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Abstract—The resistance distance between any two vertices
of a graph G is defined as the net effective resistance between
them in the network construct from G by replacing each edge
of G with a unit resistor. The Kirchhoff index of G is defined
as the sum of resistance distances between all pairs of vertices.
Let Ln (resp. Hn) be the linear phenylene chain (resp. helicene
phenylene chain) containing n hexagons and n− 1 squares. In
this paper, firstly, it is shown that among all phenylene chains
with n hexagons and n− 1 squares, Ln attains the maximum
value of the Kirchhoff index. Moreover, it is demonstrated
that the minimum Kirchhoff index is attained only when the
phenylene chain is an “all-kink” chain, which leads to the
conjecture that Hn has the minimum Kirchhoff index. Secondly,
exact expressions for some degree-based topological indices,
namely, the general Randić index, the Harmonic index, the first
Zagreb index, the Sum-Connnectivity index, the Geometric-
Arirthmetic index, the Atom-Bond connectivity index, and the
Symmetric-Division index of phenylene chains are obtained,
with extremal phenylene chains with respect to these degree-
based topological indices being characterized.

Index Terms—resistance distance, Kirchhoff index, phenylene
chain, S, T -isomers

I. INTRODUCTION

IN 1993, the novel concept of resistance distance was
proposed by Klein and Randić [1]. The term resistance

distance was used because of the physical interpretation:
one imagines unit resistors on each edge of a connected
graph G = (V (G), E(G)) and takes the resistance distance
between vertices i and j of G to be the net effective
resistance between them, denoted by ΩG(i, j). Recall the
traditional (shortest path) distance between any two vertices
i and j, denoted by dG(i, j) , is known to be the length of
a shortest path connecting them. It has been shown that [1]

ΩG(i, j) ≤ dG(i, j),

with equality if and only if i and j are connected by a unique
path. The Kirchhoff index [1] of G is defined as the sum of
resistance distances between all pairs of vertices,

Kf(G) =
∑

{u,v}⊆V (G)

ΩG(u, v) =
1

2

∑
u∈V (G)

∑
v∈V (G)

ΩG(u, v).

The Kirchhoff index is not only an important graph invariant,
but also an elegant structure descriptor, which plays essential
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roles in the study of QSAR/QSPR in chemistry. For this
reason, the Kirchhoff index has extensively studied in math-
ematical and chemical literatures. The readers are referred to
most recent papers [2]–[8] and references therein for more
information on the Kirchhoff index.

Besides the Kirchhoff index, we also consider some inter-
esting degree-based topological indices, namely, the general
Randić index, the Harmonic index, the first Zagreb index, the
Sum-Connnectivity index, the Geometric-Arirthmetic index,
the Atom-Bond connectivity index, and the Symmetric-
Division index.

In 1975, to study the properties of alkane, Randić [9]
proposed a novel structure descriptor, which is called the
Randić index R(G) and defined as the sum over all edges
of the (molecular) graph of the terms [dudv]

− 1
2 , where du is

the degree of u, i.e.

R(G) =
∑

uv∈E(G)

[dudv]
− 1

2 . (1)

From then on, this topological index has been extensively
studied. Then, in 2006, the Li and Gutman [10] extended
the ordinary Randić index to general Randić index Rα(G)
by replacing − 1

2 to arbitrarily real number α, i.e.

Rα(G) =
∑

uv∈E(G)

[dudv]
α. (2)

For more information on the general Randić index, the
readers are refered to [11]–[14] and references therein.

An variant of the Randić index is the Harmonic index
H(G) [15], which is defined as the sum of the weights

2
d(u)+d(v) of all edges uv, i.e.

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
. (3)

The first Zagreb index M1(G) [16] is defined as the sum
over all vertices of the graph of the terms d2i , i.e.

M1(G) =
∑

i∈V (G)

d2i . (4)

The first Zagreb index can also expressed as [16]

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)]. (5)

The Sum-Connectivity index S(G) [17] is defined as the
sum of the weights 1√

d(u)+d(v)
of all edges uv, i.e.

