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Strong Convergence Theorem for the Split Equality
Fixed Point Problem for QQuasi-nonexpansive
Mapping and Application

S. Premjitpraphan, A. Kangtunyakarn

Abstract—Motivated by the work of Zhao [9], [10], [11] and
by reducing some of his conditions, we consider a split equality
fixed point problem for quasi-nonexpansive mappings which
includes split feasibility problem, split equality problem, split
fixed point problem, etc. The strong convergence theorem of
the proposed iterative scheme could be obtained, under some
control conditions. Furthermore, we use S-mapping applied
to our main result to prove strong convergence theorems.

Index Terms—Split equality fixed point problem, Split
equality problem, Split feasibility problem, Fixed Point prob-
lem, Quasi-nonexpansive mapping.

I. Introduction

L et C' and @ be the non-empty closed convex subsets
of the Hilbert spaces Hy and Hs respectively, and
A : H — Hy be a bounded linear operator. The split
feasibility problem (SFP) is formulated as finding a point
x* with the property

z*eC and Az*eqQ. (1)

The SFP in finite-dimensional spaces was firstly
introduced by Censor and Elfving [1] for modeling inverse
problems which arise from phase retrievals and medical
image reconstruction [6]. The SFP has drawn attention
from many researchers due to its applications in many
branches of engineering and medical sciences. Many
iterative algorithms have been suggested, ([7], [8], [12],
[16], etc).

Assuming that SFP (1) is consistent (that is, (1)
has a solution), it is easy to see that 2* € C' is a solution
of (1) if and only if it solves the following fixed point
equation

¥ = Po(I —vA*(I — Pg))z™, (2)

where Pc and Pg are the metric projections from H;
onto C' and from H, onto @ respectively, v is a positive
constant and A* denotes by adjoint of A.

The popular algorithm used in approximating the
solution of the SFP (1) is the CQ-algorithm, which was
firstly proposed by Byrne [6]:

Tas = Po(l —yA*(I = Pg))a, (3)
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for all n € N, where v € (0, %) with A being the spectral
radius of the operator A*A.

Recently, Moudafi [8] introduced the following split
equality feasibility problem (SEFP) to find z* and y*
with the property

reCy*eqQ st. Ax* = By, (4)

where Hi, Hy and Hjz be real Hilbert spaces. C' C Hj,
@ C H, be two non-empty closed convex sets, A : H; —
Hs, B: Hy, — Hj3 are two bounded linear operators.
It is easy to see that the problem (4) could be reduced
to the problem (1) where Hy = Hy and B =1 (I be the
identity mappings on Hy — Hs).

In order to solve SEFP (4), Moudafi [8] introduced
the following simultaneous iterative method:

Tniyl = PC(xn —yA* (Axn - Byn))v
Yn+1 = PC(Z/n + BB* (Aanrl - Byn))7

Under suitable conditions, he proved the weak conver-
gence of sequence {(z,, yn)} to a solution of (4) in Hilbert
spaces.

Zhao [9] introduced the following algorithm for
solving problem (4):

Vn > 0.

Up = Ty, — VA" (Az,, — Byyn),

Tpt1 = Bnun + (1 — Br)Sunp,

Wy = Yn + W B* (Azn — Byn)

Ynt1 = Bpwn + (1= By) Tw,, Yn >0,

where A : Hi — Hs and B : Hy — Hs are two
bounded linear operators. Let S : H; — H; and
T : Hy — H> be quasi-nonexpansive mappings, A*
and B* are the adjoints of A and B respectively,

h
{m} € (& rm—rioprete—gop — ¢ (for €
small enough). Under some conditions, the authors
obtained the sequence {(z,,yn)} converged weakly to
(z%,y") in (4).

Dong and He [10] introduced following projection
algorithm for SEFP (4) where the stepsizes do mnot

depend on the operator norms ||Al| and || B|| :

Up = T — ’Y’I'LA* (Axn - Byn) 5
Tn+1 = Pcuy,
Wy, = Yn + 'YnB* (Al'n - Byn) s

Yn+1 = Powy, Vn > 0.

