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Abstract—In real-world scenarios, samples are sometimes
unavailable in large quantities. Although there may be access
to sufficient samples, these samples often have high acquisition
costs. Additionally, general statistical methods require large
sample sets to guarantee a certain accuracy. Therefore, low-
capacity sample sets must be expanded. In this paper, from the
perspective of sample component evolution and the distance
between a pair of samples, a new approach for expanding the
sample capacity is proposed. Through simulation, this sample
expansion technique based on the distance-trend double effects
(DTDE) is shown to be effective and accurate. In addition, we
introduce two special cases and further analyze the proposed
algorithm.

Index Terms—sample capacity expansion, distance-trend ef-
fects, neural network, copula, simulation.

I. INTRODUCTION

W ITH the further development of society, the complexi-
ty of industrial problems has been gradually increas-

ing. Various sources of interference and random variations
in external conditions make it increasingly difficult to model
and analyze general industrial problems through analytical
means. Particularly for high-dimensional modeling problems
involving large and complex systems, traditional methods
cannot achieve accurate results and are usually accompanied
by insurmountable computational complexity. However, the
use of experimental data for modeling and simulation can re-
strain some conditions in field environments and explore the
information and rules behind the data. In real-world cases,
given the limitations imposed by test conditions, collection
methods and human or material resource requirements, the
acquisition of data is often accompanied by high costs.
For example, certain research involving one-time or special
tests, such as bulb lifetime tests or nuclear tests, cannot
obtain large amounts of data; in the former situation, the
product is destroyed after the test, and in the latter, it is
impossible to repeat the test. Therefore, there is important
practical significance to expanding sample capacity in the
above situations.
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The importance of high sample capacity in research meth-
ods is self-evident. On the one hand, traditional statistical
models can provide good approximations of parameters, and
the corresponding conclusions can be theoretically guaran-
teed through the law of large numbers and the central limit
theorem in the case of large sample size. On the other hand,
machine learning algorithms, which exhibit better perfor-
mance in terms of spatial search and function generalization
than statistical models, also need large amounts of data
when exploring the laws between inputs and outputs. In
addition, the sample size influences the accuracy of results,
as indicated in [1]. Therefore, sample expansion is necessary.