S(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

. (6)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_02

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



The Geometric-Arithmetic index GA(G) [18] is defined as

the sum of the weights 2
√
d(u)d(v)

d(u)+d(v) of all edges uv, i.e.

GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)
. (7)

The Atom-Bond connectivity index ABC(G) [19] is de-
fined as the sum of the weights

√
d(u)+d(v)−2
d(u)d(v) of all edges

uv, i.e.

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
. (8)

The Symmetric-Division index SD(G) [20] is defined as
the sum of the weights d2(u)+d2(v)

d(u)d(v) of all edges uv, i.e.

SD(G) =
∑

uv∈E(G)

d2(u) + d2(v)

d(u)d(v)
. (9)

Phenylenes are a class of conjugated hydrocarbons com-
posed of six- and four-membered rings, where the six-
membered rings (hexagons) are adjacent only to four-
membered rings, and every four-membered ring is adjacent
to a pair of nonadjacent hexagons. If each six-membered ring
of a phenylene is adjacent only to two four-membered rings
(squares), we say that is a phenylene chain. Due to their
aromatic and antiaromatic rings, phenylenes exhibit unique
physicochemical properties. Phenylenes, especially pheny-
lene chains have attracted much attention due to excellent
properties. For more details, the readers are referred to papers
[21]–[37] and references therein.

In what follows, we focus only on phenylene chains. For
convenience, we introduce notations to describe a phenylene
chain. Actually, a phenylene chain with n hexagons (n ≥ 2)
and n − 1 squares can be obtained in the following way:
first take a linear polymino chain with 2n+ 1 squares, then
add two vertices to each of the 1st, 3rd, 5th, . . ., (2n+ 1)-th
square making it into a hexagon in one of the following three
different ways: the first way is to add two vertices on the top
row, the second way is to add two vertices on the bottom row,
and the third way is to add one vertex on the top row and
one vertex on the bottom row. For convenience, we always
assume that the first and the last hexagons are obtained by the
third way. For each of the remaining (n − 2)-hexagons, we
give a + (resp. −, or 0) sign to the hexagon if the hexagon
is obtained by the first (resp. second, or third) way. In this
viewpoint, we are able to represent a phenylene chain with
n hexagons (n ≥ 2) and n − 1 square by a (n − 2)-vector
(S1, S2, . . . , Sn−2) such that Si ∈ {+,−, 0}. We denote
the phenylene chain which are represented by vector V by
PH(V). In particular, the phenylene chain (0, 0, . . . , 0︸ ︷︷ ︸

n−2

) is

called a linear (phenylene) chain, which is denoted by Ln,
and the phenylene chain (−,−, . . . ,−︸ ︷︷ ︸

n−2

) is called a helicene

(phenylene) chain, which is denoted by Hn. For example,
some phenylene chains with six hexagons and five squares
are given in Figure 1.

In this paper, we characterize extremal phenylene chains
with respect to the Kirchhoff index and various degree-based
indices. Firstly, It is shown that among all phenylene chains

Fig. 1. Some phenylene chains with six hexagons and five squares.

with n hexagons and n−1 squares, Ln attains the maximum
value of the Kirchhoff index. Moreover, it is demonstrated
that the minimum Kirchhoff index is attained only when
the phenylene chain is an “all-kink” chain, which leads to
the conjecture that Hn has the minimum Kirchhoff index.
Secondly, for the degree-based indices including the general
Randić index, the Harmonic index, the first Zagred index,
the sum-connectivity index, the Geometric-Arithmetic index,
the Atom-Bond index and the Symmetric-Division index, it
is shown that among all phenylene chains with n hexagons
and n− 1 squares, Ln attains the minimum values of these
indices, whereas the maximum values are attained if and only
if the phenylene chain is an “all-kink” chain.

