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Abstract—Elzaki transform is combined with Adomian poly-
nomial to obtain an approximate analytical solutions of non-
linear Sine Gordon equations. The necessity of Adomian poly-
nomial is to linearise the nonlinear function(s) that is present
in any given differential equation(s) because Elzaki transform,
like other integral transforms, cannot be used to solve nonlinear
differential equation independently. The approximate analytical
solutions are presented in series form. In order to investigate
the performance of the method, two single nonlinear Sine
Gordon equations and one coupled Sine Gordon equation were
considered in this paper. The method is very powerful because
one of the problems considered converges to the exact solution
and this shows the effectiveness of this method in solving
nonlinear Sine Gordon equations.

Index Terms—Elzaki transform method, Adomian polyno-
mial, Sine Gordon equations.

I. INTRODUCTION

THE Sine Gordon equation is one of the most important
equations in partial differential equations because of

its applications in applied mathematics. This equation plays
a major role in the propagation of fluxons in Josephson
junctions between two superconductors [1], [2], [3]. It is also
useful in many scientific fields such as the rigid pendulum
motion attached to a stretched wire [4]. Furthermore, it is
applicable in nonlinear optics [5], solid state physics, and
stability of fluid motions [6].

Generally, Sine Gordon equation is of the form:

utt − uxx + sinu = 0, (1)

with the initial conditions

u(x, 0) = a(x), ut(x, 0) = b(x), (2)

where u is a function of x and t, sinu is the nonlinear term
in this case, a(x) and b(x) are the known analytic function
[6].

Several methods have been developed to obtain the ap-
proximate analytical solutions of Sine Gordon equations.
Some of these methods for solving nonlinear differential
equations are the: Exp function method [7], reduced differen-
tial transform method [6], the Homotopy Analysis Method,
Adomian Decomposition Method [8], [9], Variation Iteration
Method [10], [11], Homotopy Perturbation Method [12],
[13], [14] and the variable separated ODE method [15].
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In this paper, we find the solutions of nonlinear Sine
Gordon equations and coupled Sine Gordon equation by
Elzaki transform method and Adomian Polynomial. This
method gives the solutions in series form and most of the
time, it yields exact solutions with few iterations.

This paper is structured as follows: Section 2 contains the
basic definitions and the properties of the proposed method.
Section 3 shows the theoretical approach of the proposed
method on Sine Gordon equations. In Section 4, the Elzaki
transform method and Adomian polynomial is applied to
solve three problems in order to show its efficiency. Section
5 contains the discussion of results and the conclusion is
presented in Section 6.

II. PROPERTIES OF ELZAKI TRANSFORM

Elzaki transform [16], [17], [18], [19], [20], [21], [22]
is defined for functions of exponential order. Consider the
functions in the set A defined by

A =

{
f(t) : ∃M, c1, c2 > 0, |f(t)| < Me

|t|
cj , if t ∈ (−1)j × [0,∞)

}
.

where c1, c2 may either be finite or infinite, but M must be infinite.
According to Tarig [16], Elzaki transform is defined as:

E[f(t)] = u2

∫ ∞
0

f(ut)e−tdt = T (u), t ≥ 0, u ∈ (c1, c2)

or

E[f(t)] = u

∫ ∞
0

f(t)e−
t
u dt = T (u), t ≥ 0, u ∈ (c1, c2)

(3)

where u in equation (3) is used to factor out t in the analysis of
the function f .

Let T (u) be the Elzaki transform of f(t) such that

E[f(t)] = T (u).

Then:
(i) E[f ′(t)] = T (u)

u
− uf(0),

(ii) E[f ′′(t)] = T (u)

u2 − f(0)− uf ′(0),
(iii) E[f (n)(t)] = T (u)

un −
∑n−1
k=0 u

2−n+kf (k)(0).

The equation E[f(t)] = T (u) means that T (u) is the Elzaki
transform of f(t), and f(t) is the inverse Elzaki transform of T (u).
That is,

f(t) = E−1[T (u)].