Subsequently, Moudafi [7] introduced the following
split equality fixed point problem (SEFPP);let U : H; —
Hy and T : H, — Hs be non-linear operators such that
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F(U)# 0 and F(T) # 0, where F(U) and F(T) denote
the sets of fixed point of U and T respectively. In (4),
it C ;= F(U) and @ := F(T), then SEFP (4) could
be reduced to the SEFPP, to find z* and y* with the
property

e F(U),y* € F(T) Ax* = By*, (5)

where A : Hy — Hs and B : Hy — Hs are two bounded
linear operators, which allows asymmetric and partial
relations between = and y. This can further be used to
cover many situations, such as decomposition methods
for PDEs, applications in the game theory, in intensity-
modulated radiation therapy(see [17]).

Very recently, Che and Li [11] proposed the following
iterative algorithm for finding a solution of SEFPP (5):

S.t.

Up = Tp — YnA* (Ax, — Byn),
Tnt1 = BnTn + (1 - BH)TUW
Up = Yn + Y B* (Az,, — Byy,),
Ynt1 = Bnyn + (1 — Bn) Swh,

and under suitable conditions, they also established the
weak convergence of the scheme (6).

In this work, we established the following iterative
algorithm to solve the split equality fixed point problem
(SEFPP),

(6)

Vn > 0,

Up = Ty — YnA* (Ax, — Byn),
Tpt1 = apu+ (1 — ay) Po, (I — AN - Tl)) Up,
Up = Yn + Y B* (Az,, — Byyn),
Ynt1 = v+ (1 —ap) Po, (I = A2(1 = T)) vy,

where Ty : C; — C4, Ty : Cy — (3 are two quasi-
nonexpansive mappings. Under suitable conditions, we
proved strong convergence theorems of the iterative
scheme (10) to a solution of the split equality fixed point
problem (5) in the real Hilbert spaces.

II. Preliminaries

Throughout this paper, we always assume that H be
a real Hilbert space with the inner product (-,-) and the
norm ||-||. Let C' be a non-empty closed convex subset
of H. Recall that a mapping T of C' into itself is called
quasi-nonexpansive if

1Tz —y*| < llz = y"Il,

for all x € C and y* € F(T). The set of all elements of
fixed point of a mapping 7T is denoted by F(T') = {:E €
C : Tz = x}. Goebel and Kirk [5] showed that F(T) is
closed and convex. For X € [0, 1],

Az + (1= Nyl* = Mlzl*+(1=2) [y]*=A(1=2) ||z = ]

and
2 2 2
lz+yl™ = =" + 2z, ) + [yl

for all z,y € H. Let Po be the metric projection of H
onto C' i.e.for x € H, Pox satisfies the property

— Pex|| = min |z — y]|.
lz — Poz|| = min |lz - y|

Remark 2.1: It is well-known that metric projection
P¢ has the following properties:

1) Pc is firmly nonexpansive, i.e.,
|Pca — Poyl|* < (Pox — Poy, @ —y), Va,y € H.
2) For each x € H,
z=Po(z) & {(x—2,2—y) >0, Vy e C.
Lemma 2.2: [4] Let H be a real Hilbert space. Then
lz+yl* < [la|® +2(y,z +y), Vo,yeH.

Lemma 2.3: [2] Let {Q,} C [0,400],{v,} C [0,1]
and {n,} be three real number sequences. Suppose
that {Q,},{vn} and {n,} satisfy the following three
conditions:

(1) Qog+1 < (]- - Un) Qn + TInUn,
(i) Y vn = o0,
n=1

(iii) limsupn, <0 or Z [ vn| < o0.
n—oo n=1
Then, lim 9, = 0.
n—oo
Lemma 2.4: [4] Let H be a real Hilbert space, let C
be a non-empty closed convex subset of H and let A be

a mapping of C' into H. Let u € C. Then for A > 0,
u=Poc(I-MN)usueVI(C A,
where Po is the metric projection of H onto C.
Lemma 2.5: Let C' be a non-empty closed convex
subset of a real Hilbert space H and let T : C — C
be a quasi-nonexpansive mapping with F'(T') # (). Then
VI(C,I-T)=F(T).

Proof: Tt is easy to see that F(T) CVI(C,I—-1T).
Let wu e VI(C,I —T), then we have

(v—u,(I —=T)u)y >0, Vv € C.
Let v* € F/(T), then we have

(7)

1T — o[ < flu = 0" ||
On the other hand
17w — |
=[(u—v*) = (I = T)ul”
= llu—v*|* = 2(u =", (I = T)u) + [|(T = T)ul*. (9)
From (8) and (9), we have
lu—o*|*=2(u—v", (I = T) u)+||(T = T)ul|* < flu—v*|*.

