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Abstract—The paper studies the existence of positive solutions
for a class of fractional multi-point boundary value problems
under different resonant conditions. By using Leggett-Williams
norm-type theorem, some new existence results are obtained.
Finally, an example is provided to show the application of the
main results.

Index Terms—multi-point boundary value problem, Leggett-
Williams norm-type theorem, resonant, positive solution.

I. INTRODUCTION

FRACTIONAL boundary value problems (FBVPs for
short) arise from the studies about models of fluid

flow, aerodynamics, electrical networks, polymer rheology,
biology chemical physics, economics, control theory, signal
and image processing research, etc. At present, more and
more scholars are interested in this field, see [1-12]. For
example, Ates and Zegeling [12] investigated the fractional-
order advection-diffusion reaction boundary value problems:{

εCDαu+ γu′ + f (u) = S (x) , x ∈ [0, 1] ,

u (0) = uL, u (1) = uR,

where 1 < α ≤ 2, 0 < ε ≤ 1, γ ∈ R, CDα is the Caputo
fractional derivative.

In the last two decades, many valuable results have been
obtained by using various methods for the existence and
multiplicity of solutions for FBVPs. For example, Bai [13]
studied the existence and multiplicity of positive solutions for
the FBVPs by means of some fixed-point theorems on cone.
Liang [14] considered the existence of positive solutions by
lower and upper solution method and fixed-point theorems.
Jiang [15] discussed the solvability of FBVPS at resonance
by using the coincidence degree theory due to Mawhin (see
[16]), and so on. It is worth noting that the Leggett-Williams
norm-type theorem is also an effective tool in determining
the existence of positive solutions for FBVPs at resonance. In
[17], Infante and Zima first studied the existence of positive
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solutions for the following BVPs at resonance:−x
′′(t) = f(t, x(t)), t ∈ (0, 1),

x′(0) = 0, x(1) =
∑m−2

i=1
βix(ξi),

where m > 2, 0 < ξ1 < ξ2 < · · · < ξm−2 <
1, βi ≥ 0, i = 1,m− 2, and

∑m−2
i=1 βi = 1. Due to

Leggett-Williams norm-type theorem, the existence of pos-
itive solutions was obtained by O’Regan and Zima [18].
Later, Yang [19], Jiang [20, 21] and other scholars made
further research on this kind of problem, see [22-25]. Yang
and Wang [26] studied the existence of positive solutions for
the following FBVPs{

−CDα
0+x(t) = f(t, x(t)), t ∈ [0, 1],

x(0) = 0, x′(0) = x′(1),

where CDα
0+ is the Caputo fractional derivative, 1 < α ≤ 2,

and f : [0, 1] × R → R is continuous. Chen and Tang [27]
considered the following FBVPs:{
Dα

0+x(t) = f(t, x(t)), t ∈ [0,∞),

x(0) = x′(0)=x′′(0)=0, Dα−1
0+ x(0)= limt→∞D

α−1
0+ x(t),

where Dα
0+ is the Riemann-Liouville fractional derivative,

3 < α < 4, and f : [0,∞)× R→ R is continuous.
However, as far as we know, the fractional differential

equations with m-point boundary value conditions at res-
onance have not been considered. Inspired by the above
papers, we study the following problem:−

CDα
0+x(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) =
∑m−2

i=1
γix(ξi), x(1) =

∑m−2

i=1
βix(ξi),

(1)

where CDα
0+ is the Caputo fractional derivative, 1 <

α ≤ 2, 0 < ξ1 < ξ2 < · · · < ξm−2 <
1, γi, βi ≥ 0, i = 1,m− 2,

∑m−2
i=1 γi(1− ξi) <

1,
∑m−2
i=1 βiξi < 1, f : [0, 1]× R2 → R is continuous with

conditions

(i)
∑m−2

i=1
γi =

∑m−2

i=1
βi = 1,

(ii)
∑m−2

i=1
γi 6=1,

∑m−2

i=1
βi 6=1,

∑
m−2
i=1 γiξi(1−

∑m−2

i=1
βi)

+(1−
∑m−2

i=1
γi)(1−

∑m−2

i=1
βiξi)=0.

Let us emphasize the contribution of our article: firstly, as
far as we know, there is no paper which considered existence
of positive solutions for FBVPs (1) with different resonant
conditions (i) and (ii), so our article enriches some existing
results. Secondly, since the m-point boundary value prob-
lems studied in this paper are more complex, the following
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difficulties are brought: (1) new space and norm need to
be constructed; (2) it is difficult to construct the projection
operator; (3) it brings difficulties to the estimation of the
priori bounds, mainly in verifying the boundedness of Ω0.

II. PRELIMINARIES

To facilitate understanding, we present some concepts
and lemmas in the article. For more details, please refer to
the references hereunder (see [28-31]).