In order to obtain the Elzaki transform of a partial derivative,
integration by parts is used on the definition of the Elzaki transform
and the resulting expressions are [23],

E

[
∂f(x, t)

∂t

]
=
T (x, v)

v
− vf(x, 0),

E

[
∂2f(x, t)

∂t2

]
=
T (x, v)

v2
− f(x, 0)− v ∂f(x, 0)

∂t
,

E

[
∂f(x, t)

∂x

]
=

d

dx
[T (x, v)],

E

[
∂2f(x, t)

∂x2

]
=

d2

dx2
[T (x, v)].
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III. THEORETICAL APPROACH: ELZAKI TRANSFORM ON
SINE GORDON EQUATION

The main focus of this work is to solve the nonlinear partial
differential equations which is Sine Gordon equations using the
combination of Elzaki transform method (ETM) and Adomian
polynomial.

According to [24], [25], consider;

∂wu(x, t)

∂tw
+Ru(x, t) +Nu(x, t) = f(x, t), (4)

where w = 1, 2, 3.
The initial condition is given as

∂w−1u(x, t)

∂tw−1

∣∣∣
t=0

= gw−1(x).

The partial derivative of the function u(x, t) of wth order is the one
given as ∂wu(x,t)

∂tw
, R represents the linear differential operator, N

indicates the nonlinear terms of differential equations, and f(x, t)
is the non-homogeneous/source term.

By applying the Elzaki transform on equation (4), we get:

E

[
∂wu(x, t)

∂tw

]
+ E [Ru(x, t)] + E [Nu(x, t)] = E [f(x, t)] ,

(5)

where

E

[
∂wu(x, t)

∂tw

]
=
E[u(x, t)]

vw
−
w−1∑
k=0

v2−w+k ∂
ku(x, 0)

∂tk
. (6)

Substituting equation (6) into equation (5) gives:

E[u(x, t)]

vw
−
w−1∑
k=0

v2−w+k ∂
ku(x, 0)

∂tk
+ E [Ru(x, t)]

+E [Nu(x, t)] = E [f(x, t)] .

This is the same as

E[u(x, t)]

vw
= E [f(x, t)] +

w−1∑
k=0

v2−w+k ∂
ku(x, 0)

∂tk

−{E [Ru(x, t)] + E [Nu(x, t)]} . (7)

By simplifying equation (7), we have:

E[u(x, t)] = vwE [f(x, t)] +

w−1∑
k=0

v2+k
∂ku(x, 0)

∂tk

−vw {E [Ru(x, t)] + E [Nu(x, t)]} . (8)

Applying the inverse Elzaki transform to equation (8) gives

u(x, t) = E−1

[
vwE [f(x, t)] +

w−1∑
k=0

v2+k
∂ku(x, 0)

∂tk

]
−E−1 [vw {E [Ru(x, t)] + E [Nu(x, t)]}] .

We can rewrite this as

u(x, t) = F (x, t)− E−1 [vw {E [Ru(x, t)] + E [Nu(x, t)]}] ,
(9)

where F (x, t) denotes the expression that arises from the given
initial condition and the source terms after simplification. The
solution will be in the form of infinite series as indicated below

u(x, t) =

∞∑
n=0

un(x, t). (10)

The nonlinear term is decomposed as

Nu(x, t) =

∞∑
n=0

An, (11)

where An is defined as the Adomian polynomials which can be
calculated by using the formula

An =
1

n!

∂n

∂λn

[
N

(
∞∑
i=0

λiui

)]
λ=0

, n = 0, 1, · · ·

Substituting equation (10) and equation (11) into equation (9) gives
∞∑
n=0

un(x, t) = F (x, t)

− E−1

[
vw
{
E

[
R

∞∑
n=0

un(x, t)

]
+ E

[
∞∑
n=0

An

]}]
.

(12)

Then from equation (12), we have

u0(x, t) = F (x, t). (13)

And the recursive relation is given as:

un+1 = −E−1 [vw {E [Run(x, t)] + E [An]}] .

Here w = 1, 2, 3 and n ≥ 0.
The analytical solution u(x, t) can be approximated by a trun-

cated series

u(x, t) = lim
N→∞

N∑
n=0

un(x, t).