(®)

From (7), we have
I = T)ull* < 2{u— 0", (I = T)u).

It follows that v* € F (T). Hence VI (C,I —T) C F (T).
|
Remark 2.6: From Lemma 2.4 and 2.5, we have

FT)=VI(C,I-T)=F(Pc(I-X(I-T))),
for all A > 0.

Lemma 2.7: [3] Let {t,,} be a sequence of real numbers
such that there exists a subsequence {n;} of {n} such
that t,,, < t,,4+1 for all i € N. Then there exists a nonde-
creasing sequence {7(n)} C N such that 7(n) — co and
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the following properties are satisfied by all (sufficiently
large) numbers n € N;

tT(n) < tT(n)—i-l ytn < t'r(n)+1~

In fact
7(n) = max{k <m:tp < tpt1}.

III. Main result

Theorem 3.1: For every ¢ = 1,2,3, let H; be a real
Hilbert space and let C7, C5 be non-empty closed convex
subset of Hy; and H,, respectively. Let T; : C; — C;
be quasi-nonexpansive mapping for all i = 1,2 and let
A: Hy — Hs, B: Hy — H3 be bounded linear operator
with adjoints A* and B*, respectively. Suppose that Q) =
{(z,y) € C1 xCy | x € F(T1),y € F(Tz) and Az =
By} is a non-empty set and let {z,}, {y,} be sequences
generated by u,z; € C1;v,y1 € Cy and

Up = Tn — 'YnA* (Axn - Byn) 5

Tnt1 = apu+ (1 — ) Pe, (I —AL(I - Tl)) Unp,

Up = Yn + Y B” (Axn - Byn) )

Ynt1 = apv + (1 — ay,) Pe, (I —\2(1 - Tg)) Ups

(10)
for all n > 1 ,where {a,} C [0,1] with lim «, =
] n— 00
0,50 jan = o0 and > oo AL < oo and A, € (0,1)
. 2

for all i = 1,2 and 7, € (a,b) C (e,m —¢) for all
n € N and A4, Ap are spectral radius of A*A, B*B
respectively, € is a small enough. Then the sequence
{(@n,yn)} converge strongly to (z*,y*) € Q, where
x* = Pp(r)yu and y* = Pp(1,)v.

Proof: Let (z*,y*) € §, then z* € F(TY), y* €
F(T,) and Az* = By*. From Lemma 2.5, we have

|A'z|* <2<z —a* Atz >,

(11)
where A' = I — T} and for all x € C;. Similarly, we have

|A%y]* <2 <y —y*, A% >, (12)

where A2 =1 — T, and for all y € C.
Since z* € F(T1),y* € F(T») and Az* = By*.
By Remark 2.6, we have z* € F (Pc, (I — AJA')) and
y* € F (Po, (I -X,A%)).
Since Po, is a nonexpansive mapping, we have
| Pc, (I - A,llAl) x — x*||?
=|Pc, (I = A A" 2 — P, (I — AL AY) 2*|?
<oz —2* = AL (Alz — Alz®)|?
<o —2* = AL Alg|)?
=[x — 22 + ()2 Atz ]* — 205 (z — 2™, Alz)
<o =22 + ()2 Al ]* = A Atz
=llz —2*? = ()@ = Ap) Atz |?

<lle — 2%,
for all x € C;. Similarly, we obtain

[P, (I—X2A%)y—y*|? < |ly — y*II%,

for all y € Cs.
From definition of {u,}, we have
[un —2*||* = |zn — 2" — A" (Azy — By,) ||
= |len — 2| + 72| A" (Azn — By,) |I?

