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Abstract— The main purpose of this paper is to obtain the 

numerical solutions for the MHD flow of heat transfer of 

incompressible second grade fluid on a stretching sheet 

channel. The governing partial differential equations are 

converted into ordinary differential equation by using a 

similarity transformation. The nonlinear equation governing 

the flow problem is modeled and then solved numerically by 

means of a successive linearization method (SLM). The 

numerical results are derived in tables for comparisons. The 

important result of this comparison is to show the high 

precision of the SLM in solving system of nonlinear differential 

equations. The solutions take into account the behavior of 

Newtonian and non-Newtonian fluids. Graphical outcomes of 

various non-Newtonian parameters such as mixed convection 

parameter, Hartman, Deborah and Prandtl numbers on the 

flow, field are discussed and analyzed. Besides this the present 

results have been tested and compared with the available 

published results in a limiting manner and an excellent 

agreement is found.    

Index Terms— Second grade fluid, successive linearization, 

stretching sheet channel. 

 

I. INTRODUCTION 

 

n the recent years, a great deal of interest has been gained 

for fluids applications. Some fluids are not easy expressed 

by particular constitutive relationship between shear rates 

and stress, which is totally different than the viscous fluids 

[1] and [2]. These fluids including many home items 

namely, toiletries, paints, cosmetics certain oils, shampoo, 

jams, soups etc have different features and they are denoted 

by non-Newtonian fluids. In general, the categorization of 

non-Newtonian fluid models is given under three class 

which are named the integral, differential, and rate types[3]-

[8]. In the present study, the main interest is to discuss the 

heat transfer flow of magnetohydrodynamic (MHD) second 

grade fluid over stretching sheet. The effects of the 

stretching sheet on the fluid flow is attracted attentions of 

several scientist, thus a big number of research was 

achieved. The most important industrial to enhance the 

production and ductility of parts with big precision is 
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shaping. The study of MHD fluid flow on stretching sheet 

can be implemented to extrusion casting, drawing, plastic 

films, polymer, hot rolling and several engineering 

applications. Following the advances in this field, the 

researchers in this field always try to improve the accuracy 

by using different methods on behaviour of fluid. One of 

these methods was used in this field is the application of  

magnetohydrodynamic flow. This application is known as 

MHD. MHD is the study of the interaction of electro 

conducting fluids with phenomena of electromagnetic. The 

flow of MHD fluid in the presence of magnetic field is very 

important in many regions of applied science, engineering 

and technology such as MHD pumps and MHD power 

generation. Due to this fact many researchers are still 

contributing in the field of MHD fluids mechanics [9] – 

[12]. Another important application of nanoparticles in base 

fluid, which is seek to improving behaviour of fluid and 

madding optimal use of the changes. Due to various 

engineering issues and different boundary conditions, 

intensive research has been achieved in this field, which is 

summarized briefly. Because of various boundary 

conditions and different engineering situations, Waqas et al. 

[13] discussed the stratified flow of nonliquid with heat 

generation in a linear stretchable surface. Ghadikolaei et al. 

[14] analyzed the flow and heat transfer of second grade 

fluid on an stretching sheet channel. The  study of heat 

transfer with mixed convection flow of  nonliquid  that 

passed through a stretching perpendicular plate with the 

presence of three various  types of nanoparticles, Cu, 

Al2O3 and TiO2 to analyzes  various  thermal conductivity of 

the nonliquid  and the velocity of nanoparticles and the 

research on the Nusselt number was found out by Xinhuisi 

et al. [15]. Many available publish work in this filed that are 

listed in Refs. [16] – [19]. 

  The most phenomena in the field of engineering and 

science that occur are nonlinear. With this nonlinearity the 

equations become more difficult to handle and solve. Some 

of these nonlinear equations can be solved by using 

approximate analytical methods such as Homotopy analysis 

method (HAM) proposed by S. liao [20] and S. liao [21], 

Homotopy Perturbation method (HPM)[22] it was found by 

Ji-Huan [23] and Adomain decomposition method (ADM) 

(Q. Esmaili et al. [24], O. D Makinde et al. [25] and O. D 

Makinde [25]. However, some of these equations are solved 

via traditional numerical techniques such as finite difference 

method, shooting method and Keller box method, Runge-

Kutta. Recently some studies have presented a new method 

called Successive Linearization Method (SLM). The 

approach of SLM is based on transforming an ordinary 
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nonlinear differential equation into an iterative scheme 

made up of linear equations which are then solved using 

numerical approaches. The (S L M) is a very simple and 

robust method that gives very accurate solutions to the 

nonlinear equations. This method has been applied 

successfully in many nonlinear problems in sciences and 

engineering, such as the MHD flows of non-Newtonian 

fluids and heat transfer over a stretching sheet [27], 

viscoelastic squeezing flow between two parallel plates 

[28], two dimensional laminar flow between two moving 

porous walls [29] and convective heat transfer for MHD 

boundary layer with pressure gradient [30] and [31]. 

