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Abstract—A network is defined as g-conditionally faulty if
there are g fault-free neighbors is found in every vertex at least,
where g ≥ 2. An folded hypercube FQn with n-dimension,
a famous variation of an n-dimensional hypercube Qn, can
be established fromQn through putting in an edge to every
pair of vertices which has complementary addresses. LetFFv

represents the faulty vertex set andFFe represents the faulty
edge set inFQn, respectively, and letFFQn(e) represents the
faulty vertex and/or faulty edge set which is incident to the
end-vertices of any edgee ∈ E(FQn). Suppose thatFQn is 4-
conditionally faulty and |FFv|+ |FFe| ≤ 2n− 7. We prove the
properties of embedding fault-tolerant cycles inFQn −FFv −
FFe as follows:

1) For n ≥ 4 and |FFQn(e)| ≤ n − 2, FQn − FFv − FFe

consists of the fault-free cycle for every even length from
4 to 2n − 2|FFv|;

2) For n = 4 and n ≥ 8 where n is even, and|FFQn(e)| ≤
n− 3, FQn − FFv − FFe consists of the fault-free cycle
for every odd length from n + 1 to 2n − 2|FFv| − 1.

This study has been submitted to HAL an open archive for the
sustainability (https://hal.archives-ouvertes.fr/hal-01579266v2).

Index Terms—conditionally faulty, fault-free, folded hyper-
cubes, hypercubes, interconnection networks.

I. I NTRODUCTION

T O choose an appropriateinterconnection network(re-
ferred to asnetwork) is one of significant works for

the design in parallel computing and distributed systems.
At present, many network topologies are presented in the
literature [1], [2], [3]. Thehypercubeproposed by Bhuyan
and Agrawal [4] is a famous network model with several
outstanding characteristics including regularity, symmetry,
low degree, short mean internode distance, small diameter,
smaller edge complexity, and recursive structure. These char-
acteristics are highly useful for the development and design
of large-scale parallel or distributed systems [5]. Therefore,
many variants of hypercube are presented including El-
Amawy and Latifi [6], Esfahanian et al. [7], Chen et
al. [8], and Preparata and Vuillemin [9]. Thefolded
hypercubeis one of the variants that has become a focus
of research. Folded hypercube can be established from a
hypercube through putting in an edge to every pair of vertices
which has the longest distance, i.e., a pair of vertices has
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complementary addresses. It has been proved helpful for
improving the performance of the system on conventional
hypercube in numerous measurements, for examples, con-
nectivity, diameter, faulty diameter, and many more. (Please
refer to El-Amawy and Latifi [6], and Wang [10])

The ability of efficiently simulate algorithms for the design
of other architectures is a major characteristic of an inter-
connection network. We can formulate such simulation as
network embedding. Let G representsguest networkandH
representshost network. To embed aG into a H is defined
as a one-to-one mappingf from the vertex setG to the
vertex setH. Under f , an edge inG is corresponded to a
path inH [5]. According to the embedding strategy, we can
simulate the influence for a guest network on a host network.
Therefore, we can develop the algorithms for a guest network
and applied them to the host network.

Cycles (rings) are considered as the most basic networks
available for parallel and distributed computation. When we
want to design simple algorithms with low communication
costs, cycles are suitable one. There are many valid algo-
rithms designed on cycles to solve all kinds of algebra and
graph problems [5], [11], [12], [13]. In arbitrary networks,
cycles are able to be employed for distributed computing
in control/data flow structures. These usages encourage the
embedding of cycles for networks.

Because the vertices and/or edges in the network may
be occasionally broken, the network’s fault tolerance must
be considered. The literature has shown a lot of studies
for the issue of fault-tolerant cycle embedding in ann-
dimensional folded hypercubeFQn in [3], [10], [14], [15],
[16], [17], [18], [19], [20], [21], [22]. LetFFv represents the
faulty vertex set andFFe represents the faulty edge set in
FQn, respectively. In 2001, Wang proposed thatFQn−FFe

consists of a Hamiltonian cycle of length2n if |FFe| ≤ n−1
[10]. In 2006, Xu and Ma presented that every edge ofFQn