Consider that
|A* (Az,, — Byn) |1?
=(A* (Az,, — By,), A" (Az,, — Byyn))
=(Ax,, — By, AA* (Az,, — By,))
SAAHAxn - Byn||2 (14)

and

—2(x, — ", A" (Az, — Byn))
= —2(Ax,, — Az*, Azx,, — By,)
= — | Az, — Az*||* — || Azp, — Bynl|® + || Az — Byx|*.
(15)
Substitute (14) and (15) into (13), we have
|t — $*||2
*1|2 2 2 * |2
<l|zn — 2" + v AallAzy — Byn|® — vallAzn — Az”||
- ’YnHAxn - Byn”2 + ’Yn”A:L'* - Byn||2
=[lzn — 2*[1* = (1 = Aayn)l| Az — Bynll®

_'YnHAxn_Ax*HQ"i"VnHAx* _BynH2- (16)

By using the same method as (16), we have

[ =y 1I1* <llgn = ¥ 1* = (L = Apyn) | A0 — Bya||?

- 'YnHByn - By*”2 + 'Yn”By* - Al’nHQ
(17)
From (16) and (17), we have
un — 2*|* + [lon — y*|1?
<||zn — x*Hz + Hyn - y*”Q = Yn(1 = Xayn) || Az, — Byn||2
- ’Yn(l - )\B'Yn)HAxn - Byn||2
— VollAz,, — Az*||? + v, || Az* — By, ||?
— YnllByn — By*|1> + 7| By* — Az,|?
=[lzn — 2** + llyn — v*|?

—Tn (2_'7n ()‘A+)‘B)) HAxn _Byn||2' (18)

From the definition of {z,}, we have
2ns1 — "2

=llanu+ (1 —ay) Pe, (I =AY —T1)) un — 2|1

<anllu— 2" * + (1 = an)l|Poy (I = A, (I = T1)) up — 27|

<ol — 2|7 + (1= an)lJun — 2% (19)

By using the same method as (19), we have

[yn+1 = y* 117 < anllo =y + (1 = an)lva — 3%
(20)
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From (18), (19) and (20), we have

[Znt1 = 2”4 [lynt1 — v*[1?
<apllu—z*)?+ (1 - an)|lu, —a*|?

+anllv = y*1* + (1= an)llvn — y*|?
=an(|lu = 2*|* + v = y*|*)

+ (1= an)([lun — 2| + [Jon — y*|1?)
<an(llu—z** + v —y*|I)

+ (1= an)(lzn — 2*1* + lyn — v*|1?

—Tn (2 —Yn (A4 + )\B)) HAxn - Byn||2)
<an(llu—z** + v - y*|I*)

+ (1= an)([len — 2| + llyn — v %)

(21)

<max{fu — 2*[* + [lv — y*|1%, o1 — 2|7 + Iy — 5717}

From mathematical induction, we have {x,} and {y,}
are bounded. Furthermore, {u,} and {v,} are bounded.
From (21), we have

'Yn(l - an) (2 —Tn (/\A + /\B)) ”Amn - Bynuz

San(llu—az*|? + lv = y*|I) + Cn = Cps1,  (22)
where C,, = ||z, — 2*[|? + ||yn — y*||?, for all z* € F(T})
, y* € F(T) and n € N.

From (22), we separate the proof into two cases.
Casel. Suppose that C,41 < C, for all n > ng (for ng
large enough). Since the sequence {C),} is bounded, we

get lim C), = ¢, for some c € R.
n—oo

From (22) and properties of v,, and «,, we obtain

nh—>Holo |Az, — By,|| = 0. (23)
From the definition of {u,} and {v,}, we have
[un = znll = ynl| A" (Azn — Byy) | (24)
and
[on = ynll = Yull B* (Azn — Byn) |- (25)
From (23), (24) and (25), we have
im = @l = T o, — g =0, (26)

By using properties of Pc,, we have

|Pe, (I =X (I—T0))u, —2*|
<=2 =T0)) un — (I = A (I = Th)) ||
=[lun — 2 = AL(I = T1)(up — 2¥)|?
=|Jun — 2*||* = 2\L (u, — 2%, (I — T})uy,)

+ ()2 = T )un®

Sl = 22 = A (1 = AT = Ta)un . (27)
By using the same method as (27), we have
1Pey (I = M0 = T2)) v =y
<lvn =y = X (1 = ADIT = T2)val*. (28)

From (18), (27) and (28), we have

1Pey (T =M (I = T1)) un — 2™
+1Poy (I =X (I = T2)) va — y* |
<l = 2*[* + [Jon — |
= A (1= AT = Ta)un|?
= A1 = X)IU = Ta)vn?
<llwn — 2" + llyn — 7|
=Y (2= 9 (Aa + Ap)) [ Azy — By |
= A (1= AT = Tr)un |