Therefore, the effectiveness, validity, accuracy and 

flexibility of the SLM are verified among of all these 

successful applications. 

Presently a new investigation on heat transfer of an 

incompressible second grade fluid on a stretching sheet 

channel is discussed. The governing equations of second 

grade with MHD are utilized. The numerical solution to the 

resulting nonlinear problem is computed by using the SLM 

approach. The embedded flow parameters are discussed and 

illustrated graphically.   
 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

 

A.  Flow analysis 

Here we considering the two – dimensional steady laminar 

flow of an incompressible MHD second grade fluid, which 

is past a flat sheet coincide with the plane 0y  , confining 

the flow to 0y  .  Along x - axis there is two opposite 

and equal forces are applied. Due to this the wall is 

stretched and reserving the origin fixed. Under the constant 

and boundary layer assumptions, the continuity, constitutive 

equation of second grade fluid and energy equation are       
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where  ,u v  are the components of velocity in  ,x y  

directions, 





 
 
 

 the kinematic viscosity ,  is the 

dynamic viscosity,   is the retardation time,   density of 

fluid ,   is the electric conductivity, 
0B is the uniform 

magnetic fluid , g is the gravitational  acceleration,  
T the 

coefficient of  thermal expansion, T  is temperature  of 

fluid,  
k

c




 
 
 

 the thermal diffusivity,  k the fluid 

thermal conductivity , c the fluid capacity heat and  

pc the specific heat.  

The relevant boundary conditions are defined as 

  ,  0  at   0,   0wu u cx v y c                        (4) 
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u

u y
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,                                    (5) 
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Where c is the stretching rate,  ,  wT T are constants and 

s is the parameter wall temperature.   

  

B. Transformation     

   Introducing the following dimensionless variables   

     
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 

.                                                                 (7)

 Utilizing equation (7), equation (1) is satisfied automatically 

and equations (2) and (3) characterize to the following 

problems statement    

  22 22 0ivf ff f f f f ff M f              

                                                                                            (8) 

 
2

Pr Pr Prf s f Ec f                              (9) 

Clearly that all solutions for equation (9) are in similar type 

when 2s  . If we neglected the dissipative heat, then 

equation (9) takes the simpler form  

 

Pr 2Pr 0f f                                                 (10) 

Here  c   are Deborah number,  

2

0B
M

c





 
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 

is 

the Hartman number, 
2Re

x

x

Gr

 
 
 

is the mixed convection 

parameter, Pr




 
 
 

is the Prandtl number and  

2c
Ec

Acp

 
 
 

is the Eckert number. 

 The related boundary conditions                    

    0,   1     0,f f at                                         (11) 
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    .0, 0  f f as                                          (12) 

   0 1,     0 .                                                (13) 

 

III.  SOLUTION OF THE PROBLEM 

 

A. Procedure of computational    

  

Here successive linearization method (SLM) [27] – [30] is 

implemented to obtain the numerical solutions for nonlinear 

system (8) and (10) corresponding to the boundary 

condition Eq. (11) – (13).  

 

 For SLM solution we select the initial guesses functions   

 

 f   and   in the form  

   
1

0

)(
i

i m

m

f f F  





   ,  

    
1

0

)(
i

i m

m

    



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Here the two functions  if   and  i   are 

representative unknown functions.  ,  1mF m  , 

  ,  1m m   are successive approximation which are 

obtained by recursively solving the linear part of the 

equation that results from substituting Eq. (14) in the 

governing equations. The mean idea of SLM that the 

assumption of unknown function   if   and  i   are 

very small when i becomes larger, therefore, the nonlinear 

terms in  if   and  i    and their derivatives are 

considered to be smaller and thus neglected. The intimal 

guess functions  F  ,    which are selected to satisfy 

the boundary conditions 

    0 0 0,0 , 1       F F at      

   0 00 ,  0      F F at      ,   

   0 1,   0                                           (15)    

                                                                                                        

which are taken to be in the form  

 

   0 1F e 


  and  0 e 
  .                            (16) 

Therefore, beginning from the initial guess, the subsequent 

solution iF and i are calculated by successively solving 

the linearized from the equation which is obtained by 

substituting Eq. (14) in the governing equations (8) and 

(10). Then we arrive at the linearized equations to be solved 

are  
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When we solve Eqs.(8) and (10) iteratively, the solution for 

iF and i has been obtained and finally after K iterations 

the solution  f   and     can be written as 

   
0

K

m

m

f F 


 ,    
0

K

m

m

   


  . In order to 

apply SLM firstly transform the domain solution from 

 0,  to  1,1 . SLM is based on the Chebyshev spectral 

collection method. This method is depending on the 

Chebyshev polynomials defined on the interval 1,1 . 