lies on the cycle for every even length from 4 to2n; if n
is even; every edge ofFQn also lies on the cycle for every
odd length fromn+1 to 2n− 1 [23]. In addition, Xu et al.
in 2006 stretched his result as aforementioned to show that
every fault-free edge ofFQn − FFe lies on the cycle for
every even length from 4 to2n; if n is even, every fault-free
edge ofFQn − FFe also lies on the cycle for every odd
length fromn+1 to 2n−1, where|FFe| ≤ n−1 [22]. Let
f ∈ FFv be any faulty vertex inFQn. Hsieh et al. in 2009
presented thatFQn−{f} consists of the fault-free cycle for
every even length from 4 to2n− 2 if n ≥ 3, and if n ≥ 2 is
even,FQn−{f} consists of the fault-free cycle of every odd
length fromn+1 to 2n−1 [18]. Furthermore, Cheng et al.
in 2013 presented that every fault-free edge ofFQn − {f}
lies on the cycle for every odd length fromn + 1 to 2n − 3
for n ≥ 2 wheren is even [14]. Kuo in 2015 spread Cheng
et al.s result [14] spread to get that every fault-free edge of
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FQn − {f} lies on a cycle for every even length from 4 to
2n−2 if n ≥ 3, and ifn ≥ 2 is even, every fault-free edge of
FQn−{f} also lies on the cycle for every odd length from
n + 1 to 2n − 1 [3]. However, the independent reliability is
owned by each component in a network. If a component
of a network is independently broken, the probability is
low for all breakdowns. Due to this reason, Harary in 1983
first presented the opinion ofconditional connectivity[24].
Subsequently, Latifi et al. in 1994 determined theconditional
vertex-faultswhich requires that each vertex of a network
contains at leastg fault-free neighbors,g ≥ 2 [25]. For this
thesis, we focus ong = 4 and define that a network is4-
conditionally faulty if its every vertex contains at least four
fault-free neighbors. LetFFQn(e) represents the faulty vertex
and/or faulty edge set which is incident to the end-vertices of
any edgee ∈ E(FQn). Suppose thatFQn is 4-conditionally
faulty and|FFv|+ |FFe| ≤ 2n−7. We prove the properties
of embedding fault-tolerant cycles inFQn−FFv−FFe, as
follows:

1) Forn ≥ 4 and|FFQn(e)| ≤ n−2, FQn−FFv−FFe

consists of the fault-free cycle for every even length
from 4 to 2n − 2|FFv|;

2) For n = 4 andn ≥ 8 is even, and|FFQn(e)| ≤ n− 3,
FQn − FFv − FFe consists for a fault-free cycle of
every odd length fromn + 1 to 2n − 2|FFv| − 1.

Please note, the terms of network, node, and edge is
interchangeable for graph, vertex, and link, respectively used
throughout this paper. The following gives the organization
of remainder for this paper. Some necessary definitions and
notations are presented in Section II. The major result is
shown in Section III. In the last, concluding remarks are
concluded in Section IV.

II. PRELIMINARIES

Let a graph is defined asG = (V,E). G = (V, E) is an
ordered pair whichV is the vertex setand is a finite set,
and E is the edge setand is a subset of{(u, v)|(u, v) is
an unordered pair ofV }. The vertex setand theedge set
can be also representsV (G) andE(G), respectively. When
(u, v) ∈ E, the verticesu andv are adjacent. For the edge
e = (u, v), u andv are called theend-verticesof e. We call
u adjacent tov, and vice versa. A graphG = (V0 ∪ V1, E)
is bipartite if V0 ∩ V1 = ∅ and E ⊆ {(x, y)|x ∈ V0 and
y ∈ V1}. A path P [v0, vk] = 〈v0, v1, . . . , vk〉 is a sequence
of different vertices with any two follow-up vertices are
adjacent.v0 and vk are called as theend-verticesof the
path. Furthermore, asubpathmay be involved by a path, rep-
resented as〈v0, v1, . . . , vi, P [vi, vj ], vj , vj+1, . . . , vk〉, where
P [vi, vj ] = 〈vi, vi+1, . . . , vj−1, vj〉. The number of edges on
the path represents the length of the path. Whenv0 = vk and
v0, v1, . . . , vk−1 are different, a path〈v0, v1, . . . , vk〉 forms
a cycle. A vertex is thoughtfault-free if it is not faulty. An
edge is thoughtfault-free if the two end-vertices and their
edge are not faulty. Vertexu is a fault-free neighbor ofv
if u and (u, v) are not faulty. A path (cycle) isfault-free if
it has no faulty edges and faulty vertices. The faulty vertex
and/or faulty edge set incident to the end-vertices of any edge
e ∈ E(G) can be denoted asFG(e). Other graph-theoretic
terminologies and notations are not described here can refer
to West et al. in 2001 [26].