= A= NI = Ta)vnll*. (29)

From the definition of {x,} and {y,}, we have

[+ —2*|* + [yn1 — y*|1?
< apflu—a*|?
+ (1 — an)||Pe, (I - /\i(I — T1)) Uy — 13*||2
+ (1= an)|Po, (I =N (I = T2)) vn — y*|?
+ anllv — y*|1?
= ap(flu— 2" + v = y*|1?)
+ (1 - an)(HPC1 (I - )‘111(1 - Tl)) Un — x*HQ
+[[Po, (I = A0 = T2)) va — y*|1?)
< ap(llu—a** + flo —y*|?)
+ (1 - O‘n)(HIn - 33*”2 + [[yn — y*H2
= (2 =9 (Aa + AB)) Az, — Byn||2
= A=A = T)u|?

= A (L= XN = To)un?). (30)
It implies that
(1= o) A (L= AN = T1)un?
+ AL = M) = T2)va?)
<Cp = Cp1 +an(|lu—2" | + o —y7[I7).  (31)
From (31) and lim C,, = ¢, we have
n—oo
T (7~ Tun| = lim |- To)o,| = 0. (32)
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By using properties of Pc,, we have

1Py (I =X (I = Th)) uy — ¥
ST =AM =T))up— (I =A(I-T))x
»PCl (I - )\}L(I - Tl)) Up — $*>
= %(H (I =M (I =T0)) up — (I = AT —T1)) *||
+ ”PCl (I - )‘;(I - Tl)) Unp — x*Hz
(=2 =T1)up — (I = A (I =Th)) =
— Pe, (I = A (I = T0)) un + %)
< 3 (e — "I 4+ 1o, (1= NI~ T0))
— llun = Poy, (I =2 (I = Th))w
=M (I =T)uy — (I = Ty)z") )
= 2 (llun = 2P + 1P, (T = Ab(T — 1)) |
—|ln = Poy, (I = AL —T1)) unl?
— (AU = To)u — (I = To)e™|?
+ 2)"}L<un — Pe, (I - )"}L(I - Tl)) Un
(I =T, — (I —Ty)z")).

o= x*”Q

(33)
From (33), we have
1Pe, (1 =X = T1)) un — 272

< Nfun — &[> = [lun = Pey (I = AL = T0)) un?
— (DT = Tun — (I = T2

+ 2\ |[un — Poy (I = AL —T1)) un|
N =T)un — (I = T1)z"|. (34)
Similarly, we have
[Pey, (I =Xo(I = T2)) v — y* ||
< lvn =y I* = llvn — Py, (I = Ao (I — T2)) vpl|?
2 *
— (AU = To)v, — (I = To)y*|?
+2X7 [[v — Po, (I = N2(I —T2)) vn|
NI = To)v, — (I = T2)y". (35)

From the definition of {z,}, {yn}, (34) and (35), we have

—y*|?

y*|1?)

[#n41 — 2] + |Yns1
<o (lu—z** + v -

+ (1= o) ([|[Pey (I = A (I—T1)) un — 2™
+ | Pey (I = A2(I = T3)) v, — 4 ||?)
<an(lu—a*IP + lv=y* 1) + lon — %1 + lyn — ¥*|1?

— (1= an)(lun — Po, (I = AL = T1)) un|?
+ [[on = Pey, (I = A5 (1 = T2)) va|?)

+ 205 [lun — Poy (I = A = Th)) uy |

N = T)u — (I = Th)z™||

+ 2)‘31”7% — Pc, (I - Ai(I - T2)> Un ||

| = To)vn = (I = T2)y"|-

It implies that
(1 —an)(lun — Pe, (I = A (I = Th)) un|?
+ ||lvn = Poy, (I = X2(I — T)) va|?)
< o ([lu—2*[]* + [lo — y*|1?)

+ 2\ |[un — Poy (I = AL —T1)) un|
N =T )un — (I = Th)x™||
+ 22 |Jvy, — Pe, (I = X2(1 —T2)) vy ||

T = T2)vn — (I = T2)y"||
+ Oy — Cpyr.