IV. APPLICATIONS

The effectiveness of the Elzaki transform and the Adomian
polynomial are demonstrated by solving the following Sine Gordon
Equations.

Example 4.1: Consider the homogeneous Sine-Gordon Equation
[6]

utt − uxx + sinu = 0, (14)

with initial conditions

u(x, 0) = 0, ut(x, 0) = 4sechx.

To solve this problem, we used Taylor’s series expansion of sinu,
that is,

sinu ≈ u− u3

3!
+
u5

5!
= u− u3

6
+

u5

120
.

Then equation (14) becomes:

utt − uxx = −
[
u− u3

6
+

u5

120

]
. (15)

Applying Elzaki transform to both sides of equation (15)

E[utt]− E[uxx] = −E
[
u− u3

6
+

u5

120

]
. (16)

where

E [utt] =
U(x, v)

v2
− u(x, 0)− vut(x, 0), and

E [uxx] =
d2

dx2
[U(x, v)] =

d2

dx2
E[u].

Applying these and the given initial conditions to equation (16) and
simplifying, we obtain:

U(x, t) = 4v3sechx+ v2
d2

dx2
E[u]− v2E

[
u− u3

6
+

u5

120

]
.

(17)

Applying the inverse Elzaki transform to equation (17) and simpli-
fying, give

u = 4tsechx+ E−1

{
v2

d2

dx2
E[u]− v2E

[
u− u3

6
+

u5

120

]}
.

(18)
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From equation (18), let

u0 = 4tsechx.

The recursive relation is given as:

un+1 = E−1

{
v2

d2

dx2
E[un]− v2E [An]

}
, (19)

where An is the Adomian polynomial to decompose the nonlinear
terms by using the relation:

An =
1

n!

dn

dλn
f

[
∞∑
i=0

λiui

]
λ=0

. (20)

Let the nonlinear term be represented by

f(u) = u− u3

6
+

u5

120
. (21)

Substituting equation (21) into equation (20) gives:

A0 = u0 −
u3
0

6
+

u5
0

120
, A1 = u1 −

1

2
u1u

2
0 +

1

24
u1u

4
0,

A2 = u2 −
1

2
u0u

2
1 −

1

2
u2u

2
0 +

1

12
u3
0u

2
1 +

1

24
u2u

4
0, · · · .

From equation (19), when n=0, we have

u1 = E−1

{
v2

d2

dx2
E[u0]− v2E [A0]

}
. (22)

Since u0 = 4tsechx

u1 = E−1

{
v2

d2

dx2
E[4tsechx]− v2E

[
4tsechx− 64

6
t3sech3x

]}
− E−1

{
v2E

[
1024

120
t5sech5x

]}
.

By simplifying, we obtain

u1 =
4

315
sech5x

[
−105t3 cosh2 x+ 42t5 cosh2 x− 16t7

]
. (23)

When n = 1,

u2 = E−1

{
v2

d2

dx2
E[u1]− v2E[A1]

}
. (24)

A1 is computed as;

A1 = −4

3
t3sech3x+

32

3
t5sech5x− 128

9
t7sech7x+

8

15
t5sech3x

−1408

315
t7sech5x+

2304

315
t9sech7x− 2048

945
t11sech9x.

(25)

Therefore, u2 is computed as:

u2 =
4

2027025
t5sech9x

[
−270270 cosh6 x+ 405405 cosh4 x

]
+

4

2027025
t5sech9x

[
30030t4 cosh4 x− 128700t2 cosh4 x

]
+

4

2027025
t5sech9x

[
100100t4 cosh2 x− 33696t6 cosh2 x+ 7040t8

]
.

(26)

The approximate series solution is

u(x, t) = u0 + u1 + u2 + u3 + u4 + · · · .

Substituting u0, u1 and u2 computed above, we get

u(x, t) = 4tsechx− 4

3
t3sech3x+

8

15
t5sech3x− 64

315
t7sech5x

− 8

15
t5sech3x+

4

5
t5sech5x+

168

2835
t9sech5x− 16

63
t7sech5x

+
16

81
t9sech7x− 2304

34650
t11sech7x+

2048

147420
t13sech9x.