Traditional sample expansion techniques mainly include
interpolation, noise injection, data sampling and virtual sam-
ple generation. An interpolation method was first established
for sample expansion in [2]. The basic idea is to construct
an approximation function through several discrete points
on the interval and then to expand the sample capacity by
solving the function value of the unknown point using an
approximation function. As indicated in [3], [4], [5], re-
searchers have designed noise injection methods to generate
new samples by adding Gaussian noise. Data sampling uses
a variety of sampling techniques to obtain more samples.
However, the above three methods do not effectively use the
original small amount of information contained in the low-
capacity sample set. Therefore, it is difficult to establish a
homogeneous high-capacity sample set using these methods.
By contrast, virtual sample generation is a way of filling
information intervals between a pair of original samples
to produce new samples, which better utilizes the original
information. Virtual sample expansion technologies main-
ly include distribution-based capacity expansion, domain-
based prior knowledge expansion, perturbation-based sam-
ple capacity generation, and SVM-based sample expansion.
Distribution-based capacity expansion first fits a probability
distribution and then performs sample expansion through
various sampling techniques. The bootstrap method, which
obtains self-help samples with back-sampling, was intro-
duced in [6] and [7]. However, because it is difficult to
establish the probability distribution based on a low volume
of samples, this method has low application value. Sample
expansion technology based on prior domain knowledge
is suitable for generating samples in professional fields.
Prior knowledge, which is extremely valuable, is applied to
obtain appropriate constraints, thereby transforming sample
expansion into an optimization problem. Two forms of prior
knowledge were given in [8]. However, due to the complexity
of real-world conditions, prior knowledge is often difficult
to obtain, which reduces the applicability of this method. In
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[9], virtual sample generation, i.e., perturbation-based sample
generation, was regarded as a virtual measurement process
with measurement error that obeys a Gaussian distribution.
However, due to its high computational complexity and the
difficulty of generalizing and changing the distribution of
measurement error, the information from the original low-
capacity sample set us ignored. The basic idea of SVM-based
sample expansion is to generate samples near the limit state
function using an approximation method, thereby improving
the classification ability of SVM. In [10], Basudhar et al.
established an explicit design space decomposition method.
However, this method has low efficiency and suffers from
large errors on high-dimensional samples. In [11], Mao et
al. performed sample generation by calculating the posterior
probability. However, changing the dimensionality of the
original sample and introducing new sample attributes are
inappropriate for the expansion of high-dimensional samples.
The prior knowledge obtained from a small training set
was used to create virtual samples in [12]. This method
strongly relies on prior knowledge obtained from a low
capacity of original samples, but it has not been proposed as
a formal procedure. In [13], Li et al. considered the domain
of each attribute or variable in a low-capacity sample set
to form a new virtual sample set. However, the expansion
strategy is a trial-and-error process by nature, resulting in
sensitivity to the type of sample set. The particle swarm
optimization-based virtual sample generation (PSOVSG) ap-
proach was proposed to generate virtual samples in [14];
however, the shape parameter of the core TMIE function,
which is not determined by a mature optimization method,
strongly affects the algorithm’s performance. In [15], an
oversampling method based on the Euclidean distance was
proposed, but this method is greatly influenced by dimension,
and for high-dimensional random sample generation, the
dependency between components is not considered. In [16],
from the perspective of fault prediction with uncertainty
quantification, recursive model resampling bootstrap (RMR-
B) was proposed. RMRB relies heavily on fuzzy inference,
especially in the case of insufficient prior information, which
makes it difficult to reasonably generate samples. In addition
to the classic methods above, new approaches based on
traditional statistical methods have been proposed. In [17],
a new method called importance sampling was developed
by employing a neural network. Although it is suitable for
nonlinear data, the use of excessive neurons greatly increases
the computational complexity. In [18], several sampling al-
gorithms based on determinantal point processes (DPP) were
introduced; however, memory cost is relatively high, and
thus there is a high requirement for computer performance.
In addition, machine learning algorithms are being applied
to generate and expand samples. For example, in [19], an
approach based on extreme learning machine (ELM) was
proposed; however, for this kind of approach, some theories
are immature, and the application effect is often related to the
specific research problem, leading to poor generalizability.
Moreover, for certain issues, such as face recognition [20]
and chemistry analysis [21], some approaches have been
proposed from the perspective of the professional field but
cannot be extended to other fields.

In the real world, many phenomena are related; thus,
many sample sets contain both independent variables and

dependent variables. Based on the literature review above, no
algorithms can effectively generate such samples. Traditional
methods that fit the corresponding distribution function based
on the original low-capacity samples may be inefficient and
difficult to employ due to the low capacity and complex
dependence structure of the sample components. Therefore, a
sample expansion technology that is easy to implement pro-
grammatically and has strong generalizability for correlation
analysis, regression analysis, and various statistical model-
ing methods involving independent variables and dependent
variables must be developed. The difficulty of implement-
ing sample expansion is how to maintain the relationship
between the independent and dependent variables in the
newly generated samples. In addition, for specific research
problems in industrial production, the external conditions for
sample generation change due to the monitoring fluctuations
and time delay caused by the observations. Samples produced
under the same external conditions are homogeneous, i.e.,
small in distance and similar in component evolution. Like-
wise, samples produced under different external conditions
are theoretically different in terms of distance and trend.
In this paper, for low-volume samples (X,Y ) containing
both independent variables X = (X1, X2, . . . , Xp) and
a dependent variable Y , from the perspective of sample
component evolution and the distance between a pair of
samples, we propose an approach called DTDE to expand the
sample capacity. Then, simulations are implemented based on
various kinds of probability distributions to show that DTDE
is effective and accurate for generating new samples from the
original samples.

This paper is organized as follows. In section II, we
establish the overall approach of DTDE and illustrate each
important step. In section III, a simulation method is used
to verify the algorithm’s performance. In section IV, we
consider two special cases to further analyze the algorithm.
Finally, in section V, we conclude the study and provide
research directions for future study.