From (32) and lim C, = ¢, we have
n—oQ

lim |[Po, (I =X, (I =T1)) un — un| (36)
_ T N2(T _ _
= nlgr;o [Poy, (I —X2(I—Ts))vn —vnl|=0.  (37)
From (26) and (36), we obtain
i ([P, (=M= T)) un — 2] (39)
= lim ||Pc, (I-=X(I—Ts)) v, —ynl =0. (39)
Since
Tn+1 — Tn
= an(u — xn) +(1—-ay) (Pc1 (I — )\,ll(I — Tl)) Wy — xn),
Yn+1 — Yn
= Oén(’U - yn) + (1 - an) (PCz (I - )\72’7,([ - T2)) Up — yn)a
and (38), we get
i |[zn 1 — 2|l = Tl {lyn1 —yall =0. (40)
n— 00 n— 00

Since Wy, (x,) and Wy (y,) are non-empty sets, then
there exists & € C1,§ € Cy such that & € W, (z,) and
9 € Wu(yn)-
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We may assume, there exists subsequences {x,, },
{yn, } of {zn}, {yn} such that

Tp, =& as k— o0. (41)

and

Yn, —J as k — oo. (42)

Next, we will show that (z,9) € Q.

From (26), (41) and (42), we obtain wu,, — &

and v, — 9 as k— oo.

Assume that & € F(11).

Since F(Ty) = F(Pc, (I — AL (I —Ty))), we have

& # Pc, (I =X, (I—T1))&. From Opial’s condition,

lim AL =0 and condition i), we have
k—o0 k

lim inf ||uy,, — |

k—o0

< lim inf [ttn, — Poy (I = A, (I—T1)) &
+ ||1:)c'1 (I — )\71% (I — Tl)) Un,,
= Pe, (I =X, (I -11)) )

< hkrglogf (”unk - PCl (I - )\’}Lk (I - Tl)) Un ”
+ g = &+ An 1 = T)un, — (I = T1)2])

= liminf ||u,, — ||
k—o0

il

This is a contradiction. Thus & € F(T1).

From v,, — ¢ as kK — oo and using the same method as
Z € F(T1), we have g € F(T5).

Since Az — By € W, (Az, — By,) and weakly lower
semi-continuous of norm, we get

1A% — Byl < liminf || Az, — Byn, || =0,
k—o0

Then Az = By. Hence (Z,9) € Q.

Consider that

lim sup(u — 2*, z,, — x*)
n—oo

where z* = Pp(ryu and

lim sup({v — Y, Yn — gj*}

n— oo

= lim sup(v — gﬁ,ynk — QJ*)
k—o0

S 07

where y* = Pr(1y)v.

Next, we show that a sequence {(z,,yn)} converges
strongly to (z*,y*) € Q , where z* = Pp(ryu and
y* = PF(T2)7‘}'

From the definitions of {z,} and {y,}, we have
||xn+1*xA*H2 < (1*O‘n)|‘xn*£*H2+20‘n<uff*vxn+1*£*>
and

Hyn+1_yA*H2 S (1_an)||yn_2j*||2+204n<v_2j*’yn+1_yA*>'

Then
[@nt1 — 2 1* + lyns1 — v*I?
<(1- an)(llxn - $*||2 + Yn — y*||2)
+ 2an(<u - x*aanrl - LIZ‘*) + <U - y*7yn+1 - y*>)’

or

CnJrl S (1 - an)cn + 2an9n7 (43)
where On = <U - ‘TA*; Tn41 — ‘TA*> + <U - yA*ayn—i-l - yA*>7
for all n € N.

From Lemma 2.3, thus

lim C, = lim (|lz, — 2*[]* + |y — y*[%) = 0.
n—oo n—oo

Therefore (x,,,y,) converges strongly to (z*,y*).

Since Az* — By* € W, (Ax, — By,) and weakly lower

semi-continuous of norm, we get

|Az* — By*| < liminf || Az, — By, | = 0.
k— o0

Then Az* = By*. Hence (z*,y*) € Q.