To obtain the closed form solution from above, let us only consider

u(x, t) = 4tsechx− 4

3
t3sech3x+

4

5
t5sech5x+ · · · ,

u(x, t) = 4

[
tsechx− [tsechx]3

3
+

[tsechx]5

5
· · ·
]
, (27)

where

arctan(t) = t− t3

3
+
t5

5
· · · .

Then equation (27) becomes:

u(x, t) = 4 arctan (tsechx) . (28)

This closed form solution for equation (14) agree with the one
obtained by reduced differential transform method [6].

Fig. 1. The solution of the first sine-Gordon equation by ETM in Equation
(14)

Figure 1 shows the shape of the solution to Example 4.1. The
graph agrees with that obtained in [6] where reduced differential
transform method is used.

Example 4.2: Consider the homogeneous Sine-Gordon Equation
[6]

utt − uxx + sinu = 0, (29)

with initial conditions

u(x, 0) = π + α cos(βx), ut(x, 0) = 0,

where β =
√
2
2

and α are constants.
To solve this problem, Taylor’s series expansion of sinu is used,

that is,

sinu ≈ u− u3

3!
+
u5

5!
= u− u3

6
+

u5

120
.

Then equation (29) becomes:

utt − uxx = −
[
u− u3

6
+

u5

120

]
. (30)

Applying the Elzaki transform to both sides of equation (30) gives:

E[utt]− E[uxx] = −E
[
u− u3

6
+

u5

120

]
, (31)

where

E [utt] =
U(x, v)

v2
− u(x, 0)− vut(x, 0), and

E [uxx] =
d2

dx2
[U(x, v)] =

d2

dx2
E[u].

So equation (31) becomes

U(x, v)

v2
− u(x, 0)− vut(x, 0)−

d2

dx2
E[u]

= −E
[
u− u3

6
+

u5

120

]
. (32)
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Applying the given initial conditions to equation (32) and simpli-
fying, gives

U(x, v) = v2 [π + α cos(βx)] + v2
d2

dx2
E[u]

− v2E
[
u− u3

6
+

u5

120

]
. (33)

Applying the inverse Elzaki transform to equation (33) and simpli-
fying, we obtain;

u(x, t) = [π + α cos(βx)]

+ E−1

{
v2

d2

dx2
E[u]− v2E

[
u− u3

6
+

u5

120

]}
. (34)

From equation (34), let

u0 = π + α cos(βx).

Then the recursive relation is given as:

un+1 = E−1

{
v2

d2

dx2
E[un]− v2E [An]

}
, (35)

where An is the Adomian polynomial to decompose the nonlinear
terms by using the relation:

An =
1

n!

dn

dλn
f

[
∞∑
i=0

λiui

]
λ=0

. (36)

Let the nonlinear term be represented by

f(u) = u− u3

6
+

u5

120
. (37)

By substituting equation (37) into equation (36), gives:

A0 = u0 −
u3
0

6
+

u5
0

120
, A1 = u1 −

1

2
u1u

2
0 +

1

24
u1u

4
0,

A2 = u2 −
1

2
u0u

2
1 −

1

2
u2u

2
0 +

1

12
u3
0u

2
1 +

1

24
u2u

4
0, · · ·

From equation (35), when n=0, we get

u1 = E−1

{
v2

d2

dx2
E[u0]− v2E [A0]

}
. (38)

Since u0 = π + α cos(βx), we have:

u1 =E−1

{
v2

d2

dx2
E[π + α cos(βx)]

}
− E−1

{
v2E

[
[π + α cos(βx)]− 1

6
[π + α cos(βx)]3

]}
− E−1

{
v2E

[
1

120
[π + α cos(βx)]5

]}
.

By simplifying, we obtain

u1 = t2
[
−1

2
αβ2 cos(βx)− 1

2
sin[π + α cos(βx)]

]
.

