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Abstract—We describe the critical set (points of vanishing
gradient) of solutions to certain semilinear elliptic boundary
value problem in a solid of revolution in 3D Euclidean space.
For a torus like regions we show that the critical set is made
up of exactly one circle obtained by rotating a point around
the axis of rotation.

Index Terms—Critical points, elliptic problems, Dirichlet
problem, solid of revolutions

I. INTRODUCTION

IN this paper we investigate the critical set of a solution
to the semilinear Dirichlet problem

−∆u = f(u) in Ω,
u = 0 on ∂Ω,

(1)

where the domain Ω ⊂ R3 is a solid of revolution. We
determine the nature of the critical set of the solution u
to problem (1) in the case that Ω is generated by rotating
a smooth planar region D around an axis non intersecting
D. Further, we establish general conditions on the nonlinear
term f so that the critical set of u is made up of finitely
many circles in 3D space. By imposing additional symmetry
conditions on the region D we are able to show that the
critical set is made up of exactly one circle.

Semilinear elliptic equations are key building blocks of
several important models in science and engineering, and
as a consequence, there is a considerable amount of math-
ematical research on the subject dating back well before
Pierre Laplace. Some of the topics of elliptic equations are
relatively well understood. For instance, there is a established
theory accounting for the existence, uniqueness and regu-
larity of the solution to fully nonlinear elliptic equations in
which problem (1) is a merely a particular case. For example,
if f is non increasing analytic and satisfies f(0) > 0,
then there exits a unique solution to problem (1) (see [12,
Theorem 6.13]). On the other side, geometrical properties
of the solution to elliptic equations are less investigated.
Despite of more than two hundred years of research, there
does not exist as today a reasonable complete description of
the critical set of the solutions u to (1), not even for its linear
version, namely the torsion problem. The critical set of an
elliptic equation may be relevant for applications since these
equations model a variety of physical phenomena, say for
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instance the model for a steady viscous flow in a horizontal
pipe. Moreover, several open questions, as to determine the
Gaussian curvature of the level set of solution to semi linear
elliptic equations, are deeply related to the structure of the
critical set. We refer the reader to [18] and the references
cited there.

It is not easy to trace and pinpoint the main sources of
the research of the critical set of elliptic equations and we
do not attempt to review this vast subject. We mention the
the seminal work of Makar–Limanov [15] addressing the
uniqueness of the critical point of the torsion problem in
a planar convex region. Makar–Limanov’s result was latter
generalized for semilinear equations by paper Cabré and
Chanilllo [9]. See also [11] and [13].

A closer look at the literature reveals a gap when the
convexity assumption is removed or when the elliptic prob-
lem is considered in R3. For arbitrary solids of revolution,
we are not aware of examples with explicit solutions that
could provide clues for the critical set of u. To the author’s
knowledge, there are very few results concerning the nature a
of the critical set of a solution to semilinear elliptic equations
in 3d Euclidean space. Indeed, most of the results in the
current literature are restricted to planar domains. See for
example [3], [4], [5]. In 3D space we only are aware of a
result that guarantee the existence of a unique critical point
in a convex solid of revolution (see [9, Theorem 2]).

II. CRITICAL SET IN 3D SPACE

Since Ω is a solid of revolution, the solution u to problem
(1) does not depend on the angular component of the
cylindrical coordinates describing Ω. Let us denote by r the
radial coordinate and by z the axis of rotation of Ω. It will
be convenient to write

L[v] = −
(
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

)
,

so that if u solves (1), then v(r, z) = u(x, y, z), with x2 +
y2 = r2, satisfies

L[v] = f(v) in D,
v = 0 on ∂D,

(2)

Notice that r > 0 for all (r, z) ∈ D. The following result
issues the general structure of the critical set of problem (1).

Theorem II.1. Let D be a planar smooth region and denote
by Ω the solid of revolution obtained by rotating D around
an axis non intersecting D. If f is a non increasing real
analytic function such that f(0) > 0, then the critical set
of the solution u to problem (1) is made up of finitely many
circles in Ω obtained by revolving finitely many points of D
around the axis of rotation.
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Proof: It is seen that critical circles of the solution u in
the 3D problem (1) correspond to critical points of solutions
v of the planar problem (2). As a consequence, the theorem
follows if we manage to prove that the solution v possesses
finitely many critical points in D.