Case2. Suppose that C), is not monotone sequence, then
there exists an integer ng such that Cp,, < Chpy41.
Define the integer sequence 7(n) for all n > ng as follows,

7(n) = max{k <n:Ck < Cii1}

It is clear that 7(n) is a nondecreasing with
nh_}n;@ 7(n) = oo and Cr(n) < Cr(n)41-
From (43), we have

C"r(n)-i—l S (1 - aT(n))OT(’ﬂ) + 2Ol‘r(n)@‘r(n)'
From Lemma 2.3, thus

lim C‘r(n) =0.

n—oo

Applying (40), we have
nlgr;o CT(n)+1 =0.
By Lemma (2.7), we have
Cn < maX{Cna C‘r(n)} < C‘r(n)+1-

From above inequality and lim C7 )4, = 0, we obtain
n—oo
lim ([|z, —2*)® + lyn — v*[|?) = lim C, = 0.
n—oo n—oo

That implies {(x,,y,)} converges strongly to (:f*,gﬁ)
By using the same methods as case 1, we have
(xA*,yA*) € Q, where z* = Pp(ryu and y* = Pp(ryyv.
This is complete the proof. [ |
Corollary 3.2: For every ¢ = 1,2,3, let H; be a real
Hilbert space and let C7, C; be non-empty closed convex
subset of Hy; and H,, respectively. Let T; : C; — C;
be quasi-nonexpansive mapping for all 4 = 1,2 and let
A : Hy — Hj be bounded linear operator with adjoints
A*, respectively. Suppose that Q = {(z,y) € C; x Cs :
x € F(Th),y € F(Tz) and Az = y} is a non-empty set
and let {z,}, {yn} be sequences generated by u,z; €
Ci;v,11 € Cy and

Up = Ty — YnA* (Axn - yn) )
Tnt1 = apu+ (1 —ay) Po, (I = AT —T1)) uy,

Ynt+1 = anv + (1 —ay,) Pe, (I —A2(1 - Tg)) Un,
(44)
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for all n > 1 where {a,} C [0,1] with nli_>n;oan =
0,50 an = o0 and > oo A, < oo and A, € (0,1)
for all ¢ = 1,2 and v, € (a,b) C (e,%—e for all
n € N and A4 be spectral radius of A*A, € is a small
enough. Then the sequence {(z,,y,)} converge strongly
to (x*,y*) € Q, where 2* = Pp(pyu and y* = Ppp,v.
Proof: By using Theorem 3.1 and taking B = I, we
obtain the conclusion. [ |

IV. Application
A mapping T : C — C' is called nonspreading if

2|Tx — Tyl]* < ||Tx - y|* + Ty — ||, Va,y € C.

Such mapping is defined by Kohsaka and Takahashi [13].
The following lemma will be used to prove in the
application.

Lemma 4.1: [13] Let H be a Hilbert space, let C' be
a non-empty closed convex subset of H, and let S be
a nonspreading mapping of C into itself. Then F(S) is
closed and convex.

In 2009, Kangtunyakarn and Suantai [14] intro-
duced the S-mapping generated by 11,715,753, ..., Tn and
A1, A2, ..., Ay as follows.

Definition 4.1: Let C be a non-empty convex subset
of a real Banach space. Let {T;}Y; be a finite family
of (nonexpansive) mappings of C into itself. For each
Jj=12,.,N, let a]:(a{,aQ,ad)GIxIxI where
I €10,1] and aj + ab + al = 1. Define the mapping
S :C — C as follows;

UO = 17

U, = Oz?‘lTon + Q%Uo + Oté[,
Uy = a%TQUl —+ a%Ul —+ agl,
Us = O(?TgUQ + ongg + ozgl,

Unv_1=a) Ty Uy_og+ad Un o+ a7,

S=Uny=0q) TNUN_1+a2 UN_1+Oé3 1.

This mapping is called an S-mapping generated by
T, Ts,....,Ty and a1, as, ..., apN.

Lemma 4.2: [15] Let C' be a non-empty closed convex
subset of a real Hilbert space. Let {T;}, be a finite
famlly of nonspreading mappings of C' into C with
ﬂl L F(T;) # 0, and let o; = (al,a2,a3) eI xIxlI,
j=1,2,..,N,where I = [0,1],al4+aj+a} =1, o, o} €
(0,1) forall j = 1,2,...,N — 1 and ol¥ € (0,1],a
[0,1) o € [0,1) forall j = 1,2,..,N. Let S be the
mapping generated by T1,75,....,Tny and ai,qs,...,an.
Then F(S) = ﬂfil F(T;) and S is a quasi-nonexpansive
mapping.

By using these results, we obtain the following theo-
rem.