From equation (35), when n=1, we get

u2 = E−1

{
v2

d2

dx2
E[u1]− v2E [A1]

}
, (39)

where

A1 = u1

[
1− 1

2
u2
0 +

1

24
u4
0

]
.

Since u0 = π + α cos(βx), we have

A1 =
1

2
t2
[
−αβ2 cos(βx) cos[π + α cos(βx)]

]
− 1

2
t2 [sin[π + α cos(βx)] cos[π + α cos(βx)]] . (40)

Then u2 is computed as:

u2 = t4
[
1

24
αβ4 cos(βx) +

1

24
α2β2 sin(π + α cos(βx))

]
+ t4

[
− 1

24
α2β2 cos2(βx) sin(π + α cos(βx))

]
+ t4

[
1

12
αβ2 cos(βx) cos(π + α cos(βx))

]
+ t4

[
1

24
sin(π + α(βx)) cos(π + α cos(βx))

]
. (41)

The approximate analytical solution is given as:

u(x, t) = u0 + u1 + u2 + · · ·

Substituting u0, u1 and u2 computed above, therefore:

u(x, t) = [π + α cos(βx)]

+ t2
[
−1

2
αβ2 cos(βx)− 1

2
sin(π + α cos(βx))

]
+ t4

[
1

24
αβ4 cos(βx) +

1

24
α2β2 sin(π + α cos(βx))

]
+ t4

[
− 1

24
α2β2 cos2(βx) sin(π + α cos(βx))

]
+ t4

[
1

12
αβ2 cos(βx) cos(π + α cos(βx))

]
+ t4

[
1

24
sin(π + α(βx)) cos(π + α cos(βx))

]
. (42)

This series solution for equation (29) agree with the one obtained
by reduced differential transform method [6].

Fig. 2. The solution of the second sine-Gordon equation by ETM in
Equation (29)

Figure 2 shows the shape of the solution to Example 4.2. The
graph agrees with that obtained in [6] where reduced differential
transform method is used.

Example 4.3: Consider a system of coupled Sine-Gordon
Equations[6]

utt − uxx = −α2 sin[u(x, t)− v(x, t)],
vtt − c2vxx = sin[u(x, t)− v(x, t)], (43)

with initial conditions

u(x, 0) = A cos(kx), ut(x, 0) = 0,

v(x, 0) = 0, vt(x, 0) = 0.

Applying Elzaki transform to both sides of equation (43) gives:

E[utt]− E[uxx] = −α2E [sin[u(x, t)− v(x, t)]] ,
E[vtt]− c2E[vxx] = E [sin[u(x, t)− v(x, t)]] , (44)
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where

E [utt] =
U(x,w)

w2
− u(x, 0)− wut(x, 0),

E [uxx] =
d2

dx2
[U(x,w)] =

d2

dx2
E[u].

E [vtt] =
V (x,w)

w2
− v(x, 0)− wvt(x, 0),

E [vxx] =
d2

dx2
[V (x,w)] =

d2

dx2
E[v].

So equation (44) becomes,

U(x,w)

w2
− u(x, 0)− wut(x, 0)−

d2

dx2
E[u] = −α2E [sin(u− v)] ,

V (x,w)

w2
− v(x, 0)− wvt(x, 0)− c2

d2

dx2
E[v] = E [sin(u− v)] .

(45)

Note that:

sin[u− v] = [u− v]− [u− v]3

6
+

[u− v]5

120
. (46)

Applying equation (46) and the given initial conditions to equation
(45) and simplifying gives

U(x,w) = w2[A cos(kx)] + w2 d
2

dx2
E[u]

− α2w2E

[
[u− v]− [u− v]3

6
+

[u− v]5

120

]
,

V (x,w) = c2w2 d
2

dx2
E[v]

+ w2E

[
[u− v]− [u− v]3

6
+

[u− v]5

120

]
. (47)

Applying the inverse Elzaki transform to equation (47) gives:

u(x, t) = A cos(kx) + E−1

{
w2 d

2

dx2
E[u]

}
+ E−1

{
−α2w2E

[
[u− v]− [u− v]3

6
+

[u− v]5

120

]}
,

v(x, t) = E−1

{
c2w2 d

2

dx2
E[v]

}
+ E−1

{
w2E

[
[u− v]− [u− v]3

6
+

[u− v]5

120

]}
. (48)

In equation (48), let

u0 = A cos(kx),

v0 = 0.