First we claim that L[v] > 0 in D. If f > 0, then L[v] > 0,
and the claim follows immediately. Now, let xm ∈ D be a
point where v reaches its maximum value vm = v(xm).
Since L is elliptical, it follows that L[v](xm) ≥ 0. If
0 = L[v](xm) then f(v(xm)) = 0 so the constant function
defined in D, w(x) = v(xm) satisfies L[v] = f(v) in D.
Then, by the tangency principle (see [17],Thm. 2.1.3), we
have that v = w, that is v is constant, which is a contradic-
tion. Whereby 0 < L[v](xm). As f is non increasing, we
get 0 < f(w) ≤ f(v) = L[v] then 0 < L[v]. Compare
[4, Lemma 2.2] and [6, Lemma 1]. As a result of the claim
it follows by the Maximum Principle that v is positive in D.

Since L[v] > 0, v is semi-Morse function in the sense
that its Hessian matrix is non vanishing (see [7]). Moreover,
by the Hopf’s boundary point Lemma we see that v has
no critical points at the border ∂D. By a result of Arango
y Perdomo [7], the critical set of v is made up of finitely
many isolated critical points and finitely many critical Jordan
curves in D. Now, if β is a critical curve in D of a solution
v of (2), it is easy to see that β must be a curve of maxima
enclosing a sub domain Dβ ⊂ D. As a consequence, v
must have a minimum inside Dβ ; and this contradicts the
Maximum principle since L[v] > 0 in Dβ . As any Jordan
critical is ruled out, then the critical set of v is made up of
finitely many isolated points

III. BIFURCATION OF NODAL LINES

Theorem II.1 is the best result we can obtain for a general
solid of revolution in 3D space. To obtain a finer description
of the critical set of the solution u to (1), we have to impose
additional conditions on D and to investigate the critical
set of the solution v to the planar boundary value problem
(2). Now, a technique to study the critical set of a real vale
function consists in describing the nodal set of its directional
derivatives. It happens that the directional derivatives of v
satisfy a relatively simple linear elliptic equations. Moreover,
a classical result due to L. Bers ([8, Theorem I]) precisely
describes the nodal set of the directional derivatives of v.

Theorem III.1. Let M a linear elliptic operator given by

M [w] =
∑
i+j=2

aij(x)
∂2w

∂xi∂xj
+

2∑
i=1

bi(x)
∂w

∂xi
+ c(x)w,

where the coefficients aij and bi and c are smooth. Assume
that v solves M [w] = 0 in a neighborhood of the origin and
denote by

M0[w] =
∑
i+j=2

aij(0)
∂2w

∂xi∂xj

the osculating operator (with constant coefficients). If
w(x) = O(|x|N ), with 1 ≤ N < ∞, then there exists a
homogeneous polynomial of degree N, pN (x) 6≡ 0 such that
M0[pN ] = 0 and

w(x) ∼ pN (x),
∂w

∂xi
(x) ∼ ∂pN

∂xi
(x),

∂2w

∂xi∂xj
(x) ∼ ∂2pN

∂xi∂xj
(x),

where the error terms are O(|x|N+1−δ), O(|x|N−δ), and
O(|x|N−1−δ) respectively and 0 < δ arbitrary small.

Let us assume that the planar border ∂D is analytic. Then
v as well as its directional derivatives can be analytically ex-
tended to D (see [16]). We write vθ to denote the directional
derivative of v in the θ direction. The nodal set of vθ has an
important role in this investigation, therefore we highlight its
definition:

Nθ =
{
x ∈ D : vθ(x) = 0

}
. (3)

Notice that the critical set K of a solution u to problem in
D can be described as K = Nθ∩Nφ, where θ and φ are two
non collinear directions. Moreover, a boundary point q ∈ ∂D
belongs to Nθ if and only if a unitary tangent vector of ∂D at
q is parallel to θ. Now, the key observation is the following:
if the curvature of ∂D never vanishes, then Nθ has exactly
two points in ∂D. If we could ruled out Jordan curves in
Nθ, then Nθ is an analytic curve connecting two boundary
points.