II. EXTREMAL PHENYLENE CHAINS WITH RESPECT TO
THE KIRCHHOFF INDEX

In this section, we aim to characterize extremal phenylene
chains with respect to the Kirchhoff index. In the characteri-
zation of extremal phenylene chains, the comparison theorem
on the Kirchhoff index of S- & T -isomers, which is obtained
in [38], plays an essential rule. It is well known that isomers
(or more precisely structural isomers) are compounds with
the same molecular formula but different structural formulas.
That is, different isomers of a common molecular formula
correspond to nonisomorphic (connected) graphs (of the
same numbers of vertices & edges). The concept of S- &
T -isomers was introduced by Polansky and Zander [39] in
1982, which entails a pair of graphical moieties A, B doubly
interconnected in two different ways as in Figure 2. It is

Fig. 2. A pair of vertices (pi-centers) u & v in moiety A are connected
to vertices x & y in B, in one way in the S-isomer, and in the other way
in the T -isomer.
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easily seen that many pairs of phenylene chains can be
viewed as S- & T -isomers. For example, some S- & T -
isomers of phenylene chains are given in Figure 3.

Fig. 3. Some S- & T -isomers of phenylene chains.

For a connected graph G and k ∈ V (G), the resistive
eccentricity index of k, denoted by ΩG(k), is defined in [38]
as the sum of resistance distances between k and all the other
vertices of G, that is

ΩG(k) =

i6=k∑
i∈V (G)

ΩG(k, i).

Then the comparison result on Kirchhoff indices of S, T -
isomers is given in the following theorem.

Theorem II.1. [1] Let S, T,A,B, u, v, x, y be defined as
above. Then

Kf(S)−Kf(T ) =
[ΩA(u)− ΩA(v)][ΩB(y)− ΩB(x)]

2 + ΩA(u, v) + ΩB(x, y)
.

(10)

Using the comparison theorem, we are able to single out
the unique phenylene chain with maximal Kirchhoff index
among all phenylene chains containing n hexagons. For
convenience, for Si ∈ {+,−, 0}, we define

−Si =


−, if Si = +;

+, if Si = −;

0, otherwise.

Theorem II.2. Let PH(V) be a phenylene chain containing
n+2 hexagons and n+1 squares with V = (S1, S2, . . . , Sn).
If there exists some integer i ∈ {1, 2, . . . , n} such that Si 6=
0, then let V′ = (S1, . . . , Si−1, 0,−Si+1, . . . ,−Sn) and we
have

Kf(PH(V)) < Kf(PH(V′)).

Proof: Since Si 6= 0, we know that Si = + or Si = −.
Here we prove that the assertion holds for Si = +. The
remaining case could be proved in the same way.

Now suppose that PH(V) is a phenylene chain with V =
(S1, S2, . . . , Sn) such that Si = +. Choose vertices u, v, x,
and y in the (i+1)-th hexagon of PH(V) as shown in Figure
4. First delete edges ux and vy from PH(V), and then add
two new edges uy and vx. Then a new phenylene chain
PH(V′) with V′ = (S1, . . . , Si−1, 0,−Si+1, . . . ,−Sn)
is obtained (see Figure 4). We proceed to show that
Kf(PH(V)) < Kf(PH(V′)). By the construction of
PH(V′), we know that PH(V) and PH(V′) are a pairs
of S- & T -isomers. Suppose that the two components of
PH(V) − {ux, vy} (also PH(V′) − {uy, vx}) are A and
B such that the component containing u and v is A. Then
by Theorem II.1, we have

Kf(PH(V))−Kf(PH(V′))

=
[ΩA(u)− ΩA(v)][ΩB(y)− ΩB(x)]

2 + ΩA(u, v) + ΩB(x, y)
. (11)

By the definitions of ΩA(u) and ΩA(v), we have

ΩA(u)− ΩA(v) =
∑

k∈V (A)

ΩA(u, k)−
∑

k∈V (A)

ΩA(v, k)

=
∑

k∈V (A)\{u,v}

[ΩA(u, k)− ΩA(v, k)].

(12)
Let w be the unique neighbor of u in A. Then for any

k ∈ V (A) \ {u, v}, we have

ΩA(u, k) = 1 + ΩA(w, k). (13)

On the other hand, since dA(v, w) = 1 and v and w are
connected by more than one path in A, we have ΩA(v, w) <
dA(v, w) = 1. Consequently, for any k ∈ V (A) \ {u, v}, we
get

ΩA(v, k) ≤ ΩA(v, w) + ΩA(w, k) < 1 + ΩA(w, k). (14)

By (12), (13) and (14), it follows that

ΩA(u)− ΩA(v) > 0. (15)

Using the same argument, we can get that

ΩB(y)− ΩB(x) < 0. (16)

By (11), (15) and (16), we have Kf(H(V)) −
Kf(H(V′)) < 0, which completes the proof.

