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Statistics of Flow through a Multichannel Supply
System with Random Channel Capacitances

Zbigniew Domariski

Abstract—We consider a hypothetical flow of media trans-
ported by a system of N channels characterized by quenched
random capacitances drawn independently from a given distri-
bution. A question we address is how individual capacitances
influence a resulting flow through the whole system. Under
increasing flux of transported media channels successively clog
and the system approaches its limit of functionality. This limit-
ing state is characterized by the critical flux ®. and the smallest
number n. < N of non-clogged channels. We assume that after
each clog an amount of flux carried by the clogged channel
is undertaken by neighbouring channels if they are accessible
or else by the whole system. Using computer simulations we
study distributions of ®. and n.. We show that for capacitances
distributed uniformly or according to the Weibull distribution
®. and n. are skew-normally distributed. For varying shape
parameter p of the Weibull distribution expectations (1—®./N)
and (1—7,./N) scale as ~ p~? -exp(—v-p), where 3, depend
on N and are different for both quantities.

Index Terms—clogging, failure, multicomponent system, sup-
ply network, statistics, transfer rule.

I. INTRODUCTION

ONSIDER a supply network composed of a large num-

ber of functionally identical channels which preform
a common task consisting on transmission of a specified
medium. Such supply organisation is present in air filters,
lubrication systems and piping networks to name a few.
When the system operates some of its channels may become
clogged reducing the system’s efficiency. A question is how
the system is resistant to subsequent clogs which appear
among its channels. This question is important because
clogs may accumulate in a way triggering blockade of the
whole system [1], [2]. Once the set of channels is under
an increasing flux it starts to clog when the internal flux
exceeds the smallest-capacitance value. Then, the congestion
develops, involves other over-saturated channels and mi-
grates through the system as an avalanche of simultaneously
clogged components.

To analyse avalanches of clogs we use so-called load
transfer models. Specifically, we employ the Fibre Bundle
Model (FBM) that offers an efficient framework to study
evolving failures in technological processes and in Nature
(31, [4], [5]. [6], [7].

Our system is a set of channels located at nodes of a
lattice presented in Fig. 1. Channels differ in fluxes they can
transport. For example, when a high-flow air filter operates
its channels capture contaminants and thus capacitances
gradually decrease. Due to different sources of imperfections,
capacitances are non-uniform and in simulations they are
modelled by quenched random variables {c;}. We consider
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Fig. 1. Schematic view of a multichannel system with disks representing
channels (a). White and black disks refer to open and clog channels,
respectively. Shaded disk represents just clogged channel whereas arrows
indicate transfer of blocked flux to (b) neighbouring channels if they are
opened or (c) to all other channels if the neighbourhood is inaccessible.

two probability distributions of {c¢;}: an uniform and the
Weibull. Especially, the latter one is widely employed in
analysis of failures in engineering systems [6], [8], [9], [10],
[11], [12], [13], [14], [15], [16].

In our simulations, a set of N channels is subjected to
a quasi-statically growing flux (®) of transported medium.
Under the growing flux channels begin to congest and
then clog. When a channel clogs, its flux is transferred to
the other transporting channels which in turn increases the
probability of subsequent clogs. A possible sequence of clogs
among channels decreases the system performance and may
eventually trigger a catastrophic avalanche of clogs. Such an
avalanche develops when ® reaches a specific, we call it
critical, level ®.. This avalanche involves all still working
channels and the whole system becomes blocked.

In this work, the set of channels is represented by a
collection of nodes of a graph, see Fig. 1, and then analysed
under a FBM framework. We assume there is no flow through
clogged channels and thus we limit our study to the case
where each channel can be in one of two states: conducted
or clogged.

II. SIMULATION FRAMEWORK

The rule of flux transfer is a fundamental factor of the
model. Among many different rules there are two extreme
ones: global flux sharing (GLS) and local flux sharing (LLS)
[17], [18], [19], [20].

We transfer a flux from a clogged channel according
to a rule symbolized by arrows in Fig. 1(b)-(c). To be
concrete consider one of channels, say i-th channel and
assume the local flux ¢; < ¢;. When @ increases enough
to exceed ¢; > ¢; locally then the i-th channel become over-
saturated and stops working. At this circumstance ¢; has to
be undertaken by other channels. At first attempt we share
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¢; equally among nearest-neighbouring channels if they are
accessible. If no such neighbouring channels in the system
the flux is uniformly distributed through entire set of under-
saturated channels. The first attempt corresponds to the LLS
transfer whereas the latter one is in the spirit of the GLS rule.
Effectively such a flux-transfer process represents a mixed
LLS-GLS transfer rule.