II. METHODS IN THE DESIGNED APPROACH

In the following context, (X,Y ) represents a sample, and
(x, y) represents an observation of the corresponding sample.

The essential characteristics of a sample are determined
by its probability distribution, which gives the probability
that the sample takes a certain value when the joint dis-
tribution is fixed. Therefore, in terms of probability, for a
pair of samples from the same distribution, such as X1 =
(X11, X12. . . . , X1p) and X2 = (X21, X22, . . . , X2p), the
size relationship between components of X1 is consistent
with that of X2, which means that sample components follow
a similar trend and that the Euclidean distance between
samples is relatively small. The sample itself is reflected in
the value of each component and the relationship between
the sample components, as shown in Fig.1.

In section II-A and section II-B, we will provide methods
for measuring the distance and trend similarity between
samples, respectively, to generate the independent variables
of new samples. In section II-C, we present the method for
generating the corresponding dependent variable of the new
samples.
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Fig. 1. Sample structure determined by component values and the
dependence structure between components. Assume that a sample (X1, X2)
contains two subelements, component 1 (X1) and component 2 (X2).
Lines 1 and 2 represent the average level determined by the marginal
distributions of X1 and X2, respectively. The two curves, which represent
observations of component 1 (X1) and component 2 (X2), have the same
variation trend, indicating strong dependence between them. If there is a
probability distribution, the value of (X1, X2) is completely determined by
the marginal distribution and the dependency.

A. Measuring Distance based on Dynamic Clustering (DC)

Firstly, we use dynamic clustering [22] to classify the
independent variables of the original samples so that the
original sample set can be divided into several subsets that
satisfy the requirement that the distance between each pair
of samples in each subset is sufficiently small.

Dynamic clustering can dynamically adjust the classifi-
cation by modifying cluster errors so that the clustering
accuracy is relatively high. In addition, compared with other
methods, this algorithm has lower computational complexity.
The dynamic clustering algorithm is shown in Fig.12.

The clustering algorithm ensures that any pair of samples
in the same class is close in distance from the perspective of
independent variables of samples. Therefore, if new samples
are generated in one class, then the generated samples will
move to the center of each class in terms of the distance
scale.

B. Matching Trend Based on Gray Correlation Analysis
(GCA)

The clustering process considers only the distance between
samples. In this subsection, we will consider the trend, i.e.,
the dependency between sample components. In terms of
probability, the random samples generated by different joint
distributions may be close in distance but totally differ-
ent in dependence structure between sample components.
Therefore, based on the clustering results, the samples in
each subset should be further distinguished from the trend.
The Gray correlation degree (GCD) [23] can reflect trend
similarity between two columns of data. In the same class or
subset, DC ensures a relatively small distance between any
two samples. Furthermore, if two samples have a large GCD,
under extreme conditions, the two samples can be considered
to overlap with each other. Therefore, they can be regarded
as the same and naturally homogeneous. Finally, for such a

1i
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x 21i
x 31i

x ........ pix
1

i 1i 2i 3i ........ ip

2i
x 12i

x 22i
x 32i

x ........ pix
2

Fig. 2. Generation of independent variables of new samples 4i. (i1, i2)
is a pair of numbers among 1, . . . , n, and 4ij is the average of xi1,j and
xi2,j (j = 1, . . . , p).

pair of samples with small distance and large GCD, we can
average the independent variables of the original samples to
generate the independent variables of the new samples. A
diagram of the independent variable generation process is
shown in Fig.2.

Thus, we should sort the samples in the same class
according to a certain rule to guarantee that there is a large
GCD between adjacent samples and perform averaging of
independent variables between adjacent samples. The sample
is no longer considered to be moved or reset once it enters the
sequence during the sorting process. Therefore, the sorting
rule ensures only that the GCD between any two adjacent
samples in the sequence is relatively large. The sorting rule
is as follows.

1) Pair the samples in accordance with the GCD and make
the two most-correlated samples enter into the sequence.
Record the samples as Xl and Xr.

