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Abstract—The invariant preserving is one of important
factors in designing numerical algorithms. The structure-
preserving algorithms often have better stability and long time
tracking ability than nonconservative schemes. In this paper,
based on the bi-Hamiltonian structure of the wave equation,
a class of momentum-preserving Fourier pseudo-spectral algo-
rithms are proposed for the Korteweg-de Vries (KdV) equation.
The proposed schemes can conserve the discrete momentum
to machine precision, and have smaller phase and amplitude
errors than the nonconservative scheme. At last, some examples
are presented to validate the effectiveness of the proposed
schemes.

Index Terms—Momentum; Bi-Hamiltonian systems; Fourier
Pseudo-Spectral method; KdV equation

I. I NTRODUCTION

I N this paper, we consider the numerical approximation of
the following Korteweg-de Vries (KdV) equation

ut + εuux + µuxxx = 0, (1)

whereε andµ are given constants. The KdV equation [1]
is a nonlinear partial differential equation (PDE), which was
originally described the propagation of a solitary wave on the
water surface. The KdV equation is one of the simplest mod-
els featuring nonlinear convection (the termuux) and linear
dispersion (the higher-order termuxxx) [2]. The interaction
of the dispersion term and the nonlinear term will produce
permanent and localized wave forms; This phenomenon was
first observed numerically by Zabusky and Kruskal (1965)
[3], long after John Scott Russell’s experimental observation
of solitons in 1834.

The KdV equation is a completely integrable equation [4],
and has an infinite number of conservation laws [5], the first
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three conservation laws are

M =

∫ b

a

u dx,

K =
1

2

∫ b

a

u2 dx,

H =

∫ b

a

[

−
1

6
εu3 +

1

2
µu2

x

]

dx,

which are respectively named mass, momentum and energy.
In scientific research, it is often difficult or even impossible

to obtain the exact solution of the nonlinear equation. Thus,
we often have to resort to numerical simulation [6]–[8].
The numerical simulations of the KdV equation can capture
a series of interesting wave phenomena, such as solitary
wave, the interaction of two solitary waves, and so on.
Many numerical methods have been used to solve the KdV
equation, such as finite difference methods [9]–[11], finite
element methods [12]–[14], finite volume methods [15],
[16], spectral methods [17]–[19], and discontinuous Galerkin
methods [20]–[22], and so on.

Numerous theoretical and experimental results show that
the structure-preserving algorithms often have good numer-
ical properties, i.e., the excellent long-time behavior, the
linear error growth, and smaller amplitude and phase errors,
and so on. In the spirit of structure-preserving algorithms,
a good numerical method should preserve the physical
quantities underlying the partial differential equations as
far as possible. This presents a challenge for accurate and
efficient numerical simulations, as the proposed schemes
should conserve the invariants of the KdV equation as
soon as possible. Researchers have proposed many structure-
preserving algorithms for the KdV equation. For example,
symplectic algorithms [23], energy-preserving algorithms
[20], [22], [24], and the momentum-preserving algorithms
[2], [21], [25], and so on.

In fact, the KdV equation is a bi-Hamiltonian system. On
the one hand, the KdV equation is a Hamiltonian PDE [26],
i.e., it can be written as

∂u

∂t
= J

δH

δu
, H =

∫ b

a

[

−
1

6
εu3 +

1

2
µu2

x

]

dx, (2)

where J = ∂x is a skew-symmetric operator, andδHδu =
∂H
∂u − ∂

∂x
∂H
∂ux

denotes the variational derivative ofH with
respect tou. Based on the above property, different sym-
plectic algorithms and energy-preserving algorithms can be
designed.
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On the other hand, the KdV equation can also be refor-
mulated as another Hamiltonian form [27],

∂u

∂t
= N (u)

(

δK

δu

)

, K =
1

2

∫ b

a

u2 dx, (3)

whereN (u) = −(∂2
x + 2

3u∂x + 1
3∂xu) is a linear and anti-

symmetric operator. Based on the above property, we can
construct various momentum-preserving algorithms.