Figure 1 pictures several nodal lines Nθ of the solution
v to problem 2 where f ≡ 5 and D is a disk of radius
1 centered at 3/2. Notice that the nodal lines meet at the
unique critical point of v (see Lemma III.2 and Example
1). The corresponding θ values of each line are easy to spot
since the nodal lines meet ∂D at a point with a tangent vector
parallel to θ.

Lemma III.1. Assume that f satisfies the hypothesis of
Theorem II.1 and that D is a planar convex region with
analytic border ∂D such that the curvature of ∂D never
vanishes, and let v be a solution to (2). If θ = (1, 0)
or θ = (0, 1), then the nodal set Nθ corresponding to v
possesses no Jordan curves and vθ has no critical points on
Nθ.

Proof: A straightforward calculation shows that for θ =
(θ1, θ2), vθ satisfies

L[vθ]− f ′(v)vθ +
θ1
r2

∂v

∂r
= 0. (4)

Set θ = (1, 0) and write

M [w] = L[w] +

(
1

r2
− f ′(v)

)
w.

For θ = (1, 0) equation (4) reads M [vθ] = 0. Let q be
a N − th order zero of vθ. By Theorem III.1 there exists
an homogeneous polynomial PN of degree N such that for
l = 0, 1, 2 and j + k = l

∂lvθ(x)

∂xj1∂x
k
2

=
∂lpN (x− q)
∂xj1∂x

k
2

+O(|x− q|N−l+1),

x = (x1, x2),

(5)

where pN satisfies M0[pN ] = ∆pN = 0, so that pN is a
harmonic polynomial with a N − th order zero at the origin.
As a consequence, the nodal lines of vθ are homeomorph to
the nodal lines of pN near the origin. Therefore the set Nθ
is locally made up of N rays crossing at q (see [10]). The
above implies that for the mentioned directions the critical
points of vθ on the nodal line Nθ are isolated. Certainly
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at regular points of vθ, the nodal set Nθ is an analytics
curve. Further, since vθ is approximated by a homogeneous
harmonic polynomial, then at each critical point of uθ, the
nodal set Nθ is a system of at least two curves meeting at
the critical point.

Set θ = (1, 0) and assume that p is a critical point of vθ on
Nθ, so that Nθ bifurcates in p systems of at least two curves
crossing at p. Since ∂D contains exactly two points having a
unitary tangents parallel to θ, then one of the curves meeting
at p must be a Jordan curve enclosing a domain Dθ ⊂ D.
By (4) it follows that vθ, with θ = (1, 0), satisfies

L[vθ] +

(
1

r2
− f ′(v)

)
vθ = 0 in Dθ,

vθ = 0 on ∂Dθ,

By the Maximum Principle [17, Theorem 2.1.1] for uθ,
c(x) = 1

r2 − f ′(v) ≥ 0, as f ′ ≤ 0 , we get vθ ≡ 0 en
Dθ, and by the analyticity of v we can get v ≡ 0, to arrive
at a contradiction. For θ = (0, 1) we proceed in an analog
way. Therefore, for the directions θ = (0, 1) and θ = (1, 0),
the corresponding nodal sets Nθ are smooth curves, each of
one connects exactly two points on ∂D.

Next, we impose a symmetry condition on D to obtain a
more precise description of the critical set of the solutions to
problem (1). Certainly, the symmetries of D are inherit by
the solution v and the nodal set of its directional derivatives.
The proof of the following lemma is straightforward.

Lemma III.2. Assume the hypothesis of Lemma III.1. If D
is region of the rz plane symmetric with respect to z = 0,
then Nθ∗ = (Nθ)

∗ and v(x) = v(x∗) for all x ∈ D, where
∗ stands for the reflection with respect to z = 0.

Lemma III.3. Let D be a planar convex smooth region
such that the curvature of ∂D never vanishes. If D is
symmetric with respect an axis of symmetry and f satisfies
the assumptions of Theorem II.1, then the solution v to (2)
has a unique critical point which is non degenerated.

Proof: Without lost of generality let us suppose that
z = 0 is the axis of symmetry of D. By Lemma III.2, v is
symmetric with respect to z = 0, therefore {z = 0} ∩D ⊂
N(0,1). Next, by Lemma III.1 we have

N(0,1) =
{

(r, 0) : (r, 0) ∈ D
}
. (6)

Notice now that Lemma III.2 guarantees that N(1,0) is
symmetric with respect to z = 0. Further, by Lemma III.1
N(1,0) does not contain any Jordan curve. Since N(1,0) is a
smooth curve connecting exactly two points of ∂D, which
is symmetric with respect to z = 0, then the critical set of
v, which is given by N(1,0) ∩N(0,1), is made up of exactly
one point.