Because of mixed-range-flux transfer, internal fluxes are
distributed non-uniformly and clusters of channels with flux
accumulation appear across the whole system. Growing
internal flux in the transporting channels induces other clogs,
after which each surviving channel sustains increasing flux.
If the flux transfer does not trigger further clogs, a stable
fluxes’ configuration emerges. This means that the given ®
is not high enough to block the entire system, and the applied
flux of transported medium has to increase.

In the simulations we apply a quasi-static procedure: if the
system is in a stable state the applied flux @ increases by
an amount sufficient to clog the channel with the smallest
(¢; — ¢i). A sequence of increases in the value of external
flux gives @, i.e. P, corresponds to a marginally stable state
of the system, whereas ®. + §® induces an avalanche of
clogs among all remaining channels. Application of quasi-
static procedure allows us to identify a flux ® necessary
for clogging of all the channels and thus to get ¢, and
n. that characterize the set of channels on the edge of its
functionality.

To determine the initial state of the supply-system we
assign capacitances of channels randomly. In our simulation
capacitances {c¢;} are uniformly random or are assigned ac-
cording to the Weibull distribution [6], [8]. The correspond-
ing probability density function of the former distribution is
given by

Po(e) = (p/N)(e/2)~  exp[—(c/A)"] (D

The distribution (1) involves two parameters: A > 0 is the
scale parameter and the shape parameter (p > 0) controls
the amount of disorder in the system. The scale parameter
my be used to tune distributed capacitances in order to relate
them to capacitances governed by another distribution. Since
in this work such another distribution is the uniform one we
assume A = 1 and thus the corresponding probability density
reads

pp(c) = pe? = exp(—cP) )

The main question is how quenched random capacitances,
governed by (2) or capacitances distributed uniformly over
[¢mins Cmaz), determine the resulting critical flux ®. and
limiting number of working channels n.. Based on results
of simulations, we have found that coefficient of skewness
of distribution of ®./n. decreases with growing number
of channels and becomes negative when N > 900. We
have also observed that data are correctly fitted by a three-
parameter skew-normal distribution [21], [22], [23] defined
by the density function

erfc [ —aZ=E N2
VYsn(z) = <27Tf0>exp [— (x\/i:) ] 3)

where 1, o and « are respectively: location, scale and shape
parameters.

III. CRITICAL FLUX AND MINIMAL NUMBER OF
CHANNELS

Applying the mixed LLS-GLS rule depicted in Fig. (1),
we simulated supply processes in systems with number
of channels 400 < N < 14400 employing uniform and
Weibull distributions to quench channel’s capacitances {c;}.
In the latter case we modelled non-uniformity of {c;} by
changing values of the Weibull shape parameter in the range
2 < p < 9. To achieve reliable estimates of ®. and n. each
simulation was repeated 10* times. We have collected large
data sets containing detailed information about applied flux
(®) and numbers of non-clogged channels (n). These ®’s
and n’s data sets have enabled us to determine appropriate
statistics by merging ®. with corresponding number of
transmitting channels n.. Some empirical estimators as e.g.
the mean values, the standard deviations or the skewness
have been taken into account as well.

The simulation framework presented in Section II enabled
us to collect data sets of critical fluxes ®. with corresponding
minimal numbers of non-blocked channels n,. for various
system sizes and distributions of capacitances. Then, based
on these sets we have analysed resulting empirical probability
density functions.

A. Uniformly distributed capacitances

In Fig. (2) we show exemplary distributions of critical
flux @, scaled by corresponding numbers of channels N,
for systems with uniform random capacitances. It turns out
that ®./N are skew-normally distributed (3) with parameters
related to N through power-law functions

uwN‘s“,JwN&”,awNaa (@)

The exponents §, ~ —0.085,0, ~ —0.236 are computed
using best-fit lines presented in Fig. (3). Albeit not displayed
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Fig. 2.  Probability density of scaled critical flux ®./N for systems
with growing number of channels: N = 3600 (rhombus), 6400 (circles),
10000 (triangles) and 14400 (black triangles). Capacitances are distributed
uniformly over [0, 1]. The solid lines represent skew normally distributed
®./N with the parameters computed from the simulations. The results are
obtained from 10% samples for each value of N
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Fig. 3. Parameters i and o (inset) of skew-normally fitted empirical

distributions of ®./N, Eq. (3) for number of channels N ranging from
1600 to 14400. Capacitances are distributed uniformly over [0, 1]. Slopes
of best-fit lines represent values of 6, and d, in Eq. (4)

in a figure, the exponent J, is also computed using best-fit
line on our scatter plot log(«) vs log(N). We estimated its
value as 6, ~ —0.7.