Fig. 4. Illustration of phenylene chains PH(V) and PH(V′) in the proof
of Theorem 2.2.

In fact, by the proof of Theorem II.2, we know that if a
phenylene chain is not straight (i.e. the linear chain), then
the process of removing “kinks” in the phenylene chain may
be iterated, each time increasing the Kirchhoff index, till
finally arriving at the straight “unkinked” chain. Hence, as
an immediate consequence of Theorem II.2, we have

Theorem II.3. Among all phenylene chains with n hexagons
and n − 1 squares, the linear chain Ln has the maximum
Kirchhoff index.

Since the exact values of the Kirchhoff index of the linear
chain Ln has been computed in [40] as follows:

Kf(Ln) = 9n3 +
29
√

30

20

(11 + 2
√

30)2n + 1

(11 + 2
√

30)2n − 1
n2 +

21

40
n.

(17)
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Theorem II.3 directly leads to

Corollary II.4. Let PHn be a phenylene chain with n
hexagons and n− 1 squares. Then

Kf(PHn) ≤ 9n3 +
29
√

30

20

(11 + 2
√

30)2n + 1

(11 + 2
√

30)2n − 1
n2 +

21

40
n,

(18)

with equality if and only if PHn is the linear chain Ln.

It is natural to ask which phenylene chain has the mini-
mum Kirchhoff index. This problem turns out to be much
more complicated. Similar to the proof of Theorem 2.2,
we can prove that if PH(V) is a phenylene chain with
V = (S1, S2, . . . , Sn) such that there exists some integer
i ∈ {1, 2, . . . , n} with Si = 0, then the phenylene chain
PH(V′) with V′ = (S1, . . . , Si−1,−,−Si+1, . . . ,−Sn)
or V′ = (S1, . . . , Si−1,+,−Si+1, . . . ,−Sn) has larger
Kirchhoff index than PH(V). For convenience, we call a
phenylene chain PH(V) an “all-kink” chain if V does not
contain 0. In view of the above argument, if a phenylene
chain is not an “all-kink” chain, then the process of adding
“kinks” in the phenylene chain may be iterated, each time
reducing the Kirchhoff index, till finally arriving at an “all-
kink” chain. Hence we have

Theorem II.5. Among all phenylene chains, the minimum
Kirchhoff index is attained only when the phenylene chain is
an “all-kink” chain.

However, there are many different types of ”all-kink”
phenylene chains. So it still remain unsolved which ”all-
kink” phenylene chain has the minimum Kirchhoff index. For
this problem, we only have some intuitive feelings. Among
all ”all kink” phenylene chains, as the helicene chain seems
to be the most “compact”, we believe that the minimum
Kirchhoff index is attained at the helicene chain. For this
reason, we propose the following conjecture.

Conjecture II.6. Among all phenylene chains with n
hexagons and n− 1 squares, the helicene chain Hn has the
minimum Kirchhoff index.

III. EXTREMAL PHENYLENE CHAINS WITH RESPECT
DEGREE-BASED TOPOLOGICAL INDICES

In this section, we characterize extremal phenylene chains
with respect to degree-based topological indices. To this end,
we first divide the edge set of G into three different classes
and compute the cardinality of each class.

Let PH(V) be a phenylene chain with n hexagons and
n − 1 squares. It is clear that every vertex of PH(V) has
degree 2 or 3. In what follows, a j-vertex denotes a vertex
of degree j, and a (j, k)-edge stands for an edge connecting
a j-vertex with a k-vertex. For convenience, the number
of j-vertices and (j, k)-edges are denoted by nj and mjk,
respectively. We use h to denote the number of nonzero
components of V, i.e. the number of kinks in PH(V). It
is obvious that PH(V) have 6n vertices and 8n− 2 edges.
The edge set of PH(V) can be partitioned into 3 classes
according to the 3 different types of edges. In addition, the
precise number of (2, 2)-edges, (2, 3)-edges and (3, 3)-edges
could be given in the following result.