Definition 2.1 ([32]). Let X , Y be real Banach spaces, and
L : domL ⊂ X → Y be a linear map. If dim KerL =
codimImL < +∞ and ImL is a closed subset in Y ,
then the map L is a Fredholm operator with index zero.
If there exists the continuous projections P : X → X and
Q : Y → Y satisfying ImP = KerL and KerQ = ImL,
then L |domL∩KerP : domL ∩ KerP → ImL is reversible.
We denote the inverse of this map by KP , i.e. KP = L−1

P

and KP,Q = KP (I −Q). Moreover, since dim ImQ =
codimImL, there exists an isomorphism J : ImQ→ KerL.
It is known that the operator equation Lx = Nx is equivalent
to

x = (P + JQN)x+KP (I −Q)Nx,

where N : X → Y is a nonlinear operator. If Ω is an open
bounded subset of X and domL ∩ Ω 6= ∅, then the map
N is L-compact on Ω when QN : Ω → Y is bounded and
KP (I −Q)N : Ω→ X is compact.

Let C be a cone in X . Then C induces a partial order in
X by

x ≤ y iff y − x ∈ C.

Lemma 2.1 ([18]). Let C be a cone in X . Then for every
u ∈ C\{0} there exists a positive number σ(u) such that
‖x+ u‖ ≥ σ(u) ‖x‖ for all x ∈ C. Let γ : X → C be a
retraction, that is, a continuous mapping such that γ(x) = x
for all x ∈ C. Set

Ψ := P + JQN +KP (I −Q)N and Ψγ := Ψ ◦ γ.

Lemma 2.2 ([18]). Let C be a cone in X and Ω1,Ω2 be open
bounded subsets of X with Ω1 ⊂ Ω2 and C∩(Ω2\Ω1) 6= ∅.
Assume that the following conditions are satisfied:

(1) L : domL ⊂ X → Y be a Fredholm operator of index
zero and N : X → Y be L-compact on every bounded subset
of X ,

(2) Lx 6= λNx for every (x, λ) ∈ [C ∩ ∂Ω2 ∩ domL] ×
(0, 1),

(3) γ maps subsets of Ω2 into bounded subsets of C,

(4) deg([I − (P + JQN)γ]|KerL,KerL ∩ Ω2, 0) 6= 0,

(5) there exists u0 ∈ C\{0} such that ‖x‖ ≤ σ(u0) ‖Ψx‖
for x ∈ C(u0) ∩ ∂Ω1, where C(u0) = {x ∈ C : µu0 ≤
x} for some µ > 0 and σ(u0) is such that ‖x+ u0‖ ≥
σ(u0) ‖x‖ for every x ∈ C,

(6) (P + JQN)γ(∂Ω2) ⊂ C,

(7) Ψγ(Ω2\Ω1) ⊂ C,
then the equation Lx = Nx has at least one solution in
C ∩ (Ω2\Ω1).

Definition 2.2 ([34]). The Riemann-Liouville fractional
integral of order α(α > 0) for the function x : (0,+∞)→ R
is defined as:

Iα0+x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
x(s)ds,

provided that the right-hand side integral is defined on
(0,+∞).

Definition 2.3 ([34]) The Captuo fractional derivative of
order α(α > 0) for the function x : (0,+∞) → R : is
defined as:

CDα
0+x(t) = In−α0+

dnx(t)

dtn

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1
x(n)(s)ds,

where n = [α] + 1, provided that the right-hand side integral
is defined on (0,+∞).

Lemma 2.3 ([34]) If n − 1 < α ≤ n, then the solution of
the fractional differential equation CDα

0+x(t) = 0 is

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, · · · , n− 1, n = [α] + 1.

Lemma 2.4 ([34]) Let n − 1 < α ≤ n, if CDα
0+x(t) ∈

C[0, 1], then

Iα0+
CDα

0+x(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, · · · , n− 1, n = [α] + 1.

III. MAIN RESULT

Take the Banach spaces X = C1 [0, 1] , Y = C [0, 1] with
the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞}, ‖y‖Y = ‖y‖∞,
where ‖x‖∞ = max

t∈[0,1]
|x (t)|.

Define the linear operator L : domL ⊂ X → Y by

Lx = −CDα
0+x (t) , (2)

where
domL = {x ∈ X

∣∣CDα
0+x (t) ∈ Y, x(0)

=
∑m−2

i=1
γix(ξi), x(1) =

∑m−2

i=1
βix(ξi)}

and N : X → Y by

Nx (t) = f(t, x(t), x′(t)), ∀t ∈ [0, 1] .

Then FBVPs (1) can be written by the operator equation

Lx = Nx, x ∈ domL.

3.1 FBVPs (1) with resonant condition (i)
For convenience, let ξ0 = 0, ξm−1 = 1, γ0 = γm−1 =

β0 = βm−1 = 0 and the function G(s), s ∈ [0, 1] as follow:

G(s) = (1− s)α−1 +

m−1∑
i=0

βiξi − 1

m−1∑
i=0

γiξi

m−1∑
i=k

γi(ξi − s)α−1

−
m−1∑
i=k

βi(ξi−s)α−1
, ξk−1 ≤ s ≤ ξk, k = 1,m−1.
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Denote the function U(t, s) as follow:

U(t, s) =

(1−s)α
Γ(α+1) +

(2t−1)
m−1∑
i=k

γi(ξi−s)α−1

2Γ(α)
m−1∑
i=0

γiξi

+ G(s)∫ 1
0
G(s)ds

×[1− 1
Γ(α+2)−

(2t−1)
m−1∑
i=k

γi(ξ
α
i−(ξi−1)α)