Thus, by using the truncation of domain approach where the 

problem is solved in the interval  0,L    where L  is 
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scaling parameter used to impose the boundary condition at 

infinity. Thus, this can be obtained via the transformation  
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By using the Gauss-Lobatto collocation points we can 

discretize the domain  1,1 as follows 
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where N is the number of collection points and kT is the 

thk Chebyshev polynomial given by 
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The derivatives of the variable at the collocation points are 

in the form   
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where r is the order of differentiation and  
2

D
L

D with 

D is the Chebyshev spectral differentiation matrix. 

Substituting Eqs. (22) to (24) into Eqs. (17) and (18) we 

arrive at the matrix equation 
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4 3 2
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22 3, 1 4, 1i ib b I   A D D . 

Following the above procedure, we can obtain the solution 

as
1

1 1i i i
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B. Convergence analysis 

 
TABLE. I 

The convergence for numerical values of  0f   and 

 0  for different order of approximation 

when 0.50,   0.01,Pr 1  and   0.20M      . 

 

 

 

TABLE. II 

The numerical values of  f    and  f 
 

when, .5, .2, Pr 1M     for different values of  . 

 

 

 

 

 

 

Order of 

approximati

on  

 0f    0  

1 1.0064665467          1.3322397230 

5 1.0187454298          1.3280607773 

10 1.0247104681          1.3256387760 

20 1.0280770572          1.3242611294 

30 1.0286148699          1.3240443457 

50 1.0287099250          1.3240066355 

70 1.0287119648          1.3240058514 

90 1.0287120018          1.3240058381 

95 1.0287120022          1.3240058380 

100 1.0287120022          1.3240058380 

120 1.0287120022          1.3240058380 

130 1.0287120022          1.3240058380 

140 1.0287120022          1.3240058380 

150 1.0287120022          1.3240058380 

     f    f 
 

 

 

 

 

 

.01 

 

0 0 1 

0.1 0.095034 0.902154 

0.2 0.180727 0.813783 

0.5 0.390635 0.596779 

1 0.623521 0.355247 

2 0.844509 0.125790 

3 0.922864 0.044742 

4 0.950821 0.016019 

5 0.960862 0.005781 

 

 

 

.03 

 

0 0 1 

0.1 0.095076 0.902974 

0.2 0.180886 0.815254 

0.5 0.391436 0.599424 

1 0.625799 0.358283 

2 0.849359 0.127768 

3 0.929141 0.045701 

4 0.957749 0.016429 

5 0.968059 0.005944 
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TABLE. III 

The numerical values of    and     

when, .5, .2, Pr 1M     for different values of  . 

 

        
 

 

 

 

 

0.01 

0 1 1.324005 

.1 0.877045 1.139906 

.2 0.771105 0.984194 

.5 0.531029 0.643729 

1 0.296179 0.333857 

2 0.101442 0.104412 

3 0.037087 0.036705 

4 0.013899 0.013551 

5 0.005259 0.005099 

 

 

 

 

0.03 

0 1 1.326444 

.1 0.876804 1.142276 

.2 0.770635 0.986394 

.5 0.530007 0.645174 

1 0.294738 0.334171 

2 0.100222 0.103914 

3 0.036364 0.036265 

4 0.013525 0.013288 

5 0.005079 0.004963 

 

 

C.  Numerical scheme testing 

 

The aim here is to test our numerical results and compare 

with published works results in the literature as limiting 

cases situations. Thus, we compare the present results with 

the available results in   reference [6] and [14] It is found 

that our results are in excellent agreement with those of [6] 

and [14] as shown in tables IV and V.    

    

 

 

TABLE. V 

Comparison of numerical values of  f    with Ref:[14] 

when, 0 0,Pr 1M      and 0.01  . 

 

 

 

 

 

 

 

 

TABLE. IV 

Comparison of numerical values of     with Ref:[6] 

when, 0 0,Pr 1M      and 0.01  . 