2) Select the sample with the largest GCD with Xl,
excluding samples that are already in place (only Xr at this
time). Record this sample as X∗l . Select the sample with the
largest GCD with Xr, excluding samples that are already in
place (only Xl at this time). Record this sample as X∗r .

3) If the GCD between X∗l and Xl is larger than that
between X∗r and Xr, we place X∗l to the left first. Otherwise,
we place X∗r to the right first. At this point, the outermost
samples of the sequence are X∗l and Xr (or Xl and X∗r ).

4) Repeat 2) and 3) until all samples enter the sequence.

Example 1. To illustrate our rules, we present an example.
We generate 5 random samples using an 8-dimensional
normal distribution and apply our rules to sort them. The
calculation process is shown in Steps 1 to 5.

Sample x1: (1.118381, 1.099983, -0.07087, -0.10037,
0.333038, 1.115501, 1.731224, 0.882705)

Sample x2: (1.813595, 3.130268, 1.855258, 0.470508,
0.73944, 2.820913, 2.653026, 2.628306)

Sample x3: (2.279882, 1.244179, 1.697396, 0.411669,
0.550887, 1.158872, 2.01521, 1.603087)

Sample x4: (1.165409, 2.200386, 1.074408, -0.23164,
0.903754, 0.022006, 1.731615, 2.748088)

Sample x5: (0.587883, -0.09481, -0.94886, -0.81807,
0.209335, -2.222352, 0.119873, -0.20111)
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Step 1. Calculate the GCDs between the 5 samples.

X =


1 0.8486 0.8222 0.7564 0.5176

0.8486 1 0.8765 0.8453 0.5604
0.8222 0.8765 1 0.8101 0.6094
0.7564 0.8453 0.8101 1 0.8419
0.5176 0.5640 0.6094 0.8419 1


Step 2. The GCD between x2 and x3 is 0.8765, which is

the largest among all GCDs. Therefore, x2 and x3 enter the
sequence first. The sorted result is x2x3.

Step 3. Excluding x3, x1 has the largest GCD with x2

(0.8486). Excluding x2, x1 has the largest GCD with x3

(0.8222). Because 0.8486 is greater than 0.8222, x1 enters
the sequence and is set on the left of x2. The sorted result
is x1x2x3.

Step 4. Excluding x2 and x3, x4 has the largest GCD with
x1 (0.7564). Excluding x1 and x2, x4 has the largest GCD
with x3 (0.8101). Because 0.8101 is greater than 0.7564, x4

enters the sequence and is placed to the right of x1. The
sorted result is x1x2x3x4.

Step 5. Excluding x2, x3 and x4, x5 has the largest GCD
with x1 (0.5176). Excluding x1, x2 and x3, x5 has the
largest GCD with x4 (0.8419). Because 0.8419 is greater
than 0.5176, x5 enters the sequence and is placed to the
right of x4. The sorted result is x1x2x3x4x5.

Remark 1. During clustering, samples from different dis-
tributions with small GCDs may be classified into the same
class because of the small distance between them. When
averaging only such samples, the newly generated samples
do not actually couple with the original samples. To solve
this problem, based on the distance scale, DTDE further
considers the effect of component evolution, as illustrated
in Example 2., between a pair of samples, which guarantees
that the generated samples are homogenous with the original
ones.

Example 2. A situation is presented to illustrate the effect
of GCA. Three samples are given as follows.

Original data: (1.3967, 1.4354, 0.4843, -0.0131, 0.3435,
1.0595, 1.6750, 0.9734)

Data with similar trend: (1.5725, 1.3643, 0.3448, -0.0183,
0.2998, 1.1219, 1.8082, 0.7717)

Data with small distance: (1.7371, 1.5632, 0.5710, 0.0842,
0.4086, 1.2772, 1.9655, 1.0344)
As shown in Fig.3, although the distance coincidence of
Lines 1 and 3 is higher—i.e., the distance between the two
polylines is smaller—Line 2 is closer to Line 1 in terms of
the trend. As a result, even though the distance between them
is larger than that between Lines 1 and 3, the trend of their
components is more coincident. Therefore, Lines 1 and 2 can
be averaged based on the DTDE method, but Lines 1 and 3
fail.