2Γ(α+1)
m−1∑
i=0

γiξi

+ tα

Γ(α+1) ]

ξk−1 ≤ s ≤ ξk, 0 ≤ t < s ≤ 1,

(1−s)α
Γ(α+1) +

(2t−1)
m−1∑
i=k

γi(ξi−s)α−1

2Γ(α)
m−1∑
i=0

γiξi

− (t−s)α−1

Γ(α) + G(s)∫ 1
0
G(s)ds

×[1− 1
Γ(α+2)−

(2t−1)
m−1∑
i=k

γi(ξ
α
i−(ξi−1)α)

2Γ(α+1)
m−1∑
i=0

γiξi

+ tα

Γ(α+1) ],

ξk−1 ≤ s ≤ ξk, 0 ≤ s ≤ t ≤ 1.

It is easy to check that U(t, s) > 0, t ∈ [1/2, 1], s ∈ [0, 1].
Set positive number

κ = min{1, min
s∈[0,1]

∫ 1

0
G(s)ds

G(s)
,

1

max
t,s∈[0,1]

U(t, s)
}

Theorem 3.1 Let f : [0, 1] × R2 → R be continuous.
Suppose that:
(H1) there exist nonnegative functions a, b, c ∈ C[0, 1] with
2b1(α+1)
Γ(α+1) + 2c1

Γ(α) < 1 such that

|f(t, u, v)| ≤ a(t) + b(t) |u|+ c(t) |v| ,

for all (t, u, v) ∈ [0, 1] × R × R, where a1 = ‖a‖∞, b1 =
‖b‖∞, c1 = ‖c‖∞,
(H2) there exist two constants B1, B2 > 0 such that for all
t ∈ [0, 1], if |u| > B1 or |v| > B2, then

f(t, u, v) < 0,

(H3) f(t, u, v) > −κu, for all (t, u, v) ∈ [0, 1]× [0,∞)×R,
(H4) there exist r ∈ (0,∞), t0 ∈ [1/2, 1], a ∈ (0, 1], M ∈
(0, 1) and continuous functions g : [0, 1] → [0,∞), h :
(0, r]→ [0,∞) such that f(t, u, v) ≥ g(t)h(u) for [t, u, v] ∈
[0, 1] × (0, r] × R, and h(u)/ua is non-increasing on (0, r]
with

h(r)

ra

∫ 1

0

U(t0, s)g(s)ds ≥ 1−M
Ma

,

then FBVPs (1) has at least one positive solution.

To prove the above theorem, we begin with some useful
lemmas.

Lemma 3.2 Let L be defined by (2), then

KerL = {x ∈ X|x(t) = c, ∀t ∈ [0, 1], c ∈ R},

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0},

and the linear continuous projector operators P : X → X
and Q : Y → Y can be defined as

Px(t) =

∫ 1

0

x(s)ds, ∀t ∈ [0, 1],

Qy(t) =
1∫ 1

0
G(s)ds

∫ 1

0

G(s)y(s)ds.

Moreover, the operator KP : ImL→ domL∩KerP is given
by

KP y(t) =

∫ 1

0

k(t, s)y(s)ds, ∀t ∈ [0, 1],

where

k(t, s) =



(1−s)α
Γ(α+1) +

(2t−1)
m−1∑
i=k

γi(ξi−s)α−1

2Γ(α)
m−1∑
i=0

γiξi

− (t−s)α−1

Γ(α) ,

ξk−1 ≤ s ≤ ξk, 0 ≤ s ≤ t ≤ 1,

(1−s)α
Γ(α+1) +

(2t−1)
m−1∑
i=k

γi(ξi−s)α−1

2Γ(α)
m−1∑
i=0

γiξi

,

ξk−1 ≤ s ≤ ξk, 0 ≤ t < s ≤ 1.

Lemma 3.3 If Ω ⊂ X is an open bounded subset and
domL ∩ Ω 6= ∅, then N is L-compact on Ω.
Proof By the continuity of f , there exists a constant A > 0
such that |f(t, x(t), x′(t))| ≤ A, x ∈ Ω. Then, we have

|QNx(t)| = | 1∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, x(s), x′(s))ds|

≤ 1∫ 1

0
G(s)ds

∫ 1

0

G(s)|f(s, x(s), x′(s))|ds

≤ 1∫ 1

0
G(s)ds

∫ 1

0

G(s)Ads = A.

So, QN : X → Y is bounded. For ∀x ∈ Ω, one has

|KP (I −Q)Nx(t)|

= | 1

Γ(α+ 1)

∫ 1

0

(1− s)α (I −Q)Nx(s)ds−

1

Γ(α)

∫ t

0

(t− s)α−1
(I −Q)Nx(s)ds

+
(2t− 1)

2Γ(α)
m−1∑
i=0

γiξi

m−1∑
i=0

γi

∫ ξi

0

(ξi−s)α−1
(I−Q)Nx(s)ds|

≤ 1

Γ(α+ 1)

∫ 1

0

|Nx(s)|ds+
1

Γ(α+ 1)

∫ 1

0

|QNx(s)|ds

+
1

Γ(α)

∫ t

0

|Nx(s)|ds+
1

Γ(α)