Theorem 4.3: For every ¢ = 1,2,3, let H; be a real
Hilbert space and let C, Cy be non-empty closed convex
subset of Hy and Ha, respectively. Let {T;}Y | be a finite
family of nonspreading mappings of C7 into Cj with

N, F(T;) # 0, and let a; = (of,af,0d) € I x I x1I,

j = 1,2,..,N, where I = [0,1] ,oﬂl+a2+a3 =
1, o, of € (0, 1) forall j =1,2,..,N —1 and af €
0,1, 0l € [, ) of € [0,1) for allj = 1,2,..,N.

Let S be the mapping generated by 11,75, ..., Ty and
san. Let {T;}Y, be a finite farmly of non-
spreadmg mapplngs of Cy into Cy with ﬂl L F(Ty) # 0,
and let 8; = (8] 62,ﬂ3) elIxIxI, j=12,.. N,
where I = [0,1] B+ +ﬁ§ =1, p, é €

ar, g, ..

(0,1) for all j = 1,2,..,N —1 and 8 € (0,1],85
[0,1) 85 € [0, )fora11j712 . N. Let S be the
mapping generated by 11,75, ..., TN and Sq,0Bs, ..., BN

Let A: Hy — Hs, B: Hy — Hj3 be bounded linear oper-
ator with adjoints A* and B*, respectlvely Suppose that

Q={(z,y) € CL x Cy: xéﬂl F(Ty),y € N, F(TY)
and Az = By} is a non-empty set and let {z,}, {y,} be
sequences generated by u,x, € Cq;v,y; € Co and

Up = Ty — A" (Az,, — Byy),
Tnt1 = apu+ (1 —ay,) Po, (I — AL - S)) Uy,

Un = Yn + 7nB* (Axn - Byn) ,
Ynt+1 = anv + (1 — ay,) Pe, (I —A\2(I - S)) Un,
(45)
for all n > 1 where {a,} C [0,1] with lim o, =
n— oo

0,50 jan, = o0 and > oo A, < oo and A, € (0,1)
for all i = 1,2 and ~, € (a,b) C e,ﬁ — ¢ for all
n € N and A, Ap are spectral radius of A*A, B*B
respectively, € is a small enough. Then the sequence
{(xn,yn)} converge strongly to (z*,y*) € £, where
z* = Ppsyu and y* = Ppgv.

Proof: By using Theorem 3.1 and 4.2, we obtain the
conclusion. ]

Moreover, if we put F(T1) = Cy and F(Tz) = Cy
in Theorem 3.1, we obtain the SEFPP reduced to the
SEFP.

Theorem 4.4: For every ¢ = 1,2,3, let H; be a real
Hilbert space and let C, C5 be non-empty closed convex
subset of H; and Hj, respectively. Let T; : C; — C;
be quasi-nonexpansive mapping for all ¢ = 1,2 and let
A: Hy — Hs, B: Hy — H3 be bounded linear operator
with adjoints A* and B*, respectively. Suppose that €2 =
{(z,y) € Cy x Cy : Ax = By} is a non-empty set and let
{zn}, {yn} be sequences generated by u,x; € C1;v,y1 €
CQ and

Up = Ty — VA" (Az, — Byy),
ZTpnt1 = apu+ (1 — ay) Po,tn,
Up = Yn + Y B* (Az, — By,),
Ynt+1 = apv + (1 — ap) Po,vn,

(46)

for all n > 1 ,where {a,} C [0,1] with hm an =
0,50 jan, = oo and > oo AL <ooand )\l € (0,1)
for all i = 1,2 and v, € (a,b) C ,m —¢) for all
n € N and Ag,Ap are spectral radius of A*A7 B*B
respectively, € is a small enough. Then the sequence
{(zn,yn)} converge strongly to (z*,y*) € Q, where
x* = Pc,u and y* = Pg,v.

Proof: By using Theorem 3.1, we put F(Ty) = C4
and F(Ty) = Cq, we obtain the conclusion. |

(Advance online publication: 12 August 2019)



TAENG International Journal of Applied Mathematics, 49:3, [JAM 49 3 08

V. Conclusion

We have proposed an algorithm for solving a new
split equality fixed point problem for quasi-nonexpansive
mapping, and proved its converges in the Hilbert spaces.
In Application, we used S-mapping applied to our main
result to prove the strong convergence theorems.
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