it follows that
h(p i (K1, -+ Kp_1-5),u)?
= an,’i(Klv'"7K’n717i7[u])‘ (54)
fKy=---=K, 9 ;=Kand K,, 1 ; = L, then

I, ;(Ky,- -, Kp_1—;) will be written as IT,, ; (K, L). If L =
B, then II, ;(K, B) is called the ith L,-mixed projection
body of K and denoted by IL, ; K. We write 1L, o K as 11, K.
It easily to see that

1
M = o [ e ol aSpa(K L) 659
Sn—l

and

1
h(IL, ; K, u)? = —/ |u - v|[PdS,,i (K, v).
’ 2P Jgn-1 ’
The following property will be used later. If K,L €
K:g, Ky, --- K, 1€ ICQ and C' = (KQ7 s 7Kn71): then

II(AK + pL, C) = NI(K, C) + plI(L, O). (57)

(56)
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I'V. THE MAIN RESULTS AND THEIR PROOFS

A. The Aleksandrov-Fenchel inequality for the generalized
Ly,-mixed volume of convex bodies

In this section, we prove the Aleksandrov-Fenchel inequal-
ity for the generalized L,-mixed volume of convex bodies
stated in the beginning of this paper.

Proof of Theorem 1. For p = 1, Theorem 1 is just inequality
(1) stated in the beginning of this paper, its proof was
completed by Schneider (see [80], p.401).

For p > 1, we use Holder’s inequality (see [34], p.140)
to complete the proof.

Suppose that f; € L% (E),1 < a; < o0 (i =0,1,---,m)
are nonnegative functions, «; satisfies
1 1
—_— et — = 1
(651 [67%%%
Then [];", fi € LL(E), and
[ Tl #@)te)dute) < T 1o
Ei=1 i=1
m 1
= ([ sl staun)™ o

i=1

with equality if and only if there exist positive constants
A1,y A such that Ay fy(2)* = -« = A\ fn ()@ for
e k.

f0<a; <1land ag <O0,---, 0y <0, then inequality
(58) is reverse (the conditions of the reverse inequality of
(58) is given by the author of this article).

For p > 1, the reverse Holder’s inequality, together with
(41), (40) and (21), yields

Vp(Kla Ty Kn)
1
= —/ MK, w)PdS, (K, -+, Kn_1;u)
Sn 1
1 1-p
= f/ h(Kn,u)p(h(Kl,u)~~~h(Kn,1,u))"*1
n Jgn-1
xdS(Ky,- -+, Kn_1;u)
1 p
n—1
S -
n—1
H < /S ~h(IG, u)dS (K, - ~,Kn_1;u))
1—-p
= V(Kla" 7 HVKlv o n 17Kj)ﬁ'
Using the Aleksandrov—Fenchel inequality (1), we have
‘/p(Klv"') >HV 7‘-&-1’"'7Kn)$
n—1 17
><1_[‘/vf(17 .. n 1,Kj)”%.
Simllarly, we can prove the reverse inequality.
Taking » = n — 1 in (9), we obtain
Corollary 19. If p > 1,K; € K (i: 1,---,n), then
Vp(Kla"'a H n—l K)P
Jj=1
XV (K, K1, Kyt (59)

Taking » = n in (9), we obtain
Corollary 20. Ifp>1,K; e K2 (i=1,---,

> [TV

d=p)n

anl, Kj) n—1

n), then

‘/17([(17"'7[( )”

n—1

X V(Ky,---,
1

(60)

.
I

Remark 21. In particular, when p = 1 in (60), the result
has proved by Lutwak [57]: If K; € K2 (i =1,---,n), then

V(K- Kp)" > V(Ky) - V(Ky), (61)
with equality if and only if K1, --, K,, are homothetic.

Using the same argument as in Theorem 1, we immedi-
ately can get the following theorem.