An n-dimensional hypercubeQn (n-cube for short) is
denoted as an undirected graph.V (Qn) contains2n ver-
tices labelled as binary strings of lengthn. Each edge
e = (u, v) ∈ E(Qn) connects two verticesu and v if and
only if u andv differ in exactly one bit of their labels, i.e.,
u = bnbn−1 . . . bk . . . b1 andv = bnbn−1 . . . bk . . . b1, where
bk is theone’s complementof bk, i.e., bk = 1− i if and only
if bk = i for i ∈ {0, 1}. e is called as an edge ofdimensionk.
Obviously, each vertex connects to exactlyn other vertices.
Furthermore, it exists2n−1 edges in each dimension and
|E(Qn)| = n · 2n−1.

Let x = xnxn−1 . . . x1 andy = ynyn−1 . . . y1 be twon-
bit binary strings; and lety = x(k), where1 ≤ k ≤ n, if
yk = 1 − xk and yi = xi for all i 6= k, 1 ≤ i ≤ n. In
addition, lety = x̄ if yi = 1 − xi for all 1 ≤ i ≤ n. The
Hamming distancedH(x, y) between vertexx and vertexy
is the number of different bits in the corresponding strings of
the vertices. TheHamming weighthw(x) of x is the number
of i’s such thatxi = 1. Note thatQn is a bipartite graph
with two partite sets{x| hw(x) is odd} and {x| hw(x) is
even}. Let dQn(x, y) be thedistancebetween vertexx and
vertexy in Qn. Clearly,dQn(x, y) = dH(x, y).

An n-dimensional folded hypercubeFQn can be estab-
lished from ann-cube by putting in ancomplementary edge
to every pair of vertices which has the longest distance, i.e.,
for a vertex whose address isb = bnbn−1 . . . b1, it now
has one more edge to vertexb̄ = b̄n

¯bn−1 . . . b̄1, except its
original n edges. Thus,FQn has2n−1 more edges thanQn.
These augmented edgesskipsare represented asEs. So the
complete edge set of a folded hypercubeE(FQn) can be
represented asE(Qn) ∪ Es. Therefore, the edges ofFQn

can be formally defined as thatE(FQn) = E(Qn) ∪ Es =
{e = (u, v)|dH(u, v) = 1 ∈ E(Qn) or dH(u, v) = n ∈ Es}.
It has been indicated thatFQn is (n + 1)-regular,(n + 1)-
connected, vertex-transitive, and edge-transitive in Xu et al.
[22]. Furthermore,FQn has been indicated that for any odd
n ≥ 3 is bipartite in Lewinter and Widulski [27].

For convenience,FQn can be denoted as∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
n

= ∗n,

where∗ ∈ {0, 1} means the “don’t care” symbol. A regular
hypercubeQn can be partitioned into two subcubesQn−1

along dimensioni, where 1 ≤ i ≤ n. The subcubes are
defined asQ0

n−1 = ∗n−i0∗i−1 and Q1
n−1 = ∗n−i1∗i−1, in

which the values of theith bits of the vertices are0 and1,
respectively. Formally,Q0

n−1(respectively,Q1
n−1) is a sub-

graph ofFQn induced by{xn . . . xi . . . x1 ∈ V (FQn)| xi =
0}(respectively,{xn . . . xi . . . x1 ∈ V (FQn)| xi = 1}).