Remark 2. In this remark, we discuss a heuristic con-
sideration. Our approach of averaging adjacent samples is
based on such a logic thought; that is, two identical samples
are averaged equal to the original sample. Two samples
in the same class are close in terms of distance, and a
large GCD indicates that the trend between them is similar.
Under extreme conditions, the two samples overlap. As
shown in Fig.4, the average of the two samples, which is
represented by the broken curve, is equivalent to the average
of two identical samples, which means the original samples
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Fig. 3. Illustration of Example 2. Differentiate different data columns by
different line types
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Fig. 4. Limiting case of adjacent samples.

themselves are generated. It is obvious that the new generated
samples are in the class and do not destroy the structure of
the original data.

C. Supplemental Samples Based on One-Dimensional Kernel
Density Estimation (KDE)

A completely new sample includes both the independent
variables and the dependent variable. In this subsection, we
generate the corresponding dependent variable of the new
samples (DVNSs); however, due to the complex nonlin-
ear relationship between the independent variables and the
dependent variable, if we generate the dependent variable
by simply averaging the counterparts of adjacent samples,
the function relationship between the dependent variables
and the independent variable is ignored, which is clearly
unreasonable and generates pseudo-samples. Therefore, the
probability density is introduced, and DVNSs are filled based
on the possibility of occurrence. By estimating the kernel
density function [24] based on the dependent variable of
the original samples, the average density of two dependent
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variable samples whose corresponding independent variables
are adjacent is calculated as the density of the corresponding
DVNS. Finally, by calculating the inverse density function,
we obtain the DVNSs. Thus, new samples containing in-
dependent variables and the dependent variable are obtained
through the above procedure. The process is shown in Fig.13.

The probability density reflects the possibility that a
random variable takes a certain value. Adjacent samples
have a high GCD and a small distance, which means that
they are relatively similar or even equivalent in an extreme
case. The occurrence probability of similar samples is almost
equivalent under similar external conditions. Thus, it is rea-
sonable to estimate the possibility of the dependent variable
appearing in a new sample based on the average density.

Remark 3. A comparison of one-dimensional KDE and
multidimensional KDE for directly generating samples. Com-
pared with one-dimensional KDE, multidimensional KDE,
which estimates the multivariate distribution function or
joint density function based on the original samples, has
higher computational complexity. In addition, to ensure high
accuracy, the estimation of multidimensional KDE needs a
large number of samples to provide enough information,
including the dependence structure between components and
marginal distributions, which may violate the information of
the original low-capacity samples. However, one-dimensional
KDE can avoid the above drawbacks and obtain higher
accuracy for low-capacity samples.

III. SIMULATION METHOD AND ANALYSIS

A. Simulation Method
First, we give the joint samples (Xi, Yi) (i = 1, . . . , n)

using the same distribution. In terms of probability, all sam-
ples from the same distribution concentrate so that they are
close in distance. Therefore, we skip the process of dynamic
clustering. In addition, the same distribution guarantees that
the trends of all samples should be similar so that the GCD
of the sample pairs is relatively large in theory. However,
because of the uncertainty, sample pairs following different
trends are likely to appear. As a result, we apply GCA to
obtain more accurate results to select adjacent samples.

The algorithm proposed in this paper is suitable for
low-capacity samples, and there is a functional relation-
ship between the independent variables and the dependent
variables in the sample. Therefore, the joint distribution of
(X,Y ) given in simulation must guarantee the functional
relationship between Y and X , which implies a strong
dependence structure between Y and X . In our simula-
tion experiment, we use a linear dependency. For the joint
distribution (X1, X2, . . . , Xn, Y ), the Gaussian copula [25],
which characterizes the linear relationship between each pair
of variables, is given in (1), where R is the correlation matrix
of the corresponding marginal normal distribution, including
Xi(i = 1, . . . , p) and Y .