Lemma III.1. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Let h be the number of nonzero
components of V. Then we have

m22 = 6 + h, (19)
m23 = 4(n− 1)− 2h, (20)
m33 = 4(n− 1) + h. (21)

Proof: Let H1, H2, . . ., Hn be the n consecutive
hexagons of PH(V). Since all the vertices of squares have
degree 3, the (2, 2) edges must belong to hexagons. It is
readily seen that both H1 and Hn have 3 (2, 2)-edges. For
the remaining hexagons H2, H3, . . ., Hn−1, we know that
Hi has a (2, 2)-edge if and only if Hi have two degree 2
vertices on the top or Hi have two degree 2 vertices on the
bottom, which implies that Hi has a (2, 2)-edge if and only
if the corresponding component of V is nonzero. As V has h
nonzero components, it follows that m22 = 3+3+h = 6+h.

We proceed to compute m33. Note first that each square
have four (3, 3)-edges. Then, for an edge e not belonging
to any square, it is easily verified that e is an (3, 3)-edge if
and only if the unique hexagon containing e corresponds to
a nonzero component of V. Bearing in mind that PH(V)
have n− 1 squares, we conclude that m33 = 4(n− 1) + h.
Finally, note that PH(V) has 8n− 2 edges, thus

m23 = 8n− 2−m22 −m23

= 8n− 2− (6 + h)− [4(n− 1) + h] = 4(n− 1)− 2h.

According to Lemma III.1 and the definition of the general
Randić index, the exact value of the general Randić index of
PH(V) is obtained.

Theorem III.2. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

Rα(PH(V)) = 6 · 4α + 4(n− 1)(6α + 9α) + h(3α − 2α)2.
(22)

Proof: By the definition of the general Randić index,
we have

Rα(PH(V)) =
∑

e=uv∈E(PH(V))

[dudv]
α

= m22[2 · 2]α +m23[2 · 3]α +m33[3 · 3]α

= (6 + h)4α + [4(n− 1)− 2h]6α + [4(n− 1) + h]9α

= 6 · 4α + 4(n− 1)(6α + 9α) + h(4α − 2 · 6α + 9α)

= 6 · 4α + 4(n− 1)(6α + 9α) + h(3α − 2α)2.

Notice that 0 ≤ h ≤ n − 2, h = 0 if and only if
PH(V) = Ln, and h = n − 2 if and only if PH(V)
is an “all-kink” chain. As a consequence of Theorem III.7,
extremal phenylene chains with respect to the general Randić
index could be characterized, as given in the following result.

Theorem III.3. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square.

(1) If α 6= 0, then

6 · 4α + 4(n− 1)(6α + 9α) ≤ Rα(PH(V))

≤ n(5 · 9α + 2 · 6α + 4α)− 6 · 9α + 4α+1, (23)
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with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

(2) If α = 0, then

Rα(PH(V)) = 4α + 4(n− 1)(6α + 9α). (24)

Next, we will characterize extremal phenylene chains with
respect to the Harmonic index, first Zagreb index, sum-
connectivity index, Geometric-Arithmetic index, Atom-Bond
connectivity index and Symmetric Division index. Specifi-
cally, the second Zagreb index is for α = 1 to the general
Randić index, so we don’t have to give the characterization.

According to Lemma III.1 and the definition of the Har-
monic index, the exact value of the Harmonic index of
PH(V) is obtained.

Theorem III.4. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

H(PH(V)) =
44

15
(n− 1) +

1

30
h+ 3. (25)

Proof: By the definition of the Harmonic index, we have

H(PH(V)) =
∑

e=uv∈E(PH(V))

2

du + dv

= m22[
2

2 + 2
] +m23[

2

2 + 3
] +m33[

2

3 + 3
]

= (6 + h)
1

2
+ [4(n− 1)− 2h]

2

5
+ [4(n− 1) + h]

1

3

= 3 +
h

2
+

8

5
(n− 1)− 4

5
h+

4

3
(n− 1) +

h

3

=
44

15
(n− 1) +

1

30
h+ 3.