Definition 1: [28] An i-partition on FQn = ∗n, where
1 ≤ i ≤ n, partitions FQn along dimensioni into two
(n − 1)-cubes∗n−i0∗i−1 (Q0

n−1) and ∗n−i1∗i−1 (Q1
n−1).

Furthermore, all edges inEs are betweenQ0
n−1 andQ1

n−1.
Let Fv(respectively,FFv) andFe(respectively,FFe) rep-

resent the faulty vertex set and the faulty edge set in
Qn(respectively,FQn). By Definition 1, if we perform an
i-partition on FQn to form two (n − 1)-cubesQ0

n−1 and
Q1

n−1, we derived thatF 0
v = FFv ∩ V (Q0

n−1), F 1
v =

FFv ∩ V (Q1
n−1), F 0

e = FFe ∩ E(Q0
n−1) and F 1

e =
FFe ∩ E(Q1

n−1). Finally, some previously results of path
(cycle) embedding in hypercubes and folded hypercubes are
considered in the remainder of this section. These results are
beneficial for our method.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_16

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



Lemma1: Saadand Schultz in 1988 [29] Letu andv be
any two vertices inQn anddQn(u, v) = d. Then, there exist
n internally disjoint paths joiningu and v in Qn, whered
paths of them are of lengthd and lie in ad-dimensional
subcube.

Lemma 2:Ma et al. in 2007 [30] Letu andv be any two
fault-free vertices inQn. Then, Qn − Fv − Fe contains a
fault-free path of every lengthl with dQn(u, v) + 2 ≤ l ≤
2n−2|Fv|−1 and2|(l−dQn(u, v)), where|Fv|+|Fe| ≤ n−2
andn ≥ 3.

Lemma 3:Xu and Ma in 2006 [23] Forn ≥ 3, every edge
of FQn lies on a cycle of every even length from4 to 2n;
and for n ≥ 2 is even, every edge ofFQn lies on a cycle
of every odd length fromn + 1 to 2n − 1.

Lemma 4:Hsieh et al. in 2009 [18] Forn ≥ 3, FQn −
FFv contains a fault-free cycle of every even length from4
to 2n − 2; and for n ≥ 2 is even,FQn − FFv contains a
fault-free cycle of every odd length fromn + 1 to 2n − 1,
where|FFv| = 1.

Lemma 5:Xu et al. in 2006 [22] Forn ≥ 3, every edge
of FQn−FFe lies on a fault-free cycle of every even length
from 4 to 2n; and forn ≥ 2 is even, every edge ofFQn −
FFe lies on a fault-free cycle of every odd length fromn+1
to 2n − 1, where|FFe| ≤ n− 1.

Lemma 6:Cheng and Guo in 2013 [31] LetFQn(e)
denote the faulty vertex and/or faulty edge set which is
incident to the end-vertices of any edgee ∈ E(Qn). Suppose
thatQn is 3-conditionally faulty and|FQn(e)| ≤ n−2. Then,
every fault-free edge ofQn−Fv−Fe lies on a cycle of every
even length from4 to 2n − 2|Fv| if |Fv| + |Fe| ≤ 2n − 7,
wheren ≥ 5.

Lemma 7:Suppose thatQn is 3-conditionally faulty and
|Fv| ≤ 2n − 7, wheren ≥ 7. Then,Qn can be partitioned
along some dimensionj ∈ {1, 2, . . . , n} to form two(n−1)-
cubesQ0

n−1 andQ1
n−1 such that bothQ0

n−1 andQ1
n−1 are

2-conditionally faulty with|F 0
v | ≤ 2n−9 and|F 1

v | ≤ 2n−9.
The proof of Lemma 7 is given in the Appendix section.