For a direction θ = (θ1, θ2) let us write vθ(x) = ∇v(x) ·θ
and see that

∇vθ(x) = Hv(x) θ,

where Hv(x) stands for the Hessian matrix of the solution v
to (2). Furthermore, if q ∈ Nθ and Hv(q) θ does not vanish,
then Nθ can be locally parametrized by the ODE

z′ = J Hv(z) θ, (7)

where J is the −π2 rotation matrix. Let p the unique
critical point of v and see that p belongs to N(1,0) ∩N(0,1).
By Lemma III.1, Hv(p) θ 6= 0 for θ = (1, 0) and for
θ = (0, 1). Moreover, by (6) and (7), for some λ 6= 0 we
have Hv(p) (0, 1) = λ (0, 1). By contradiction, suppose that
Hv(p) is singular. That is to say that 0 must be an eigenvalue
of Hv(p) with an eigen space generated by (1, 0), and fortiori
Hv(p) (1, 0) = 0 which is a contradiction.

IV. UNIQUENESS AND STABILITY OF THE CRITICAL
CIRCLE

We are in a position to come back to the original problem
(1) to show that the critical set of the solution u to (1) is
made up of a unique circle in the domain Ω. Moreover, this
circle is stable under small perturbations of the generating
domain D.

Theorem IV.1. Suppose the region D satisfies the hypothesis
of Lemma III.3. If Ω is the solid of revolution obtained by
rotating D with respect to an axis which is orthogonal to
the axis of symmetry, then the critical set of the solution u
to (1) is a circle obtained by revolving a unique point of D
around the axis of rotation.

Proof: Denote by z the axis of rotation and by r the axis
of symmetry of the region D. Since to any critical point of
the solution u to problem (2) corresponds a critical Jordan
curve of problem (1), it only remains to prove that problem
(2) has exactly one critical point, but this is precisely the
claim of Lemma III.3.

Concerning Lemma III.3, it is worth noticing that the
critical circle in Theorem IV.1 corresponding to the solution
u to problem (1) is degenerated. Indeed, if w = w(t)
parametrizes the critical circle, then ∇u(w(t)) vanishes for
all t, and as a consequence for al t we have

Hu (w (t)) w′ (t) = 0.

Hence, the Hessian matrix Hu(w) is singular for all w in the
critical set.

Example 1. Let a > 0. The 3D torus Ω = {(x1, x2, x3) ∈
R3 : (a−

√
x21 + x22)2 + x23 = 1} is obtained by rotation of

D =
{

(r, z) : (a− r)2 + z2 < 1
}
.

Certainly, D satisfies the assumptions of Theorem IV.1. As a
consequence, If f satisfies the assumptions of Theorem II.1,
then the solution of problem (1) has a critical set made up of
exactly a critical circle as described in Theorem IV.1. This
critical circle is degenerated.

To study the stability of the critical circle of problem (1)
we consider first a family of diffeomorphisms

T : H × (−ε, ε)→ H,

where ε > 0 and H is a open neighborhood of D and T (·, 0)
is the identity map. Let us write T (D, ε) = Dε and think of
Dε as a small perturbation of D ≡ D0. Furthermore, denote
by v(·; ε) the solution to

L[v] = f(v) in Dε,
v = 0 on ∂Dε.

(8)

Theorem II.1 remains true for Dε instead of D. Moreover,
the solution family v(·, ε) smoothly depend on ε and it make
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sense to study the dependence of the critical set on the
parameter ε. By Lemma III.2, if p is the unique critical point
of v ≡ v(·; 0), then Hv(p) is a nonsingular matrix. As a
consequence, the implicit function theorem guarantees the
existence of a smooth curve z : (−ε0, ε0) → D such that
z(0) = p and

∇v(z(s); s) = 0, s ∈ (−ε0, ε0).