For our simulation, normal distributions are taken as the
margins, and a Gaussian copula is used to describe the
dependency. Then, a joint distribution is set up. The binary
joint distribution is taken as an example. Different linear cor-
relation coefficients show different geometric relationships,
as shown in Fig. 7. In our simulation process, we assigned a
large correlation coefficient between Y and Xi (i = 1, . . . , p)
to ensure a strong linear dependence structure between them.

We use the neural network (NN) model to verify whether
the generated samples are coupled with the original samples.
Specifically, we can take the independent variables of the
original samples as inputs and their dependent variables
as the output to train the network. Then, we predict the
dependent variables corresponding to independent variables
of the new samples utilizing the trained network. Next, we
compare the error between the predicted results with the
new generated dependent variables, as shown in Fig.14. If
the approach in this paper is effective, then the value of the
dependent variable supplemented by our algorithm should be
close to the predicted value of the neural network. In other
words, the relative error will be small.

Remark 4. If we want to train a high-precision neural
network, we need to provide enough samples. Therefore,
we give a random sample set with a large sample size for
simulation. Although the algorithm is based on low-capacity
samples, to illustrate the effectiveness of the algorithm,
we use a high-capacity random sample set to perform the
simulation analysis. The complexity of the sorting rule is
greatly increased as the sample size increases. To improve
operational efficiency, we determine a threshold value to
generate new samples. Specifically, given a threshold, for
a pair of samples, if the GCD is greater than or equal to this
threshold, then we use the pair to generate new samples;
otherwise, the pair is not used to generate new samples.

B. Simulation Analysis

Assume X = (X1, X2 . . . , X8). We randomly generate
elements of a correlation matrix using a uniform distribution.
To strengthen the correlation between Xi (i = 1, . . . , 8)
and Y , we use U(0.6, 1) to generate their correlation coeffi-
cients. The correlation coefficients between the independent
variables are generated from U(0, 1). Similarly, we assume
that all marginal distributions obey a normal distribution, and
the parameters of the mean and variance are generated from
U(0, 1).

First, the neural network is trained by 2000 original sam-
ples, and the relative prediction error of the neural network
is calculated, as shown in Fig. 8(a). Most of the predicted
values are very close to the true values, indicating that the
neural network is of high quality and has good prediction
accuracy. We calculate the relative error between the values
predicted by the neural network and those supplemented by
DTDE. The result is shown in Fig. 8(b). As shown in the
figure, most of the relative errors are concentrated around 0,
and only a few relative errors are large. The mean relative
error is 0.0126, which indicates that the DTDE algorithm is
significantly effective.

In addition, we performed simulation analysis in three
cases of weak linear correlation, medium correlation and
strong linear correlation, respectively. As shown in Fig.11,
we give the relative error graphs in three cases. We find that
the accuracy of the algorithm increases as the correlation
strengthens, which shows that the algorithm become more
effective on sample expansion when the dependent variables
and independent variable have a strong dependence structure.
Therefore, the results are consistent with our initial idea of
designing DTDE.
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Fig. 5. Relative error of DTDE under a reverse order; the mean relative
error is 0.0037.

IV. DISCUSSION

For the algorithm proposed in this paper, we discuss two
special cases for further analysis.

A. Case 1. Changing the Order of DC and GCA.
In this subsection, we keep the basic methods unchanged.

The original samples are first classified by the GCD and
then sorted under the rule with the distance as a measure to
generate new samples. Since we use samples from the same
distribution, the dependence structure between sample com-
ponents is identical. Therefore, based on the measurement
of GCD, we treat the identically distributed samples as a
class. Next, we sort the samples according to distance using
the sorting rules stated in section II-B. For computational
convenience, a distance threshold is also taken. When the
distance between two samples is smaller than this threshold,
the samples are considered as a pair of adjacent samples;
otherwise, they are not used to generate new samples. The
result of the relative error for the simulation is shown in
Fig.5.

The order change has no significant effect on the similarity
measurement between samples due to the high prediction
precision shown in Fig.5. Therefore, our proposed algorithm
essentially considers the similarity between samples, which
has nothing to do with the order of measurement, i.e.,
distance and trend.