Lemma 8:Suppose thatFQn is 4-conditionally faulty and
|FFv| ≤ 2n−7, wheren ≥ 8. Then,FQn can be partitioned
along some dimensionj ∈ {1, 2, . . . , n} to form two(n−1)-
cubesQ0

n−1 andQ1
n−1 such that bothQ0

n−1 andQ1
n−1 are

3-conditionally faulty,|F 0
v | ≤ 2n− 9 and |F 1

v | ≤ 2n− 9.
Proof: According to the definition ofFQn, E(FQn) =

E(Qn) ∪ Es and V (FQn) = V (Qn). If we eliminate
all edges inEs, then FQn − Es

∼= Qn. Since FQn is
4-conditionally faulty, FQn − Es would be certainly3-
conditionally faulty. By Lemma 7,FQn − Es

∼= Qn can
be partitioned along some dimensionj ∈ {1, 2, . . . , n} to
form two (n − 1)-cubesQ0

n−1 and Q1
n−1 such that both

Q0
n−1 and Q1

n−1 are 3-conditionally faulty, |F 0
v | ≤ 2n − 9

and |F 1
v | ≤ 2n− 9. Then, the lemma holds.

I I I. CYCLES EMBEDDING IN A FAULTY FOLDED

HYPERCUBE

Let FFQn
(e) represent the faulty vertex and/or faulty edge

set which is incident to the end-vertices of any edgee ∈
E(FQn). Suppose thatFQn is 4-conditionally faulty, we
show that

1) For n ≥ 4, FQn − FFv − FFe contains a fault-free
cycle of every even lengthl with 4 ≤ l ≤ 2n−2|FFv|,
where|FFv|+|FFe| ≤ 2n−7 and|FFQn(e)| ≤ n−2;

2) For n = 4 and n ≥ 8 is even,FQn − FFv − FFe

contains a fault-free cycle of every odd lengthl with
n+1 ≤ l ≤ 2n− 2|FFv|− 1, where|FFv|+ |FFe| ≤
2n− 7 and |FFQn(e)| ≤ n− 3.

Lemma 9:Suppose thatFQn is 4-conditionally faulty,
|FFv|+ |FFe| ≤ 2n− 7 and |FFQn(e)| ≤ n− 2 for n ≥ 4.
Then,FQn−FFv−FFe contains a fault-free cycle of every
even lengthl with 4 ≤ l ≤ 2n − 2|FFv|.

Proof: The cases forn = 4 andn ≥ 5 are considered.

CASE 1.n = 4. In this case,|FFv|+|FFe| ≤ 1. If |FFv| =
|FFe| = 0, by Lemma 3,FQ4 contains a cycle of
every even lengthl with 4 ≤ l ≤ 16. If |FFv| = 1
and|FFe| = 0, by Lemma 4,FQ4−FFv contains
a fault-free cycle of every even lengthl with 4 ≤
l ≤ 14. If |FFv| = 0 and |FFe| = 1, by Lemma 5,
FQ4 − FFe contains a fault-free cycle of every
even lengthl with 4 ≤ l ≤ 16.

CASE 2. n ≥ 5. According to the definition ofFQn,
E(FQn) = E(Qn)∪Es andV (FQn) = V (Qn). If
we eliminate all edges inEs, thenFQn−Es

∼= Qn.
Note thatFQn is 4-conditionally faulty,FQn −
Es

∼= Qn would be certainly3-conditionally faulty.
Since |Fv| + |Fe| ≤ |FFv| + |FFe| ≤ 2n − 7 and
|FQn(e)| ≤ |FFQn(e)| ≤ n − 2, by Lemma 6,
Qn − Fv − Fe contains a fault-free cycle of every
even lengthl with 4 ≤ l ≤ 2n − 2|Fv|, which
implies thatFQn − FFv − FFe contains a fault-
free cycle of every even lengthl with 4 ≤ l ≤
2n − 2|FFv|.

By integrating the above two cases, the proof is completed.

Lemma10: Supposethat FQn is 4-conditionally faulty,
|FFv|+|FFe| ≤ 2n−7 and|FFQn(e)| ≤ n−3 for n = 4 and
n ≥ 8 is even. Then,FQn−FFv−FFe contains a fault-free
cycle of every odd lengthl with n+1 ≤ l ≤ 2n−2|FFv|−1.

Proof: The cases forn = 4 and n ≥ 8 is even are
considered.