Theorem 22. If p > 1, and Ky,---,K,_1_; € K} (¢ =

0,1,---,n—1), K, € K, then
Wp,i(Kly e aKn—l—ia Kn)T
> HW T+17 "aKn—l—iaKn)p
n—1—1 (1-p)
oy
< T Wiy, Knoaoi, Kj) s, (62)
Jj=1
Taking » =n — 1 — ¢ in (62), we obtain that
Corollary 23. If p > 1, Ky, -, K1, K, (i =
0,1,---,n—1) € K7, then
WPJ(Klv c 7Kn—1—ia Kn)nilii
n—1—z
> H Wi(Kjn—1—1],K,)P
xt49(1<h~~-,lfnflfiyka)lfp. (63)
Remark 24. Takingr=n—¢, Ky =---=K,_1_; =K

and K,, = L in (62), we can get the Minkowski inequality
proved by Lutwak [51]: If K,L € KZ,p > 1, then for i =
0,1,---,n—2,

Wi (K, L)"™" > W;(K)" " PW;(L)?, (64)
with equality for p > 1 if and only if K and L are dilates,
for p =1 if and only if K and L are homothetic.

B. The Aleksandrov-Fenchel inequality for generalized L,-
mixed projection of convex bodies

In this section, we prove the Aleksandrov-Fenchel inequal-
ity for L,-mixed projection bodies of convex bodies stated
in the beginning of this paper.

Lemma 25. If p > 1and Ky, ---,K,—1 € K, for i =
0,1,---,n —1, then
W'L(HP(Kla"';anl))ﬁ
> n WKL, < K) ™
XHVMW'nM@H- (65)
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Proof. We only prove the first inequality with p > 1. From Theorem 27. If p > 1, Ky, --

Definition 1, Definition 6, the reverse of Holder’s inequality
(58), (49) and (21), it follows that

1-p

h(Hp(Klv"'vKn*1)7u)p
1 =
— Qip |u"Ulp(hK1(U)“'hKn71(U)) "
Sn—l
xdS(Ky, -+, Kn_1;v)
1 P
> nlp( / |u~U|dS(K17"'7Kn—1;U)>
2 Jons
n—1 1 n-1
x(H (/ th(v)dS(K17"'7Kn1;U))>
i1 n Jgn-1
= PRI, Koy, u)?
n—1
X V(Klf"aK’n—th):’:g'
Jj=1
Namely,
A, (Ky, -+ Kpoy),u)?
> nl_ph(H(Kl,"wanl)vu)p
n—1
X H V(Klv"HKn—vij)%' (66)
j=1

For each ) € K7, integrating both sides of (66) for
dS,,i(Q,u) in uw € S"~1, and by (33), we obtain

Wp,i(Qv Hp(Kh ) anl))
2 nlipWP-,i(Q7H(Kla"'aKn—l))
1

n

1—p

7K7L—13Kj)n_1 .

X V(Ky,- -
1

J

Taking @ = II,(K4, -+, K,—1), we have

WZ(HP(K17 e ,an]_))
> nl_pr,i(HP(Klv o Ky (K e Ke)
n—1
X HV(Kla"'vanlﬂKj)%' (67)
j=1

Using inequality (64) in (67), we have (65).

Taking ¢ = 0 in (65) and using inequality (5), this has
Theorem 2. Taking » = n — 1 in (10), we obtain
Corollary 26. Let K, ---,K,_1 € K. If p > 1, then

n—1
VLKL, Koon)E 20! 7 [] VK)o
j=1
n—1 |
< [[ V&, Ky, Ky v (68)
j=1

When p = 1 in (10), we obtain the Brunn-Minkowski
inequality (5) for mixed projection bodies established by Lut-
wak [45]. From (53), (46), the reverse of Holder’s inequality
(58), (31) and (6), the same argument can get

K1 € K (G =

0,1,---,n — 2), then

y
n

V(M (K- Kne1-4))

> n'P H V(LK (], K- Ko1)o
j=1

n—1—1i

< [T Wik, Koo K7 5. (69)
j=1

Now we established the generalized Aleksandrov-Fenchel
inequality for the polar of L,-mixed projection bodies.