B. Case 2. Strong Nonlinear Correlation between Dependent
Variables and the Independent Variable.

In this subsection, we consider a strongly geometric
nonlinear relationship between the dependent variables and
independent variable. The marginal distribution of the in-
dependent variable remains a normal distribution. Howev-
er, the margin of the dependent variable transforms into
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Fig. 6. Geometric nonlinear relationship between Y and Xi (i ∈
(1, . . . , p)) when ρ = 0.99.

Gamma(2, 0.5), which results in the geometric nonlinear
correlation between Y and the single independent variable.
In this case, we found that the algorithm still achieves high
precision, with a mean relative error of only 0.0356. In Fig.6,
we present one of the geometric relationships.

In addition, we perform simulation analysis for several
strong geometric nonlinear relationships by changing the
distribution of Y , as shown in Fig.9. In terms of the mean
relative errors, all results have high accuracy, as shown in
Fig.10. The results show that our proposed algorithm is
also applicable to complex nonlinear relationships and is
generalizable to more complex relationships.

V. CONCLUSIONS

In this paper, considering distance and trend double fac-
tors, an approach for sample expansion technology is es-
tablished. The algorithm can both avoid the estimation of
a high-dimensional probability distribution and fully utilize
the information from the original low-capacity samples to
generate new samples. In addition, this technology produces
high-capacity homogeneous samples and can expand the
application range of some statistical methods that have higher
sample size requirements. Finally, the simulation analysis
proves the validity and accuracy of the proposed algorithm.

A topic to address in future studies is information expan-
sion (IE). We hope to propose an algorithm that can enhance
the coverage rate of the original information with contin-
uously derived new samples. If the original low-capacity
samples are concentrated locally, then the homogeneous new
samples will better reflect the local information. However,
the information outside the local area cannot be reflected.
Therefore, IE has theoretical research value. In addition, we
present an operational sample sorting rule. In the future, we
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Fig. 7. Geometric linear relationship between Y and Xi (i ∈ (1, . . . , p)) under different correlation coefficients ρ and normal margins. (a)ρ = 0.33.
(b)ρ = 0.66. (c) ρ = 0.99.
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Fig. 8. (a) Relative error of NN; the mean relative error is 0.0027. (b) Relative error of DTDE; the mean relative error is 0.0126.

hope to strictly define the system GCD so that the rule can
maximize the system GCD under this definition.
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Fig. 9. Several functional relationships between Y and Xi (i ∈ (1, . . . , p)) when ρ = 0.99. (a) Y ∼ U(0, 1) and Xi ∼ N(µ1, σ1). (b) Y ∼ exp(2) and
Xi ∼ N(µ2, σ2). (c) Y ∼ χ(8) and Xi ∼ N(µ3, σ3). (d) Y ∼ Beta(0.4, 0.6) and Xi ∼ N(µ4, σ4). (e) Y ∼Weibull(2, 6) and Xi ∼ N(µ5, σ5).
(f) Y ∼ F (3, 5) and Xi ∼ N(µ6, σ6). µj , σj (j = 1, ..., 6) come from U(0, 1)
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Fig. 10. Relative error of DTDE under several functional relationships between Y and Xi (i ∈ (1, . . . , p)) when ρ ∈ (0.6, 1). (a) Y ∼ U(0, 1) and
Xi ∼ N(µ1, σ1). (b) Y ∼ exp(2) and Xi ∼ N(µ2, σ2). (c) Y ∼ χ(8) and Xi ∼ N(µ3, σ3). (d) Y ∼ Beta(0.4, 0.6) and Xi ∼ N(µ4, σ4). (e)
Y ∼Weibull(2, 6) and Xi ∼ N(µ5, σ5). (f) Y ∼ F (3, 5) and Xi ∼ N(µ6, σ6). Where µj , σj (j = 1, ..., 6) come from U(0, 1).
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Fig. 11. Relative error of DTDE under several linear relationships controlled by the range of ρ between Y and Xi (i ∈ (1, . . . , p)).(a)ρ ∈ (0, 1
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Fig. 14. Procedure of coupling verification between the newly generated samples and the original samples.
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