CASE 1. n = 4. In this case,|FFv| + |FFe| ≤ 1. If
|FFv| = |FFe| = 0, by Lemma 3,FQ4 contains
a cycle of every odd lengthl with 5 ≤ l ≤ 15. If
|FFv| = 1 and |FFe| = 0, by Lemma 4,FQ4 −
FFv contains a fault-free cycle of every odd length
l with 5 ≤ l ≤ 13. If |FFv| = 0 and|FFe| = 1, by
Lemma 5,FQ4 − FFe contains a fault-free cycle
of every odd lengthl with 5 ≤ l ≤ 15.

CASE 2.n ≥ 8 is even. If we assume that every faulty edge
e in FFe is regarded as one of the end-vertices
of e is faulty, then |FFv+ | = |FFv| + |FFe| ≤
2n − 7 in the worst case. Since|FFv+ | ≤ 2n − 7
and FQn is 4-conditionally faulty, by Lemma 8,
FQn can be partitioned along some dimension
j ∈ {1, 2, . . . , n} to form two (n − 1)-cubes
Q0

n−1 and Q1
n−1 such that bothQ0

n−1 and Q1
n−1

are 3-conditionally faulty, |F 0
v+ | ≤ 2n − 9 and

|F 1
v+ | ≤ 2n − 9 which implies that|F 0

v | + |F 0
e | ≤

2n − 9 and |F 1
v | + |F 1

e | ≤ 2n − 9, respectively.
Without loss of generality, we may assume that
j = n and |F 0

v | + |F 0
e | ≥ |F 1

v | + |F 1
e |. Therefore,

|F 0
v | + |F 0

e | ≤ 2n − 9 and |F 1
v | + |F 1

e | ≤ n − 4.
Since |FQn(e)| ≤ |FFQn(e)| ≤ n − 3, we know
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Fig. 1. An illustration of Case 2 in the proof of Lemma 10. (a) Case 2.2;
(b) Case 2.3

that |FQ0
n−1

(e)| ≤ n − 3 and |FQ1
n−1

(e)| ≤ n − 3.
Then, let (x, y) be any fault-free edge inQ0

n−1

such that either{x(n), ȳ} or {x̄, y(n)} is fault-
free in Q1

n−1. (If no such an edge exists, then
|FFv| + |FFe| ≥ [2n−1/2] = 2n−2 > 2n − 7 for
n ≥ 8 is even, which contradicts to the assumption
that |FFv| + |FFe| ≤ 2n − 7.) Without loss of
generality, we may assume that{x(n), ȳ} in Q1

n−1

is fault-free. Then, we consider the cycle of every
odd lengthl with n + 1 ≤ l ≤ 2n − 2|FFv| − 1 in
the following subcases.

Case 2.1.l = n + 1. In Q1
n−1, since |F 1

v | +
|F 1

e | ≤ n − 4 and dH(x(n), ȳ) = n − 2,
by Lemma 1, there exists a fault-free
path P [x(n), ȳ] of length n − 2. Then,
〈x, x(n), P [x(n), ȳ], ȳ, y, x〉 forms a cycle
of odd lengthl = n + 1 in FQn−FFv −
FFe.

Case 2.2.l = n + 3. In Q1
n−1, since |F 1

v | +
|F 1

e | ≤ n − 4 and dH(x(n), ȳ) = n − 2,
by Lemma 2, there exists a fault-free path
P [x(n), ȳ] of lengthn− 2 + 2 = n. Then,
〈x, x(n), P [x(n), ȳ], ȳ, y, x〉 forms a cycle
of odd lengthl = n + 3 in FQn−FFv −
FFe. (see Fig. 1(a))

Case 2.3. n + 5 ≤ l ≤ 2n − 2|FFv| − 1.
Since|F 0

v |+ |F 0
e | ≤ 2n−9, |FQ0

n−1
(e)| ≤

n− 3, andQ0
n−1 is 3-conditionally faulty,

by Lemma 6,(x, y) can lies on a fault-
free cycleC0 of every even length from
4 to 2n−1 − 2|F 0

v | in Q0
n−1. Then, C0

can be denoted as〈x, y, P [y, x], x〉. Fur-
thermore, since|F 1

v | + |F 1
e | ≤ n − 4

and dH(x(n), ȳ) = n − 2, by Lemma 2,
there exists a fault-free pathP [x(n), ȳ] of
every even length fromn − 2 + 2 = n
to 2n−1 − 2|F 1

v | − 2 in Q1
n−1. Therefore,

〈x, x(n), P [x(n), ȳ], ȳ, y, P [y, x], x〉 forms
a cycle of every odd lengthl with 4 −
1+2+n ≤ l ≤ (2n−1− 2|F 0

v |)− 1+2+
(2n−1−2|F 1

v |−2) which impliesn+5 ≤
l ≤ 2n−2|FFv|−1 in FQn−FFv−FFe.
(see Fig. 1(b))

By integrating the above cases, the proof is completed.