Relations (4) enable us to estimate mean P, /N. Using (3)
the mean value reads

2000

O, /N = p+ ———,
/ K V1 + a?

&)
and thus, for N > 1
D, ~ N1tou . (1+ §N60+6u76u) ~ NO-915 6)

The scaling (6) holds because of the mixed LLS-GLS
rule. When the GLS is applied ®. ~ N, whereas the
LLS rule introduces a logarithmic correction to ®., namely
@, ~ N/log(N)04 [24].

We have mentioned in Sec. (II) that the quasi-statically
growing flux systematically reduces number of non-clogged
channels and the system approaches critical state at which
the maximal flux (®.) is carried by the reduced number of
channels (n.). This critical state is marginally stable and
n. is minimal due to the fact that any subsequent clog
induces an avalanche of clogs involving the whole system.
This means that ®./n. is directly related to an average
density of flux. In Fig. (5) we display empirical distributions
of ®./n. for systems with N; = 3600 and Ny = 10000
channels. It is clearly seen that bigger N corresponds to
smaller value of ®./n.. Qualitatively, this behaviour of
. /n. my be deduced from Figs. (2) and (4) which show that
®./N decreases with growing N whereas n./N increases.
Obviously a quantitative analyse requires data displayed in
Fig. (5).

B. Weibull distribution of capacitances

The Weibull probability distribution is of a particular
interest in reliability engineering, especially when systems

involve so-called “weakest link.” We apply this distribution
because channels with the smallest capacitances initiate
congestions and ultimate failure of the system.

For all values of IV and p explored in our simulations
the null hypothesis that the corresponding data is distributed
according to (3) with parameters computed from the data is
not rejected based on the Cramér-von Mises goodness of fit
test [25].

Let us assume that the system operates under a near-
maximal flux and consider two quantities of primary interest:
(i) mean number of non-clogged channels 7i./N and (ii)
expected critical flux ®./N. It is worth mentioning that for
p > 1 both these quantities ®. ~ N and 7, ~ N. These
limiting relations result from (2) because for large values of p
the Weibull distribution localises capacitances {c;} strongly
around the mean value ¢ and thus

c=I1+1/p)—=1 as p—ox (7

The above limit indicates that almost all capacitances c; are
in a close vicinity of 1 and the only avalanche of clogs is
the critical one. Thus, since the system fails in one step then
®./N ~ min(¢;) ~ 1.

Based on numerical data we fitted ®./N and 7./N to the
following symbolic non-linear models

an
PPN - exp(yn - p)

/N =1- €]
an
PN - exp(dy - p)
where the parameters ay,...,dy are slowly decreasing
functions of N. As an example, numerical values of
Q36005 - - - » d3600 and corresponding errors are presented in
Table I. We would like to underline that (8) and (9) reflect
not only the Weibull distribution of capacitances but also the
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Fig. 4. Distributions of scaled minimal number of channels n./N for

systems with NV = 3600 (white disks) and N = 10000 (black disks)
channels. Capacitances are distributed uniformly over [0, 1]. The solid lines
represent skew normally distributed n./N with the parameters computed
from the simulations. The results are obtained from 10* samples for each
value of N
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Fig. 5. Empirical probability density of ®./n. for systems with number
of channels N = 3600 (white triangles) and 10000 (black triangles).
Capacitances are distributed uniformly over [0, 1]. The solid lines are drawn
using (3) with parameters estimated from the simulations. Sample size is
10* for each value of N

TABLE I
PARAMETERS OF 7o /N (8) AND ®./N (9) FOR SYSTEMS WITH
N = 3600 CHANNELS

Parameter Estimate | Standard Error | Confidence Interval
Qas3600 0.57059 0.00199 (0.56622, 0.57496)
B3600 1.43106 0.01465 (1.39881, 1.46331)
Y3600 0.11403 0.00433 (0.10450, 0.12356)
as600 0.79308 0.00340 (0.78559, 0.80057)
b3600 0.15056 0.00918 (0.13035, 0.17077)
d3600 0.03467 0.00208 (0.03010, 0.03924)

mixed LLS-GLS rule applied to transfer fluxes originated
from clogged channels. If the same Weibull distribution is
applied but with the LLS rule then the best-fitting (9) changes
to

an

ne/N =1—- —
p7/4

(10)
as was observed in other over-loaded systems [24].