Furthermore, dz/ds is implicitly given by

Hv(·;,s) (z(s), s)
dz

ds
+

∂

∂s
∇v(z(s); s) = 0, s ∈ (−ε0, ε0).

Now, the critical points z(s) of the planar problem (8) are
associated to critical circles of the corresponding domains
Ωs, so that the critical circle to which Theorem IV.1 refers
remains a circle under small perturbations of the generating
2D domain D.

The stability of the the critical circle under small per-
turbations of D is by no means obvious. For the sake of
comparison consider the 2D torsion problem −∆u = 1 with
null Dirichlet condition on a circular concentric 2D annuls.
It is easy to explicitly calculate the solution u (see Example
1 in [4]) and to realize that the critical set of u is a also a
2D circle inside the annuls. It is easily seen (perturbing the
explicit solution u with a small harmonic term with no radial
symmetry) that this critical circle is unstable. It collapse to a
finite number of critical points under almost any imaginable
non radially symmetric harmonic perturbation.

V. NUMERICAL EXPERIMENTS

Explicit solutions u to problem (1) are not known to the
authors. Fortunately, there is an ample choice of numerical
methods to approximate solutions of elliptic PDE’s (see
for instance [14]). The following examples are calculated
with the public domain software FENICS ([1], [2]). With
a modicum of coding, FENICS easily handles the meshes,
FEM spaces and the boundary conditions to obtain a FEM
approximation of the PDE’s of this paper. Since v(r, z) =
u(x, y, z), x2 + y2 = r2, the solution v to the 2D problem
(2) on the planar region D contains all the information to
the solution u.

For starters, let us consider the disk D in Example 1 with
constant right hand f ≡ 5. Figure 1 pictures several unin-
terrupted lines corresponding to the level sets v(r, z) = a,
where the bold thick black curve corresponds to a = 0
and coincides with boundary of D, whereas the shaded
circle–like curves (blue in the online edition) correspond
to a = 0.63, a = 1.0 and a = 1.23. With a second order
interpolation FEM space we are able to calculate the nodal
lines of v. Figure 1 shows also in dotted lines the nodal lines
Nθ of v for θ = (1, 0), (0, 1), (1/

√
2, 1/
√

2). Notice that the
nodal lines cross the region D and meet at the unique critical
point of v (lying to the left of the center of D). Notice also
the symmetry of v with respect to the horizontal line passing
through the (unique) critical point of v.

If the curvature of ∂D changes sign, the solution u to (1)
might have several critical circles as it is suggested by the
FEM approximation of v in a suitable region D. Figure 2
shows ∂D (black bold thick line) and the level sets v(r, z) =
a, for a = 0.6 and a = 1.2 (blue and red line respectively
in the online version). The region D was obtained by union

Figure 1: FEM approximation of the solution to Example 1
on a disk D with f ≡ 5. The level sets of v are drawn in
uninterrupted lines whereas the nodal lines Nθ are pictured in
dotted lines for θ = (1, 0), (0, 1), (1/

√
2, 1/
√
2).

Figure 2: Level sets of the solution v to problem 2, f ≡ 5, on
a region D such that the curvature of ∂D changes sign. Notice
that v possesses 3 critical points

and differences of elementary shapes (disks and rectangles).
The numerical calculations were implemented using f ≡ 5
and the "mshr" library of FENICS.

A Jupyter Notebook (https://jupyter.org/) containing the
Python code to handle the FEM approximation using FEN-
ICS can be downloaded at https://github.com/arangogithub/
Critical-points-toroidal

VI. CONCLUSIONS

This paper discusses the nature of the critical set of a class
of semilinear elliptic equations along with a null Dirichlet
condition on the border of a solid of revolution Ω in 3D
space. We established necessary conditions to guarantee that
the critical set is made up of finitely many circles (Theorem
II.1), and imposing additional symmetry conditions on Ω, we
are able to show that the critical set is made up of exactly one
critical circle (Theorem IV.1). We also address the question
of the stability of the critical set under small perturbations of
the domain. If the domain Ω is obtained by rotating a planar
symmetric region D, we show that the critical circle is stable
under small perturbations of D. Yet, this result likely do not
carry over small perturbations of the whole domain Ω.

Our results might be of relevance in some applications, as
for example to get a qualitatively description of the steady
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state of a viscous laminar flow in a toroidal pipe.
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