∫ t

0

|QNx(s)|ds

+
1

2Γ(α)
m−1∑
i=0

γiξi

∫ 1

0

|Nx(s)|ds

+
1

2Γ(α)
m−1∑
i=0

γiξi

∫ 1

0

|QNx(s)|ds

≤ 2A(
1

Γ(α+ 1)
+

1

Γ(α)
) +

A

Γ(α)
m−1∑
i=0

γiξi

Therefore, KP (I −Q)N(Ω) is bounded. For ∀ε >
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0, x ∈ Ω, 0 ≤ t1 < t2 ≤ 1, |t2 − t1| < δ, we get

|KP (I −Q)Nx(t2)−KP (I −Q)Nx(t1)|

= |− 1

Γ(α)

∫ t1

0

((t2−s)α−1−(t1−s)α−1
) (I−Q)Nx(s)ds

− 1

Γ(α)

∫ t2

t1

(t2 − s)α−1
(I −Q)Nx(s)ds

+
(t2−t1)

Γ(α)
m−1∑
i=0

γiξi

m−1∑
i=0

γi

∫ ξi

0

(ξi−s)α−1
(I−Q)Nx(s)ds|

≤ 2A

Γ(α)

∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1
)ds

+
2A

Γ(α)

∫ t2

t1

(t2 − s)α−1
ds+

2Aδ

Γ(α)
m−1∑
i=0

γiξi

≤ 2A

Γ(α+ 1)
(tα2 − tα1 ) +

2Aδ

Γ(α)
m−1∑
i=0

γiξi

.

Since tα is uniformly continuous on [0, 1], we see
that KP (I −Q)N(Ω) ⊂ X is equicontinuous. Hence,
KP (I −Q)N : X → X is compact.

Lemma 3.4 Suppose (H1), (H2) hold, then

Ω0 = {x ∈ domL : Lx = λNx, λ ∈ (0, 1)}

is bounded.
Proof Let x ∈ Ω0, then Nx ∈ ImL, we have∫ 1

0

G(s)f(s, x(s), x′(s))ds = 0.

By the integral mean value theorem and (H2), there exist
two constants ε1, ε2 ∈ (0, 1), such that |x (ε1)| ≤ B1 and
|x′ (ε2)| ≤ B2. Then, by x (t) = Iα0+

CDα
0+x (t) + c0 + c1t,

one has

x′ (t) = Iα−1
0+

CDα
0+x (t) + c1

=
1

Γ (α− 1)

∫ t

0

(t− s)α−2CDα
0+x (s) ds+ c1.

Let t = ε2, then

x′ (ε2) =
1

Γ (α− 1)

∫ ε2

0

(ε2 − s)α−2CDα
0+x (s) ds+ c1.

Since |x′ (ε2)| ≤ B2, we get

|c1| ≤ |x′ (ε2)|+ 1

Γ (α−1)

∫ ε2

0

(ε2−s)α−2 ∣∣CDα
0+x (s)

∣∣ ds
≤ B2 +

εα−1
2

Γ (α)

∥∥CDα
0+x

∥∥
∞

≤ B2 +
1

Γ (α)

∥∥CDα
0+x

∥∥
∞.

Then

‖x′‖∞ ≤
1

Γ (α− 1)

∫ t

0

(t− s)α−2 ∣∣CDα
0+x (s)

∣∣ds+ |c1|

≤ tα−1

Γ (α)

∥∥CDα
0+x

∥∥
∞ +B2 +

1

Γ (α)

∥∥CDα
0+x

∥∥
∞

≤ 2

Γ (α)

∥∥CDα
0+x

∥∥
∞ +B2.

Let t = ε1, then

x (ε1)=
1

Γ (α)

∫ ε1

0

(ε1−s)α−1CDα
0+x (s) ds+c0 + c1ε1.

From |x (ε1)| ≤ B1, we obtain

|c0| ≤ |x (ε1)|+ 1

Γ (α)

∫ ε1

0

(ε1−s)α−1 ∣∣CDα
0+x (s)

∣∣ds+|c1|

≤ B1+
εα1

Γ (α+1)

∥∥CDα
0+x

∥∥
∞+B2+

1

Γ (α)

∥∥CDα
0+x

∥∥
∞

≤ B1 +B2 +
1 + α

Γ (α+ 1)

∥∥CDα
0+x

∥∥
∞.

Then

‖x‖∞ ≤
1

Γ (α)

∫ t

0

(t−s)α−1 ∣∣CDα
0+x (s)

∣∣ds+|c0|+|c1|

≤ tα

Γ (α+ 1)

∥∥CDα
0+x

∥∥
∞ +B1 + 2B2

+
1

Γ (α)

∥∥CDα
0+x

∥∥
∞ +

1 + α

Γ (α+ 1)

∥∥CDα
0+x

∥∥
∞

≤ B1 + 2B2 +
2 (α+ 1)

Γ (α+ 1)

∥∥CDα
0+x

∥∥
∞.