Notice that 0 ≤ h ≤ n − 2, h = 0 if and only if
PH(V) = Ln, and h = n − 2 if and only if PH(V) is
an “all-kink” chain. As a consequence of Theorem III.4,
extremal phenylene chains with respect to the Harmonic
index could be characterized, as given in the following result.

Theorem III.5. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. we have

44

15
(n− 1) + 3 ≤ H(PH(V )) ≤

44

15
(n− 1) +

n

30
+

44

15
, (26)

with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

According to Lemma III.1 and the definition of the first
Zagreb index, the exact value of the the first Zagreb index
of PH(V) is obtained.

Theorem III.6. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

M1(PH(V)) = 44n− 20. (27)

Proof: By the definition of the first Zagreb index, we
have

M1(PH(V)) =
∑

e=uv∈E(PH(V))

[du + dv]

= m22[2 + 2] +m23[2 + 3] +m33[3 + 3]

= (6 + h)4 + [4(n− 1)− 2h]5 + [4(n− 1) + h]6

= 24 + 4h+ 20(n− 1)− 10h+ 24(n− 1) + 6h

= 44n− 20.

It is interesting to note that all the first Zagreb index of the
phenylene chain depends only on the number of hexagons,
which is independent of the number of “kinks”.

According to Lemma III.1 and the definition of the
Sum-Connectivity index, the exact value of the the sum-
connectivity index of PH(V) is obtained.

Theorem III.7. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

S(PH(V)) = (
4√
5

+
4√
6

)(n− 1) + (
1

2
− 2√

5
+

1√
6

)h+ 3.

(28)

Proof: By the definition of the Sum-Connectivity index,
we have

S(PH(V)) =
∑

e=uv∈E(PH(V))

1√
du + dv

= m22[
1√

2 + 2
] +m23[

1√
2 + 3

] +m33[
1√

3 + 3
]

= (6 + h)
1

2
+ [4(n− 1)− 2h]

1√
5

+ [4(n− 1) + h]
1√
6

= 3 +
h

2
+

4√
5

(n− 1)− 2√
5
h+

4√
6

(n− 1) +
h√
6

= (
4√
5

+
4√
6

)(n− 1) + (
1

2
− 2√

5
+

1√
6

)h+ 3.

Notice that 0 ≤ h ≤ n−2, h = 0 if and only if PH(V) =
Ln, and h = n − 2 if and only if PH(V) is an “all-
kink” chain. As a consequence of Theorem III.7, extremal
phenylene chains with respect to the Sum-Connectivity index
could be characterized, as given in the following result.

Theorem III.8. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. we have

(
4√
5

+
4√
6

)(n− 1) + 3 ≤ S(PH(V )) ≤

(
1

2
+

2√
5

+
5√
6

)(n− 1) + (
5

2
+

2√
5
− 1√

6
), (29)

with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

According to Lemma III.1 and the definition of the
Geometric-Arithmetic index, the exact value of the the
Geometric-Arithmetic index of PH(V) is obtained.

Theorem III.9. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

GA(PH(V)) =
8
√

6 + 20

5
(n−1)+(2− 4

√
6

5
)h+6. (30)
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Proof: By the definition of the Geometric-Arithmetic
index, we have

GA(PH(V)) =
∑

e=uv∈E(PH(V))

2
√
dudv

du + dv

= m22[
2
√

2 · 2
2 + 2

] +m23[
2
√

2 · 3
2 + 3

] +m33[
2
√

3 · 3
3 + 3

]

= (6 + h) + [4(n− 1)− 2h]
2
√

6

5
+ [4(n− 1) + h]

= 6 + h+
8
√

6

5
(n− 1)− 4

√
6

5
h+ 4(n− 1) + h

=
8
√

6 + 20

5
(n− 1) + (2− 4

√
6

5
)h+ 6.

Notice that 0 ≤ h ≤ n − 2, h = 0 if and only if
PH(V) = Ln, and h = n − 2 if and only if PH(V) is
an “all-kink” chain. As a consequence of Theorem III.9,
extremal phenylene chains with respect to the Geometric-
Arithmetic index could be characterized, as given in the
following result.