Lemma 28. If p > 1, K;,---,K,,—1 € K and 7 € R, then

Wi(HZ(Kh e 7K71,—1))
(p-D(ni) ~
< e Wi(IT"(Kq, -+, Kn—1))
nol (=D (n—1)
X V(K17"'7KTL—15K]') (n=1)p ) (70)

1

.
Il

with equality if and only if K is the line segment A;[u],
where \; >0 (j=1,---,n—1).
Proof. From (66) we have

p(H;(Kla ) K7l—1)7 u)nii
(p—1)(n—1) « i
= n P p(H (K17"',Kn—1);u>n
n-t (P=1)(n—i)
< [[ VL K, K) 507 )

1

.
Il

For each Q € K7, integrate both sides of (71) for u € S~ 1,
and by (38) and the formula of the dual quermassintegrals
(38), we immediately obtain (70).

From the condition of equality in Holder inequality, we
know that equality holds in inequality (70) if and only if K
is the line segment A;[u], where A\; >0 (j =1,---,n—1).

Taking ¢ = 0 in (70) and using inequality (7), we can
obtain Theorem 3. Taking » = n — 2 in (11), we obtain
Corollary 29. If p>1and Ky, ---,K,_1 € K, then

V(I (Ky, -, K1)

n—2
(p=1)n
< o5 [[vark,)s

j=1
n-l (p—1)n

x [[ VK, Koy, Kj)0mor, (72)
j=1

with equality if and only if K is the line segment \;[u],
where A\; >0 (i=1,---,n—1).

Taking p = 1 in (11), we obtain the Aleksandrov-Fenchel
inequality (7) for the polars of mixed projection bodies
established by Leng et al. [38].

From Definition 18, (46), the reverse of Holder’s inequal-
ity (58), (38), (8) and (21), and similar to the proof of
Theorem 3, we have
Theorem 30. If p > 1and Ky, ---,K,—1-; € K} (¢ =
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0,1,---,n — 2), then

VL (K, Kpo1-4))

= 1 . 1
< 2T VALK ), Ko Ka)
j=1

n—1—1
(p—1)n
< [[ Wik, Kuoroi Kj) &7, (73)
j=1
with equality if and only if Ki,---, K,_1-; (¢ =
0,1,---,n —2) are line segment 2[u].

C. The Brunn-Minkowski inequality for polars of generalized
L,-mixed projection bodies

For u € S" 1 b(K,u) = (h(K,u) + h(K,—u)) is
defined to be half the width of K in the direction u. Two
convex bodies K and L are said to have similar width if there
exists a constant A > 0 such that b(K, u) = Ab(L,u) for all
u € S™ 1 For K € K™ and p € intK, we use K? to denote
the polar reciprocal of K with respect to the unit sphere
centered at p. The width integrals were first considered by
Blaschke (see [9], p.85). The width integrals of index 4 is
defined by Lutwak [54]. For K € K",i € R,

Bi(K) = 1 /S . b(K,u)"~dS (u).

n

(74)

The width-integral of index ¢ is a map B; : K — R.
It is positive, continuous, homogeneous of degree n-i¢ and
invariant under motion. In addition, for ¢ < n it is also
bounded and monotone under set inclusion.

The following result will be used later (see [54]),
b(K + L,u) = b(K,u) + b(L, u). (75)

On the other hand, Lutwak [55] showed the notion of
L,-mixed width integrals. Let Ki,---,K, € K", and
real number p # 0, then the L,-mixed width integrals of
Ky,---, K, € K™, can is defined by

Bp(Klv"'aKn)

1 !
= Wy (nwn /Snfl b(K,u)P--- b(Kn,U)pdS(u))
(76)

And the L,-mixed width integrals of index 7 of K is defined
by

Bp,i(K) =

1 A b
— p(n—i)
w”(nwn /Sn_1 b(K,u) dS(u)) ,
p#0.

The generalized L,-quasi dual mixed volume was given
by Zhao [93]. Let K; € 8 (i =1,---,n) and p > 0, then

By(Kn — i, B[i])

77

the generalized L,-quasi dual mixed volume of K1, ---, K,
is defined by
%(K].? e ;Kn>
1
1 »
= wp Ky, u)? - p(Ky,w)PdS
on(r [ B0 pli s
(78)

Taking K1 =--- =K, ;= Kand K,,_j1 ==K, =
L in (34), we write V, ;(K, L) = V,,(K[n — i], L[i]). If 7 is
any real, then 17,;,1-(1( , L) is said the ith L,-quasi dual mixed
volume of K, L € S (see [93]), and