Furthermore, by Lx = λNx, we have −CDα
0+x (t) =

λf(t, x(t), x′(t)). Combining (H1) and λ ∈ (0, 1), one has
|CDα

0+x (t) | ≤ a1 + b1|x|+ c1|x′|. Hence,∥∥CDα
0+x (t)

∥∥
∞ ≤ a1 + b1‖x‖∞ + c1‖x′‖∞

≤a1+b1(B1+2B2+
2 (α+1)

Γ (α+1)

∥∥CDα
0+x
∥∥
∞)

+ c1(
2

Γ (α)

∥∥CDα
0+x

∥∥
∞ +B2)

≤ a1 + b1B1 + 2b1B2 + c1B2

+ (
2b1 (α+ 1)

Γ (α+ 1)
+

2c1
Γ (α)

)
∥∥CDα

0+x
∥∥
∞.

On account of 2b1(α+1)
Γ(α+1) + 2c1

Γ(α) < 1, there exists a constant
D1 > 0 such that

∥∥CDα
0+x

∥∥
∞ ≤ D1. Then,

‖x‖∞ ≤ B1 + 2B2 +
2 (α+ 1)

Γ (α+ 1)
D1 := D2,

‖x′‖∞ ≤ B2 +
2

Γ (α)
D1 := D3.

Therefore, Ω0 is bounded.

Next we will give the main proof of Theorem 3.1.
Proof of Theorem 3.1 Let C = {x ∈ X : x(t) ≥ 0, t ∈
[0, 1]}, Ω1 = {x ∈ X : r > |x(t)| > M ‖x‖X , t ∈
[0, 1]}, and Ω2 = {x ∈ X : ‖x‖X < R}, where
R = max{D2, D3}+ 1. Note that Ω1,Ω2 are open bounded
subsets of X and

Ω1 = {x ∈ X : r ≥ |x(t)| ≥M ‖x‖∞ ,

where, t ∈ [0, 1]} ⊂ Ω2, C ∩ Ω2\ Ω1 6= ∅. By Lemma
3.2, 3.3, and 3.4, we find that the conditions (1) and (2) of
Lemma 2.2 are fulfilled.

Let γx(t) = |x(t)| for x ∈ X and operator J = I . Then
we see that γ is a retraction and maps subsets of Ω2 into
bounded subsets of C. Clearly, (3) of Lemma 2.2 holds.
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For x ∈ KerL ∩ Ω2, one has x(t) ≡ c, set

H(c, λ) = c− λ|c| − λ∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |c|, 0)ds,

where λ ∈ [0, 1]. Suppose H(c, λ) = 0. By (H3), we obtain

c = λ|c|+ λ∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |c|, 0)ds

≥ λ|c| − λ∫ 1

0
G(s)ds

∫ 1

0

G(s)κ|c|ds = λ|c|(1− κ) ≥ 0.

Thus H(c, λ) = 0 implies c ≥ 0. Clearly, H(R, 0) 6= 0.
Moreover, if H(R, λ) = 0, λ ∈ (0, 1], we get

0 ≤ R(1− λ) =
λ∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s,R, 0)ds,

which contradicts to condition (H2). Hence H(x, λ) 6= 0 for
x ∈ ∂Ω2, λ ∈ [0, 1]. Therefore,

deg([I − (P + JQN)γ]|KerL,KerL ∩ Ω2, 0)

= deg(H(x, 1),KerL ∩ Ω2, 0)

= deg(H(x, 0),KerL ∩ Ω2, 0)

= deg(I,KerL ∩ Ω2, 0) = 1 6= 0.

Then, (4) of Lemma 2.2 holds.
Let x ∈ Ω2\ Ω1, t ∈ [0, 1]. By (H3), we get

Ψγx(t) =

∫ 1

0

|x(t)|dt+

∫ 1

0

k(t, s)[f(s, |x(s)|, |x′(s)|)

− 1∫ 1

0
G(s)ds

∫ 1

0

G(τ)f(τ, |x(τ)|, |x′(τ)|)dτ ]ds

+
1∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x(s)|, |x′(s)|)ds

=

∫ 1

0

|x(t)|dt+

∫ 1

0

U(t, s)f(s, |x(s)|, |x′(s)|)ds

≥
∫ 1

0

|x(s)|ds− κ
∫ 1

0

U(t, s)|x(s)|ds

=

∫ 1

0

(1− κU(t, s))|x(s)|ds ≥ 0.

So, Ψγ(Ω2\Ω1) ⊂ C. For x ∈ ∂Ω2, one has

(P + JQN)γx

=

∫ 1

0

|x(s)|ds+
1∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x(s)|, |x′(s)|)ds

≥
∫ 1

0

(1− κG(s)∫ 1

0
G(s)ds

)|x(s)|ds ≥ 0,

thus (P + JQN)γ(∂Ω2) ⊂ C. Clearly, (6), (7) of Lemma
2.2 hold.

Let u0(t) ≡ 1, t ∈ [0, 1] and σ(u0) = 1, then u0 ∈
C\{0}, C(u0) = {x ∈ C|x(t) > 0, t ∈ [0, 1]}. For x ∈
C(u0) ∩ ∂Ω1, one has x(t) > 0, t ∈ [0, 1], 0 < ‖x‖X ≤ r

and x(t) ≥M ‖x‖X , t ∈ [0, 1]. So, by (H4), we have

(Ψx)(t0) =

∫ 1

0

x(s)ds+

∫ 1

0

U(t0, s)f(s, x(s), |x′(s)|)ds

≥M ‖x‖X +

∫ 1

0

U(t0, s)g(s)h(x(s))ds

= M ‖x‖X +

∫ 1

0

U(t0, s)g(s)
h(x(s))

xa(s)
xa(s)ds

≥M ‖x‖X+
h(r)

ra

∫ 1

0

U(t0, s)g(s)Ma ‖x‖aX ds

≥M ‖x‖X + (1−M) ‖x‖X = ‖x‖X .