Then the recursive relation is given as:

un+1 = E−1

{
w2 d

2

dx2
E[un]− α2w2E [An]

}
,

vn+1 = E−1

{
c2w2 d

2

dx2
E[vn] + w2E [An]

}
, (49)

where An is the Adomian polynomial to decompose the nonlinear
terms by using the relation:

An =
1

n!

dn

dλn
f

[
∞∑
i=0

λi(ui, vi)

]
λ=0

. (50)

Let the nonlinear term be represented by

f(u, v) = [u− v]− [u− v]3

6
+

[u− v]5

120
. (51)

By substituting equation (51) in equation (50) gives

A0 = [u0 − v0]−
[u0 − v0]3

6
+

[u0 − v0]5

120
,

A1 =[u1 − v1]
[
1− 1

2
[u0 − v0]2 +

1

24
[u0 − v0]4

]
, · · · .

From equation (49), when n=0, we get:

u1 = E−1

{
w2 d

2

dx2
E[u0]− α2w2E [A0]

}
,

v1 = E−1

{
c2w2 d

2

dx2
E[v0] + w2E [A0]

}
. (52)

Since u0 = A cos(kx) and v0 = 0, we have:

u1 = E−1

{
w2 d

2

dx2
E[A cos(kx)]

}
− α2E−1

{
w2E

[
A cos(kx)− A3 cos3(kx)

6
+
A5 cos5(kx)

120

]}
,

(53)

v1 = E−1

{
w2E

[
A cos(kx)− A3 cos3(kx)

6
+
A5 cos5(kx)

120

]}
.

(54)

By simplifying equation (53) and equation (54), we obtain,

u1 = t2
[
−1

2
Ak2 cos(kx)− 1

2
α2 sin[A cos(kx)]

]
,

v1 = t2
[
1

2
sin[A cos(kx)]

]
.

From equation (49), when n=1, we find that:

u2 = E−1

{
w2 d

2

dx2
E[u1]− α2w2E [A1]

}
, (55)

v2 = E−1

{
c2w2 d

2

dx2
E[v1] + w2E [A1]

}
, (56)

where

A1 = [u1 − v1]
[
1− 1

2
[u0 − v0]2 +

1

24
[u0 − v0]4

]
.

Therefore:

A1 = t2
[
−1

2
Ak2 cos(kx) cos[A cos(kx)]

]
+ t2

[
−1

2
α2 sin[A cos(kx)] cos[A cos(kx)]

]
+ t2

[
−1

2
sin[A cos(kx)] cos[A cos(kx)]

]
. (57)

Using equation (57) in equation (55) and in equation (56), u2 and
v2 are computed as:

u2 =t4
[
Ak4 cos(kx)

24
+
α2A2k2 sin[A cos(kx)]

24

]
+

t4
[
−α

2A2k2 cos2(kx) sin[A cos(kx)]

24

]
+

t4
[
α2Ak2 cos(kx) cos[A cos(kx)]

12

]
+

t4
[
α4 sin[A cos(kx)] cos[A cos(kx)]

24

]
+

t4
[
α2 sin[A cos(kx)] cos[A cos(kx)]

24

]
. (58)
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v2 =t4
[
−c

2A2k2 sin[A cos(kx)]

24

]
+

t4
[
c2A2k2 cos2(kx) sin[A cos(kx)]

24

]
+

t4
[
−c

2Ak2 cos(kx) cos[A cos(kx)]

24

]
+

t4
[
−Ak

2 cos(kx) cos[A cos(kx)]

24

]
+

t4
[
−α

2 sin[A cos(kx)] cos[A cos(kx)]

24

]
+

t4
[
− sin[A cos(kx)] cos[A cos(kx)]

24

]
. (59)

The approximate analytical solution is then given as:

u(x, t) = u0 + u1 + u2 + · · ·
v(x, t) = v0 + v1 + v2 + · · · .