‘/;DJ(K’ L)

— (o [ E L)

NWy,

1
P

(79)

In (79), let L = B and we write V,;(K,B) = V,;(K).
Thereby, for K € Sl,i € R, the ith L,-quasi dual
quermassintegrals, V, ;(K), of K is defined by

/ p(K,u)p(”_i)dS(u)>p. (80)
Snfl

Lutwak proved the result [54]: If K € K", then B, (K) <
V(KP), with equality if and only if K is symmetric with
respect to p. We first give a generalization of this inequality.
Lemma 31. If K € K™, p > 0,7 < n, then

Fial1) =

NWn,

Bp,2n7i(K) S vpyi(K*), (81)

with equality if and only if K is symmetric with respect to
the origin.
Proof. From (77) and (75), we have

By on—i(K) 7™
1
1 1 . p(n—1)
- w/{7'< / b(K,u)P("“dS(u))
nwy, Jgn-1
L1 1\ 5 o)
— /,L,1 d
o (nwn . (b(K,w) “‘))

_ n1,7, 1 / 2 p(n—i)
- G, sn—1 \h(K,u) + h(K, —u)

de(u))

1 1 1 1 p(n—i)
< 7’;47/—7,
= v (nwn /Snfl (2h(K,u) * 2h(K, —u))

p(nl—i)
de(u))

YA 1\ )
< B d
< o (o o () asw)

1 1 1 p(n—1i)
e (nwn /;'n—l <2h(K, u))

p(nlf'i)
de(u))

L 1
< wi

. p(TLl*i)
/ p(K*,u>P<“>ds<u>)
Sn— 1

NW,

= ViK™, (i=0,1,-,n—1), (82)
with equality if and only if K is centered.
From (82), we know that inequality (81) is proved.
Lemma 32. If K, L € K7, p > 0 and ¢ < n, then
4Vpi((K + L)")75 < Vo ()55 4 V(L) 75, (83)

with equality if and only if K = L.
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Proof. For K,L € K}, K + L € K7, it follow from (77)

and (81) that (83) is equivalent to the following inequality
4By ani(K + L)7 < By oni(K) 77 + By oni(L) 7
In fact, from Minkowski inequality, (77) and (75), we have

1

1
Bpon—i(K)"=7 + Bpan—i(L)"7

(1 L\ S o)
G L ) @)
171 1 1 p(n—1) ﬁ
Hun (nwn /Snfl (b(L,u)) dS(u))

N nii 1 / 1 N 1 p(n—1)
= Wn nwy, Jgn-1 \b(K,u)  b(L,u)
oD
de(u))
- ﬁ 1 / 1 p(n—1i)
= fen nwy, Jgn-1 \b(K,u) + b(L, u)

o=
de(u))

1
= 4Bp72n7i(K + L) T

with equality if and only if b(K,u) = b(L,u),u € S"~ 1.
Since K and L are centered, it follows that K = L.

Noting that II(K, C') and II(L, C) are centered, from (57)
and (83), we infer Theorem 4.

D. A generalization of Pythagorean inequality for mixed
volumes

Pythagorean inequalities were given by Firey [24]:

K- 17[ })2

< ZV (K, K.

where {ej1,---,e,} is an orthogonal basis in R and e is an
arbitrary unit vector. Now, we generalize inequality (84) to
John basis. Namely, we complete the proof of Theorem 5
stated in the beginning of this paper.
Proof of Theorem 5. From the support function of
II,(Ky,---,Kp—1) and (51), we get

h(u)p - nV;D(Kh o ';Kn—la [u])

V(K

a1, €))% (84)

Together with [3]

m
E Cz w- Uz Us,
i=1

we have
nvp(fl,...,Kn,l,Lu])
— h(;ci(u-ui)ui> p
_ (Zcz w )
— (ic”u'ui|h(sgn(u'ui>ui))p

S

1 n P

= (TLP Zci|u‘ui|‘/@(K17“'7KW/—1’[ui]) > .
=1

(85)

m

Together Cauchy inequality with ||z||? = Y7, ¢z - w;
we have

%,
m

Zci|u'ui|vp(K1a"'a

i=1

m 3
(e )