Then ‖x‖ ≤ σ(u0) ‖Ψx‖ for all x ∈ C(u0)∩∂Ω1, that is, (5)
of Lemma 2.2 holds. By Lemma 2.2, the equation Lx = Nx
has at least a solution x, which implies FBVPs (1) with
resonant condition (i) has at least one positive solution in X .

3.2 FBVPs (1) with resonant condition (ii)
The definitions of the cone C and sets Ω1, Ω2 are similar

with that in Section 3.1. Define function ρ(t), t ∈ [0, 1] :

ρ(t) =
m−1∑
i=0

γiξi + (1−
m−1∑
i=0

γi)t

and positive numbers

ρ1 =


m−1∑
i=0

γiξi,
m−1∑
i=0

γi < 1,

m−1∑
i=0

γiξi + 1−
m−1∑
i=0

γi,
m−1∑
i=0

γi > 1,

ρ2 =


m−1∑
i=0

γiξi + 1−
m−1∑
i=0

γi,
m−1∑
i=0

γi < 1,

m−1∑
i=0

γiξi,
m−1∑
i=0

γi > 1,

ρ3 =



m−1∑
i=0

γiξi

m−1∑
i=0

γiξi+1−
m−1∑
i=0

γi

,
m−1∑
i=0

γi < 1,

m−1∑
i=0

γiξi+1−
m−1∑
i=0

γi

m−1∑
i=0

γiξi

,
m−1∑
i=0

γi > 1,

ρ4 =

m−1∑
i=0

γiξi +
1

2
(1−

m−1∑
i=0

γi), ρ5 =
ρ1

ρ4
.

Clearly, ρ(t) ∈ [ρ1, ρ2], t ∈ [0, 1], ρ3 ∈ (0, 1). Denote the
function U1(t, s) as follow:

U1(t, s) =

(2t−1)
2ρ4

[
(1−

m−1∑
i=0

γi)(1−s)α

Γ(α+1) +

m−1∑
i=k

γi(ξi−s)α−1

Γ(α) ]+ G(s)∫ 1
0
G(s)ds

×[1− 1
Γ(α+2)−

(2t−1)
2ρ4

(
1−

m−1∑
i=0

γi

Γ(α+2) +

m−1∑
i=k

γi(ξ
α
i−(ξi−1)α)

Γ(α+1) )

+ tα

Γ(α+1) ]+ (1−s)α
Γ(α+1) , ξk−1≤s≤ξk, 0≤ t≤s≤1,

(2t−1)
2ρ4

[
(1−

m−1∑
i=0

γi)(1−s)α

Γ(α+1) +

m−1∑
i=k

γi(ξi−s)α−1

Γ(α) ]+ G(s)∫ 1
0
G(s)ds

×[1− 1
Γ(α+2)−

(2t−1)
2ρ4

(
1−

m−1∑
i=0

γi

Γ(α+2) +

m−1∑
i=k

γi(ξ
α
i −(ξi−1)α)

Γ(α+1) )

+ tα

Γ(α+1) ]+(1−s)α
Γ(α+1)−

(t−s)α−1

Γ(α) , ξk−1≤s≤ξk, 0≤s≤ t≤1,
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and positive number

κ1 = min{1, min
s∈[0,1]

ρ5

∫ 1

0
G(s)ds

G(s)
, min
t,s∈[0,1]

ρ5

U1(t, s)
}.

Theorem 3.5 Under assumption (H1), (H2), there exists
a constant R ∈ (0,∞) such that f : [0, 1] × R2 → R is
continuous and
(H5) f(t, u, v) < 0, for (t, u, v) ∈ [0, 1]× [ρ3R,R]× R,
(H6) f(t, u, v) > −κu, for all (t, u, v) ∈ [0, 1]× [0, R]×R,
(H7) there exist r ∈ (0, R), t0 ∈ [1/2, 1], a ∈ (0, 1], M ∈
(0, 1) and continuous functions g : [0, 1] → [0,∞), h :
(0, r] → [0,∞) such that f(t, u, v) ≥ g(t)h(u) for
(t, u, v) ∈ [0, 1]× (0, r]×R, and h(u)/ua is non-increasing
on (0, r] with

h(r)

ra

∫ 1

0

U1(t0, s)g(s)ds ≥ 1−Mρ5

Ma
,

then FBVPs (1) has at least one positive solution.

In order to prove the above theorem, we first give a useful
lemma.

Lemma 3.6 Let L be defined by (2), then

KerL = {x ∈ X|x(t) = cρ(t), ∀t ∈ [0, 1], c ∈ R},

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0},

and the linear continuous projector operators P : X → X
and Q : Y → Y can be defined as

Px(t) =
ρ(t)

ρ4

∫ 1

0

x(s)ds, ∀t ∈ [0, 1], x ∈ X,

Qy(t) =
1∫ 1

0
G(s)ds

∫ 1

0

G(s)y(s)ds.