By Lemmas9 and 10, the following theorem is obtained.
Theorem 1:Let FFQn

(e) denote the faulty vertex and/or

faulty edge set which is incident to the end-vertices of any
edgee ∈ E(FQn). Suppose thatFQn is 4-conditionally
faulty and |FFv| + |FFe| ≤ 2n − 7. Then, forn ≥ 4 and
|FFQn(e)| ≤ n − 2, FQn − FFv − FFe contains a fault-
free cycle of every even length from4 to 2n − 2|FFv|; and
furthermore, forn = 4 andn ≥ 8 is even, and|FFQn(e)| ≤
n − 3, FQn − FFv − FFe also contains a fault-free cycle
of every odd length fromn + 1 to 2n − 2|FFv| − 1.

IV. CONCLUSION

Fault tolerance is one of the important research topics in
the field of multi-process computer systems. Many studies
focus on vertex-fault-tolerant or edge-fault-tolerant prop-
erties for certain specific networks. In this thesis, the4-
conditionally faulty folded hypercube with|FFv|+ |FFe| ≤
2n− 7 is considered. Then,FQn − FFv − FFe contains a
fault-free cycle of every even length from4 to 2n − 2|FFv|
for n ≥ 4 and |FFQn(e)| ≤ n− 2; andFQn − FFv − FFe

contains a fault-free cycle of every odd length fromn + 1
to 2n − 2|FFv| − 1 for n = 4 and n ≥ 8 is even, and
|FFQn(e)| ≤ n − 3 are shown. Finally, this study has been
submitted to HAL an open archive for the sustainability
(https://hal.archives-ouvertes.fr/hal-01579266v2).

APPENDIX

Proof of Lemma 7

Proof: Since Qn is 3-conditionally faulty, bothQ0
n−1

and Q1
n−1 are 2-conditionally faulty. First, we consider the

case that|Fv| ≤ 2n− 8. Let x andy be two faulty vertices,
and let j ∈ {1, 2, . . . , n} such that[x]j 6= [y]j . Then we
can partitionQn along dimensionj into two (n− 1)-cubes
Qj:0

n and Qj:1
n such that|F 0

v | = |Fv(Qj:0
n )| ≤ 2n − 9 and

|F 1
v | = |Fv(Qj:1

n )| ≤ 2n− 9.
Next we consider the remaining case that|Fv| = 2n− 7.

For n ≥ 7, we will show that we can partitionQn along
some dimensionj into two (n − 1)-cubesQj:0

n and Qj:1
n

such that|Fv(Qj:0
n )| ≤ 2n − 9 and |Fv(Qj:1

n )| ≤ 2n − 9.
For 1 ≤ k ≤ n, we defineqk = 1 if [u]k = [w]k for any
two faulty verticesu,w ∈ Fv(Qn), andqk = 0 if otherwise.
Let q =

∑n
k=1 qk. Clearly, all faulty vertices are located in

eitherQk:0
n or Qk:1

n if qk = 1. For convenience, let{1 ≤ k ≤
n| qk = 0} = {i1, . . . , in−q}. Then both|Fv(Qj:0

n )| ≥ 1 and
|Fv(Qj:1

n )| ≥ 1 for eachj ∈ {i1, . . . , in−q}.
Suppose, by contradiction, that either|Fv(Qj:0

n )| = 1
or |Fv(Qj:1

n )| = 1 for every j ∈ {i1, . . . , in−q}. For
u ∈ Fv(Qn), let A(u) = {1 ≤ k ≤ n| Fv(Qk:0