Therefore, substituting u0, v0, u1, v1, u2 and v2 computed above,
we have:

u(x, t) =A cos(kx) + t2
[
−1

2
Ak2 cos(kx)− 1

2
α2 sin[A cos(kx)]

]
+ t4

[
Ak4 cos(kx)

24
+
α2A2k2 sin[A cos(kx)]

24

]
+ t4

[
−α

2A2k2 cos2(kx) sin[A cos(kx)]

24

]
+ t4

[
α2Ak2 cos(kx) cos[A cos(kx)]

12

]
+ t4

[
α4 sin[A cos(kx)] cos[A cos(kx)]

24

]
+ t4

[
α2 sin[A cos(kx)] cos[A cos(kx)]

24

]
. (60)

This series solution u(x, t) in equation (43) agree with the one
obtained by reduced differential transform method [6].

Fig. 3. The first solution of the coupled sine-Gordon equation by ETM in
Equation (43)

Figure 3 shows the shape of the solution u(x, t) to Example
4.3. The graph agrees with that obtained in [6] where reduced

differential transform method is used.

v(x, t) =t2
[
1

2
sin[A cos(kx)]

]
+

t4
[
−c

2A2k2 sin[A cos(kx)]

24

]
+

t4
[
c2A2k2 cos2(kx) sin[A cos(kx)]

24

]
+

t4
[
−c

2Ak2 cos(kx) cos[A cos(kx)]

24

]
+

t4
[
−Ak

2 cos(kx) cos[A cos(kx)]

24

]
+

t4
[
−α

2 sin[A cos(kx)] cos[A cos(kx)]

24

]
+

t4
[
− sin[A cos(kx)] cos[A cos(kx)]

24

]
. (61)

The series solution v(x, t) in equation (43) agree with the one
obtained by reduced differential transform method [6].

Fig. 4. The second solution of the coupled sine-Gordon equation by ETM
in Equation (43)

Figure 4 shows the shape of the solution v(x, t) to Example
4.3. The graph agrees with that obtained in [6] where reduced
differential transform method is used.

V. DISCUSSION OF THE RESULTS

The scheme of the Elzaki transform has been effectively com-
bined with Adomian polynomial to handle nonlinear partial dif-
ferential equations. Example 4.1 is a single nonlinear Sine Gordon
equation which was solved with the said method. The series solution
obtained converges to the exact solution and this shows the power
of the proposed method. Furthermore, example 4.2 is analogous to
example 4.1 but it deals with a more complex initial condition where
the solution obtained in this case when compared with that in [6]
is found to be in agreement. Example 4.3 reveals that the method
is also effective in solving coupled nonlinear partial differential
equations as the result obtained in this example also agrees with
that in the said reference.

Moreover, figures 1, 2, 3 and 4 show the graph of each of
the equations considered so as to understand the behaviour/shape
of each equation/system at any particular time and this could be
interesting to the engineers in case of control analysis. Also, the
solutions obtained may be significant for the explanation of some
practical physical problems. The method has small computational
size and is not affected by discretisation error as the solutions are
presented in series form. Hence, the method of Elzaki transform
combined with Adomian polynomial could be applied to solve
nonlinear travelling wave equations.

VI. CONCLUSION

We have analysed the approximate analytical solutions of differ-
ent kinds of Sine Gordon equations using the combination of the
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Elzaki transform method and the Adomian polynomial. The essence
of obtaining the analytical solutions is to enable researchers to
know the influence of each parameter on the equations under study.
In conclusion, all the problems considered showed that the Elzaki
transform method and the Adomian polynomial are very powerful
integral transform methods in solving Sine Gordon equations. The
solutions presented also agree with the solutions obtained when
reduced differential transform method is used as provided in the
reference. A three dimensional graph of all the problems considered
were also plotted to give the shape of the solutions to Sine Gordon
equations. A comparison with those given in the reference were
made and they were found to agree. Solving nonlinear differential
equations (whether partial or ordinary differential equations) is very
easy by using this method.
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