 

 

IV. RESULTS AND DISCUSSION  

 

This section concerns with the graphical illustrations 

obtained by using successive linearization method for 

velocity, temperature profiles. These profiles show the 

variations of embedded flow parameters in the solution 

expressions for heat transfer analysis for an incompressible 

MHD flow of second grade fluid on a stretching sheet 

channel. The physical interpretation of the problem has been 

discussed in Figures 1 – 8. These figures are plotted in order 

to illustrate such variations. Here The graphs have been 

determined for the MHD heat transfer flow of steady second 

grade fluid over stretching sheet. Figure 1 is prepared to see 

the effects of applied magnetic field (Hartman number) 

M on the velocity profile. Keeping , Pr,  fixed and 

varying M , it is seen that the velocity profile decreases 

when the magnetic field parameter M become larger . From 

physical side we observe that when we increasing the values 

of M , the flow on velocity profile of ( )f   decreases, in 

fact this is due to the effects of the transverse magnetic field 

on the electrically conducting fluid which gives rise to a 

resistive type Lorentz force which tends to slow down the 

motion of the fluid. Figure 2 shows that for strong imposed 

magnetic force this lead to larger temperature. This is due to 

fact that for strong magnetic fore, the Lorenz force becomes 

dominant and then the temperature of the liquid increased. 

Figure 3 shows the effects of the mixed convection 

parameter  on the velocity profile when , , PrM   are 

fixed. It is worth noticing that by increasing the parameter  

reveals that buoyancy because of augments of gravity which 

boosts on the velocity ( )f  . Besides that, the thickness of 

boundary layer for large   is also getting higher. In Figure 

4 we show that for larger  , this would lead to increase in 

the temperature profile (this is much related to decrease in 

the boundary layer thickness). Figure 5 is plotted to show 

the   for variation of Prandtl number Pr on ( )f  . It is 

notice that from Figure 5, Prandtl number Pr has same 

effect on ( )f  same as temperature in Figure 6.  Figure 6 

is sketched for the variation of Prandtl number Pr on 

    Ref:[14] Present work  

 

 

 

 

 

.01 

 

0 0 0 

0.1 0.095199 0.095194 

0.2 0.181400 0.181338 

0.5 0.394050 0.393892 

1 0.633463 0.633460 

2 0.866679 0.867642 

3 0.952228 0.954211 

4 0.983566 0.986229 

5 - 0.998059 

    Ref: [6] Present work  

 

 

 

 

 

.01 

 

0 1.334735 1.334733 

0.1 1.150410 1.150382 

0.2 0.993973 0.994026 

0.5 0.650461 0.650523 

1 0.335684 0.335643 

2 0.102150 0.102133 

3 - 0.034583 

4 - 0.012274 

5 0.004444 0.004441 

10 52 10  0.000029 
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( )  . It is noted that for lager Pr ,the thermal field is 

lower and then this reduce the temperature. In fact law 

Prandtl number Pr assist fluid with higher thermal 

conductivity and this create thicker thermal boundary layer 

than that for lager Pr .. Finally, Figs.7-8 shows the effects of 

viscosity parameter  on velocity and temperature profiles 

over the sheet. In fact this parameter has dual behavior in 

terms of temperature and velocity. As we know, by 

increasing in   reduces viscosity of fluid, so we see that 

the effect is very small for both profiles. Moreover the 

viscous case is recovered by putting 0  . 

 

 
 

Figure 1: Effects of Hartman number M for  f  . 

 
Figure 2: Effects of Hartman number M for    . 

 
Figure 3: Effects of mixed convection parameter  for 

 f  . 

 

 
Figure 4: Effects of mixed convection parameter  for 

   . 

 

Figure 5: Effects of Prandtl number Pr for  f  . 
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           Figure 6: Effects of Prandtl number Pr for    . 

 

Figure 7: Effects of Deborah number   for  f   . 

 

 
Figure 8: Effects of Deborah number   for   

. 

 
 

 

 

V. CONCLUSION 

 

In this research, the problem of MHD heat transfer of an 

incompressible second grade fluid on a stretching sheet 

channel is solved numerically. The numerical solutions are 

well established by SLM. The influence of various 

parameters is shown through different graphs. The present 

results have been tested and compared with the available 

published results in Ref: [6] and Ref: [14], in a limiting 

situation shown in tables IV - V and an excellent agreement 

is found. The mean results from solving theses equations 

have been summarized as follows: 

 

1- The effects of M on velocity and temperature is quite 

opposite. 

2- The variation of Prandtl number Pr  on velocity and 

temperature is similar. 

3- By increasing M and Pr , the velocity and 

temperature fields decrease. 

4- The variation of M and  on velocity and 

temperature are similar. 

5- The results corresponding to viscous fluid can be 

obtained by choosing 0  .    
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