Presented in Fig. (7 ) distributions of ®./n, for variable
N and constant p show that ®./n. decreases with growing
system size N. This is the same tendency, discussed already
by the end of Sec. (III-A) and seen in Fig. (5).

A complementary analyse concerns a question how ®./n.
is affected by the strength of disorder imposed by the Weibull
distribution alone. We consider systems with variable p and
N = const. The Fig. (7) involves empirical distributions of
®./n. collected for 2 < p < 8. It is clearly seen that these
distributions are ordered, i.e.

p1 < p2= Bo/nc(pr) < Pe/nelp2) (11)

We would underline that (11) can not be directly deduced
from (8) and (9) because both ®./N and n./N grow with
growing p. A detailed information about ®./n. can be
gained only by collating, sample by sample, the critical flux
with the corresponding number of non-clogged channels.
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Fig. 6. Mean empirical /N (white disks) and ®./N (black disks) for
N = 3600 channels with capacitances distributed according to (2). The
solid lines are drawn using (8) and (9) for the main plot and the inset,
respectively. Estimated parameters are presented in Tab. I
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Fig. 7. Empirical distributions of ®./n. for systems with number of
channels N = 2500 (white triangles), 3600 (disks), 4900 (rhombus) and
6400 (black triangles). Capacitances are assigned according to the Weibull
pdf (2) with p = 2. The solid lines follow (3) with parameters estimated
from the simulations.

C. Uniform versus Weibull distributions of capacitances

In this Subsection we contrast ®. and n. related to systems
with capacitances distributed according to the Weibull distri-
bution to these ones characterising systems with uniformly
random capacitances of channels. We chose the support of
uniform distribution as [0, 2u] so that both the distributions
share the same mean value p = I'(1 + 1/p). Specifically,
we apply p = 2 in order to generate the greatest amount of
disorder in the system. In Fig. (9) we show distributions of
®./n. obtained for N = 3600. The mean ®./n, for systems
with uniformly random capacitances is ~ 20% higher than
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Fig. 8. Empirical distributions of ®./n. for systems with 3600 channels.
Capacitances are distributed using (2) with p = 2 (triangles), 4 (disks),
6 (thombus) and 8 (squares). The solid lines are plotted with (3) and
parameters computed from the simulations.
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Fig. 9. Empirical probability density functions of ®./n. for systems with
3600 channels. Capacitances {c;} are distributed uniformly over [0, 2u]
(open rhombus), and according to the Weibull distribution with p = 2
(triangles). Both distributions of {c¢;} have equal mean p = I"(3/2). The
results are obtained from 10* samples for each distribution.

that for the Weibull distribution. This difference indicates
that systems with uniformly distributed capacitances operate
under higher local fluxes and smaller number of non-blocked
channels than systems whose c; are governed by the corre-
sponding Weibull distribution.

IV. FINAL REMARKS

We have examined statistics of flows in a multi-channel
supply system subjected to a quasi-statically increasing flux
of transported media. We have characterised channels by
quench random capacitances distributed uniformly or accord-
ing to the Weibull probability distribution and introduced the

mixed LLS-GLS rule to transfer fluxes from clogged chan-
nels to non-clogged ones. Based on results of simulations we
have shown that the experimental distributions of the critical
flux ®., minimal number of non-blocked channels n. as well
as the local-flux intensity ®./n. follow the skew-normal
distribution for both considered distributions of capacitances.
By fitting discrete distributions we have found that:

(i) for uniformly random capacitances expected maximal
flux transported by the system depends mainly on the
rule of flux transfer, i.e. ®. ~ N~%915 for the mixed
LLS-GLS rule examined in this work, ®. ~ N for the
GLS rule and ®. ~ N/(log N)°*! when the LLS rule
is applied

(i1) for capacitances governed by the Weibull distribution
with the shape parameter p the mixed LLS-GLS rule
yields the scaling (1 —7i./N) ~ p~%¥ - exp(—dy - p)
whereas under the LLS rule (1 — 7i./N) ~ p~7/4

(iii)) minimal numbers of non-clogged channels n. are skew-
normally distributed when the mixed LLS-GLS rule is
used in contrast to normally distributed n, when the
LLS rule is applied.

We are aware that our choice of flux transfer rule is arbitrary.
The mixed LLS-GLS rule introduced in this work represents
a reasonable alternative to other rules, however. This rule
attempts to distribute locally accumulated over-flux among
accessible neighbouring channels. The entire system is en-
gaged only when such a neighbourhood does no longer exist.
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