Moreover, the operator KP : ImL→ domL∩KerP is given
by

KP y(t) =

∫ 1

0

k1(t, s)y(s)ds, ∀t ∈ [0, 1],

where

k1(t, s) =

(2t−1)
2ρ4

[
(1−

m−1∑
i=0

γi)(1−s)α

Γ(α+1) +

m−1∑
i=k

γi(ξi−s)α−1

Γ(α) ]

+ (1−s)α
Γ(α+1) −

(t−s)α−1

Γ(α) , ξk−1≤s≤ξk, 0≤s≤ t≤1,

(2t−1)
2ρ4

[
(1−

m−1∑
i=0

γi)(1−s)α

Γ(α+1) +

m−1∑
i=k

γi(ξi−s)α−1

Γ(α) ]

+ (1−s)α
Γ(α+1) , ξk−1 ≤ s ≤ ξk, 0 ≤ t < s ≤ 1.

Next we will give the main proof of Theorem 3.5.
Proof of Theorem 3.5 We claim that the conditions (H1),
(H2) ensure that (1)-(3) of Lemma 2.2 are satisfied. The
proof is same with that in Section 3.1. For x ∈ KerL ∩ Ω2,
let

H(x, λ) = x− λ|x| − λ∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x|, |x′|)ds,

Suppose x ∈ ∂Ω2 ∩ KerL and H(x, λ) = 0, we have x =
Rρ(t)
ρ2

and ‖x‖∞ = R.

From the definition of ρ3, one has ρ3R ≤ x(t) ≤ R, which
implies f(t, x, x′) < 0. It contradicts to

0 ≤ (1− λ)x =
λ∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x|, |x′|)ds,

thus H(x, λ) 6= 0 for x ∈ ∂Ω2, λ ∈ [0, 1], then

deg([I − (P + JQN)γ]|KerL,KerL ∩ Ω2, 0)

= deg(H(c, 1),KerL ∩ Ω2, 0)

= deg(H(c, 0),KerL ∩ Ω2, 0)

= deg(I,KerL ∩ Ω2, 0) = 1 6= 0.

So (4) of Lemma 2.2 holds.
Let x ∈ Ω2\ Ω1, t ∈ [0, 1]. By (H6), we get

Ψγx(t) =
ρ(t)

ρ4

∫ 1

0

|x(t)|dt

+
1∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x(s)|, |x′(s)|)ds

+

∫ 1

0

k1(t, s)[f(s, |x(s)|, |x′(s)|)

− 1∫ 1

0
G(s)ds

∫ 1

0

G(τ)f(τ, |x(τ)|, |x′(τ)|)dτ ]ds

=
ρ(t)

ρ4

∫ 1

0

|x(t)|dt+
∫ 1

0

U1(t, s)f(s, |x(s)|, |x′(s)|)ds

≥ ρ1

ρ4

∫ 1

0

|x(s)|ds− κ1

∫ 1

0

U1(t, s)|x(s)|ds

=

∫ 1

0

(ρ5 − κ1U1(t, s))|x(s)|ds ≥ 0.

So, Ψγ(Ω2\Ω1) ⊂ C. For x ∈ ∂Ω2, one has

(P + JQN)γx =
ρ(t)

ρ4

∫ 1

0

|x(s)|ds

+
1∫ 1

0
G(s)ds

∫ 1

0

G(s)f(s, |x(s)|, |x′(s)|)ds

≥
∫ 1

0

(
ρ1

ρ4
− κ1G(s)∫ 1

0
G(s)ds

)|x(s)|ds ≥ 0

=

∫ 1

0

(ρ5 −
κ1G(s)∫ 1

0
G(s)ds

)|x(s)|ds ≥ 0,

thus (P + JQN)γ(∂Ω2) ⊂ C. Clearly, (6), (7) of Lemma
2.2 hold.

Let u0(t) ≡ 1, t ∈ [0, 1] and σ(u0) = 1, then u0 ∈
C\{0}, C(u0) = {x ∈ C|x(t) > 0, t ∈ [0, 1]}. For x ∈
C(u0) ∩ ∂Ω1, we have x(t) > 0, t ∈ [0, 1], 0 < ‖x‖X ≤ r
and x(t) ≥M ‖x‖X , t ∈ [0, 1]. Hence, by (H7), one has

(Ψx)(t0)

=
ρ(t)

ρ4

∫ 1

0

x(s)ds+

∫ 1

0

U1(t0, s)f(s, x(s), |x′(s)|)ds

≥Mρ5 ‖x‖X +

∫ 1

0

U1(t0, s)g(s)h(x(s))ds

= Mρ5 ‖x‖X +

∫ 1

0

U1(t0, s)g(s)
h(x(s))

xa(s)
xa(s)ds

≥Mρ5 ‖x‖X +
h(r)

ra

∫ 1

0

U1(t0, s)g(s)Ma ‖x‖aX ds

≥Mρ5 ‖x‖X + (1−Mρ5) ‖x‖X = ‖x‖X .
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Then ‖x‖ ≤ σ(u0) ‖Ψx‖ for all x ∈ C(u0)∩∂Ω1, that is, (5)
of Lemma 2.2 holds. By Lemma 2.2, the equation Lx = Nx
has at least a solution x, which means FBVPs (1) with
resonant condition (ii) has at least one positive solution in X .