Theorem III.10. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. we have

8
√

6 + 20

5
(n− 1) + 6 ≤ GA(PH(V )) ≤

4
√

6 + 30

5
(n− 1) +

4
√

6

5
+ 4, (31)

with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

According to Lemma III.1 and the definition of the Atom-
Bond connectivity index, the exact value of the the Atom-
Bond connectivity index of PH(V) is obtained.

Theorem III.11. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

ABC(PH(V)) =
8 + 6

√
2

3
(n− 1)− (

√
2

2
− 2

3
)h+ 3

√
2.

(32)

Proof: By the definition of the Atom-Bond connectivity
index, we have

ABC(PH(V)) =
∑

e=uv∈E(PH(V))

√
du + dv − 2

dudv

= m22[

√
2 + 2− 2

2 · 2
] +m23[

√
2 + 3− 2

2 · 3
]

+m33[

√
3 + 3− 2

3 · 3
]

= (6 + h)

√
2

2
+ [4(n− 1)− 2h]

√
2

2
+ [4(n− 1) + h]

2

3

= 3
√

2 +

√
2

2
h+ 2

√
2(n− 1)−

√
2h+

8

3
(n− 1) +

2

3
h

=
8 + 6

√
2

3
(n− 1)− (

√
2

2
− 2

3
)h+ 3

√
2.

Notice that 0 ≤ h ≤ n − 2, h = 0 if and only if
PH(V) = Ln, and h = n − 2 if and only if PH(V) is
an “all-kink” chain. As a consequence of Theorem III.11,

extremal phenylene chains with respect to the Atom-Bond
connectivity index could be characterized, as given in the
following result.

Theorem III.12. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. we have

8 + 6
√

2

3
(n− 1) + 3

√
2 ≤ ABC(PH(V )) ≤

(
10

3
+

3
√

2

2
)(n− 1) +

7
√

2

2
− 2

3
, (33)

with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

According to Lemma III.1 and the definition of the
Symmetric-Division index, the exact value of the the Sym-
metric Division index of PH(V) is obtained.

Theorem III.13. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. Suppose that V have h nonzero
components. Then

SD(PH(V)) =
50

3
(n− 1)− 1

3
h+ 12. (34)

Proof: By the definition of the Symmetric-Division
index, we have

SD(PH(V)) =
∑

e=uv∈E(PH(V))

d2u + d2v
dudv

= m22[
22 + 22

2 · 2
] +m23[

22 + 32

2 · 3
] +m33[

32 + 32

3 · 3
]

= (6 + h)2 + [4(n− 1)− 2h]
13

6
+ [4(n− 1) + h]2

= 12 + 2h+
26

3
(n− 1)− 13

3
h+ 8(n− 1) + 2h

=
50

3
(n− 1)− 1

3
h+ 12.

Notice that 0 ≤ h ≤ n − 2, h = 0 if and only if
PH(V) = Ln, and h = n − 2 if and only if PH(V) is
an “all-kink” chain. As a consequence of Theorem III.13,
extremal phenylene chains with respect to the Symmetric-
Division index could be characterized, as given in the fol-
lowing result.

Theorem III.14. Let PH(V) be a phenylene chain with n
hexagons and n− 1 square. we have

50

3
(n− 1) + 12 ≤ SD(PH(V )) ≤

49

3
(n− 1) +

37

3
, (35)

with left equality if and only if PH(V) = Ln, and right
equality if and only if PH(V) is an “all-kink” chain.

IV. CONCLUSION

The Kirchhoff index and the degree-based topological
indices considered in this paper are important topological
indices, which have significant applications in chemistry.
For this reason, they have been extensively studied. In this
paper, extremal phenylene chains with maximum Kirchhoff
index, minimum and maximum generalized Randić index,
Harmonic index, first Zagreb index, Sum-Connectivity index,
Geometric-Arithmetic index, Atom-Bond connectivity index
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and Symmetric-Division index been singled out. However,
the problem which phenylene chain attains minimum Kirch-
hoff index is still open, which deserves further study.

V. ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee
for his/her carefully reading the paper and for constructive
comments and suggestions which have improved this paper.

REFERENCES
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