S

K1, [ui])

ol

(ch K1,~~,Kn1,[ui])i) (86)
From (85) and (86), we have
nVP(Klv"'?Kn—la[uD
< n(ch|uul|2>2
i=1
(ZC’L Kl)"'aK’n—la[ui])i>
_ mw(zcz (oo Ko )
(87)

From (87), the proof of inequality (14) is completed.
Remark 33. The equality in (13) implies Y ;" ¢; = n.
Clearly, the sequence {uq,---,um,} is just like a standard
orthogonal basis such that for any = € R",

m
ol? = eilus - 2. (88)
i=1
Moreover, let ¢; = -. Then {uy,---,up} is called star-

coordinates by Kawashima [36]. It is also easy to prove that
its inertial ellipsoid is a ball (see [90], [92]).

Taking p = 1 in Theorem 5, then inequality (14) reduces
to Leng’s result [38]. Taking Ky = - = K1, =
K K, ,=---=K, 1= Bin (14), it follows that
Corollary 34. If p > 0, K € K7, then

Wy (K") % < chwpr Kul)%

=1

(89)

In particular, let » = 1 to (89), we have Corollary 35. If
p>0,K € K7, then

m

Sp(K")7 <) eiSy (K™
i=1

If {u;}, is a standard orthogonal basis, then we can
prove the generalized results of the obtained results by Firey
[24].

(90)

E. Generalized Loomis-Whitney inequality

We require the following result on the zonotope. In fact, a
zonotope is a Minkowski combination of line segments, and
see [80]. A body in K™ being the limit (with respect to the
Hausdorff metric) of zonotope is called a zonoid.
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Lemma 36. Suppose that {u;}; is a sequence of unit
vectors in R", and {¢;}1*, is a sequence of positive numbers
such that > ciu; ® u; = I,. If Ay,---, A, are the
sequence real numbers and Z = Y " | A;[w;], then

viz) =] (%) o
- C;

i=1

Proof of Theorem 6. Let \y,---, \,, are the sequence real
numbers and Z = " | A;[w;]. It follow from (52) and the
property of mixed volume that

% Uq Uq 1
Z)‘iUP(Kl 7"'7Kn—1)p
i=1

n—2
X H V(Kjv Kla Ty Kn*27 [ul])ﬁ
j=1
Z H%Z)\iV(Kly"ﬁKn*l?[ui])
=1
— n%V(Kh ',Kn—hZ)' (92)

Together (23), Minkowski inequality (3) with Lemma 8, we
have

V(K17"'5K7L—1aZ)
= V([Kl,'--,anlHn—l],Z)
> V(K- Ke) T V(2)7
n—1 m )\Z %
> Vg ) T IL(2) T o
i=1 v

Together (92) with (93), we have

S (K, K
=1

n—2
X V(KJ, K17 ?Kn—2, [ui])p(n_—lz)
j=1
> V(K Kp_1)) ﬁ AY o4)
= 1, sy NAn—1 i o
Let 1
A= UP(K%I7 K;fil)57
n—2 B
B= [ V(K;, Ky, Ky, [w]) 702,
j=1
C;
A = ,
AB

and note that ) ;" ¢; = n, we obtain Theorem 6.

Taking p = 1 in (15), we have
Corollary 37. Suppose that Ky,---, K,—1 € K", {u;},
is a sequence of unit vectors in R", and {¢; }[; is a sequence
of positive numbers such that ZZL c;u; ® u; = I,. Then

m

[[v@Ey - Ky ) > V(K- Kaa])" ™ (95)
i=1

Inequality (95) is established by Si and Leng [84].
In particular, let Ky = --- = K,,_; = K, and note that
[K1, - +,K,—1] = K, then inequality (95) reduces to the

following Ball’s Loomis-Whitney inequality for John basis
[5].

Corollary 38. Suppose that K € K", {u;}, is a sequence
of unit vectors in R", and {¢;}, is a sequence of positive
numbers such that >\ | ¢;u; ® u; = I,,. Then

m

HU(K”i)C’ > V(K)" L.

i=1

(96)
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