Corollary 3.7 In order to make the results of this paper more
comprehensive, we consider the existence of solutions when
FBVPs (1) does not satisfy both resonance conditions (i) and
(ii). That is, when 0 <

∑m−2
i=1 γi < 1 and 0 <

∑m−2
i=1 βi <

1 are satisfied, we have the unique solution of FBVPs (1)
expressed as the following integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s), x′(s))ds

where

G(t, s) =
1

Γ(α)
·

(t−s)α−1+∆1+∆2, 0 ≤ s ≤ t ≤ 1, s ≤ ξi,
∆1+∆2, 0 ≤ t ≤ s ≤ ξi < 1,

(t−s)α−1+∆2, 0 < ξi ≤ s ≤ t ≤ 1,

∆2, 0 ≤ t ≤ s ≤ 1, s ≥ ξi,

∆1 =

∑
γi
∑
βiξi−

∑
γiξi

∑
βi−

∑
βi

(1−
∑
γi)(1−

∑
βiξi)+(1−

∑
βi)
∑
γiξi
·(ξi−s)α−1

∆2 =

∑
γiξi+1−

∑
γi

(1−
∑
γi)(1−

∑
βiξi)+(1−

∑
βi)
∑
γiξi
·(1−s)α−1

According to the properties of G(t, s), we obtain

0 < G(t, s) <
∆3 +

∑
γiξi + 1−

∑
γi

∆3
, ∀s, t ∈ (0, 1).

where, ∆3 = (1−
∑
γi)(1−

∑
βiξi) + (1−

∑
βi)
∑
γiξi.

Define the operator T : C[0, 1] → C[0, 1] as
Tx(t) =

∫ 1

0
G(t, s)f(s, x(s), x′(s))ds. Then by using

Schaefer’s fixed point theorem, we get the operator T has
a fixed point, which implies FBVPs (1) has at least one
solution.

Corollary 3.8 If 0 <
∑m−2
i=1 γi < 1, 0 <

∑m−2
i=1 βi < 1,

and there exists a constant k > 0 such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ k(|u1 − u2|+ |v1 − v2|)

for each t ∈ [0, 1] and all u1, v1 u2, v2 ∈ R, then by
using the Banach contraction mapping principle, we obtain
FBVPs(1) has a unique solution.

IV. EXAMPLE

Example 4.1. Consider the following FBVPs
−CD

3
2
0+x(t)=−1

3
(t2−t−1)(x−1)(x−3)

√
(x−3)

2
+1,

x(0)=
1

2
x(

1

4
)+

1

2
x(

1

2
), x(1)=

1

3
x(

1

4
)+

2

3
x(

1

2
),

(3)
where t ∈ (0, 1), α = 3

2 , γ1 = γ2 = 1
2 , β1 = 1

3 , β2 =
2
3 , ξ1 = 1

4 , ξ2 = 1
2 . By a simple computation, we obtain∫ 1

0

G(s)ds = 0.24, κ = 0.338,

∫ 1

0

U(0, s)ds = 1.

Let B = 6
5 , r = 1

2 , t0 = 0, a = 1, M = 1
2 and g(t) =

− 1
3 (t2 − t− 1), h(x) =

√
(x− 3)

2
+ 1. It is easy to verify

that
1

3
≤ g(t) ≤ 5

12
, t ∈ [0, 1], (x− 1)(x− 3) ≥ −x, x ∈ [0,

6

5
]

and
(1) 2b1

Γ(α+1) =
2× 5

12

Γ( 5
2 )

= 10
9
√
π
< 1,

(2) f(t, B) < 0, for all t ∈ [0, 1],
(3) f(t, x) > −0.338x, for all (t, x) ∈ [0, 1]× [0,∞),
(4) f(t, x) ≥ g(t)h(x) for all [t, x] ∈ [0, 1] × (0, 1

2 ] and
h(x)
x =

√
(x−3)2+1

x is non-increasing on (0, 1
2 ] with

h(r)

ra

∫ 1

0

U(0, s)g(s)ds ≥
√

29

3

∫ 1

0

U(0, s)ds

=

√
29

3
≥ 1 =

1−M
Ma

.

So the conditions of Theorem 3.1 are satisfied, that is, FBVPs
(3) has at least one positive solution.

V. CONCLUSION

In this paper, we study the existence of positive solutions
of problem at resonance. In the past, there have been many
studies on the solutions of resonance problems and the
positive solutions of non-resonance problems, but few studies
on the positive solutions of resonance problems. Therefore,
we use Leggett-Williams norm-type theorem to study the
existence of positive solutions for a class of fractional multi-
point boundary value problems (1) with different resonant
conditions (i) and (ii), and obtain some new existence results
(see Theorem 3.1, 3.5). Since the multi-point boundary value
problem is more general and the positive solution has more
practical significance, some existing results are generalized
in this paper. In addition, since fractional derivatives are non-
local, it is more difficult to study fractional order problems
than integer order ones.
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