n ) = {u}
or Fv(Qk:1

n ) = {u}}. SinceQn is vertex-transitive, we may
assume thate = 0n is a faulty vertex such that|A(e)|
achieves the maximum of the set{A(u)| u ∈ Fv(Qn)}.
For convenience, letp = |A(e)|. Obviously, we have
1 ≤ p ≤ n − q. Moreover, letA(e) = {i1, . . . , ip}. For
u ∈ Fv(Qn) − {e}, we see that[u]k = 1 for eachk ∈
{i1, . . . , ip}. Further, letB(k) = {u ∈ Fv(Qn)−{e}| [u]k 6=
[e]k} for k ∈ {ip+1, . . . , in−q}. Since we assumed, by
contradiction, that either|Fv(Qj:0

n )| = 1 or |Fv(Qj:1
n )| = 1

for each j ∈ {i1, . . . , in−q}, we have |B(j)| = 1 for
each j ∈ {ip+1, . . . , in−q}. Since Qn is edge-transitive,
without loss of generality we can assume that{i1, . . . , ip} =
{1, . . . , p} and{ip+1, . . . , in−q} = {p+1, . . . , n− q}. Then

we have
[
(Fv(Qn)− {e})−⋃

k∈{ip+1,...,in−q}B(k)
]

⊆
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{0n−p1p}. Accordingly, we obtain that1 = |{0n−p1p}| ≥∣∣∣(Fv(Qn)− {e})−⋃
k∈{ip+1,...,in−q}B(k)

∣∣∣ ≥ |Fv(Qn)| −
|{e}|−∑

k∈{ip+1,...,in−q} |B(k)| = (2n−7)−1−(n−q−p)
which impliesp + q ≤ 9− n. Recall thatn ≥ 7, p ≥ 1 and
q ≥ 0. We thus haven = 7 or 8. Now we can identify all
faulty vertices according to the values ofp, q, andn.

Case 1:(n, p, q) = (7, 1, 0).
We have |Fv(Q8)| = 2 · 7 − 7 = 7, [u]1 = 1
for eachu ∈ Fv(Q7) − {e} and |B(j)| = 1 for
eachj ∈ {2, 3, 4, 5, 6, 7}. Thus we haveF (Q7) =
{0000000, 0000011, 0000101, 0001001, 0010001,
0100001, 1000001}. Clearly, vertex0000001 has
seven faulty neighbors.

Case 2:(n, p, q) = (7, 1, 1).
We have [u]1 = 1 for eachu ∈ Fv(Q7) − {e}
and |B(j)| = 1 for eachj ∈ {2, 3, 4, 5, 6}. Thus
we haveF (Q7) = {0000000, 0000011, 0000101,
0001001, 0010001, 0100001, 0000001}. Then ver-
tex 0000001 has six faulty neighbors.

Case 3:(n, p, q) = (7, 2, 0).
We have[u]1 = [u]2 = 1 for eachu ∈ Fv(Q7) −
{e} and |B(j)| = 1 for each j ∈ {3, 4, 5, 6, 7}.
Thus we haveFv(Q7) = {0000000, 0000111,
0001011, 0010011, 0100011, 1000011, 0000011}.
Then vertex0000011 has five faulty neighbors.

Case 4:(n, p, q) = (8, 1, 0).
We have |Fv(Q8)| = 2 · 8 − 7 = 9, [u]1 = 1
for each u ∈ Fv(Q8) − {e} and |B(j)| = 1
for each j ∈ {2, 3, 4, 5, 6, 7, 8}. Thus we have
Fv(Q8) = {00000000, 00000011, 00000101,
00001001, 00010001, 00100001, 01000001,
10000001, 00000001}. Then vertex00000001 has
eight faulty neighbors.

In short, vertex0n−p1p has at leastn−2 faulty neighbors.
This contradicts the requirement that every vertex has at
least three faulty neighbors. Hence we can partitionQn

along some dimensionj into two (n − 1)-cubesQj:0
n and

Qj:1
n such that bothQj:0

n and Qj:1
n are conditional faulty,

|F (Qj:0
n )| ≤ 2n− 9 and |F (Qj:1

n )| ≤ 2n− 9.
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