The focus of the present paper is on the momentum-
preserving schemes, which is based on the second Hamil-
tonian system, i.e., Eq. (3). To our knowledge, the scheme
has been considered in the context of multi-symplectic PDEs
in [28]. It is shown that this scheme exactly preserves the
local momentum, as well as multi-symplectic conservation
law. In addition, Bona et al. [2] constructed a class of con-
servative discontinuous Galerkin schemes for the generalized
Korteweg-de Vries equation. The schemes can precisely con-
serve the discrete mass and momentum. Liu [21] proposed
a direct discontinuous Galerkin method based on the second
Hamiltonian system of the KdV equation.

In this paper, we shall construct two high-order
momentum-preserving schemes based on the Eq. (3). We
first approximated the spatial derivative of the KdV equation
by using the Fourier pseudo-spectral method, and obtain
a semi-discretized system, which can exactly conserve the
semi-discrete momentum. Subsequently, two second-order
accurate finite difference methods are employed to discretize
the resulting ordinary differential equations (ODEs) and two
fully discrete momentum-preserving schemes are derived.

In this paper, we will investigate the effectiveness of
the proposed schemes, in particular discretization errors,
wave amplitude, and phase errors are discussed. The results
demonstrate that the conservative properties of the numerical
methods could be critical in obtaining the long time behavior
of the solutions.

The paper is organized as follows. In Section2.1, we first
approximate the spatial derivatives of the KdV equation by
the Fourier pseudo-spectral method and obtain corresponding
semi-discrete scheme. Then in Section2.2, we discretize the
above semi-discretized system using two second-order accu-
rate finite difference methods. In Section3, we investigate the
conservative properties of the semi-discrete scheme and the
fully discrete schemes. Finally, in Section4, some examples
are presented to validate the effectiveness of the proposed
schemes.

II. M OMENTUM-PRESERVINGFOURIER

PSEUDO-SPECTRAL METHODS

In this section, the momentum-preserving Fourier pseudo-
spectral methods are proposed for the following KdV equa-
tion

ut = −εuux − µuxxx, (4)

subject to periodic boundary condition

u(a, t) = u(b, t),

whereu(x, t) is the exact solution of (4), andε, µ, a andb
are constants.

Eq. (4) can be rewritten as the following Hamiltonian form

ut = N (u)
δK

δu
, N (u) = −

ε

3
(u∂x + ∂xu)− µ∂xxx, (5)

whereN (u) is a skew-symmetric operator. Eq.(5) satisfies
the following momentum conservation law

dK

dt
= 0, i.e.,K = C.

In fact,

K̇ = (∇K)T u̇ = (∇K)TN (u)∇K = 0,

where∇K denotes the gradient ofK and u̇ represents the
derivative ofu with respect tot.

A. Space discretization

In this paper, we consider the KdV equation (5) over the
interval I = [a, b], andxj = a+ jh, (j = 0, 1, . . . ,M − 1)
denote the mesh nodes,h = (b−a)/M represents the spatial
step, andM is a even number. In the following, letu =
(u0, u1, . . . , uM−1)

T , andui (0 ≤ i ≤ M − 1) denotes the
approximation tou(xi, t).

The crucial step of the Fourier pseudo-spectral method is
to approximate the partial differential operators. From [29],
we know that the first-order partial differential operator∂x
yields the Fourier spectral differential matrixD1, the second-
order partial differential operator∂xx yields the Fourier
spectral differential matrixD2. HereD1 is aM ×M skew-
symmetric matrix with elements

(D1)m,n =

{

1
2 (−1)m+n cot(ω xm−xn

2 ), m 6= n,

0, m = n.
(6)

andD2 is aM ×M symmetric matrix with elements

(D2)m,n =

{

1
2ω

2(−1)m+n+1 1
sin2(ω xm−xn

2
)
, m 6= n,

−ω2M2+2
12 , m = n.

(7)

In particular, the partial differential operatorsux anduxxx

are respectively approximated byD1u andD3u. Therefore,
we have the following semi-discrete scheme

du

dt
= N (u)

δK

δu
, (8)

whereN (u) = − ε
3 (diag(u)D1 +D1diag(u)) − µD3, and

K = h
2u

T
u.

It is clearly seen thatK is also conservative after spatial
semi-discretization. In fact, by (8), we have

du

dt
= JM∇K(u), JM =

1

h
N (u), (9)

whereN (u) is a skew-symmetric matrix, i.e.,N (u)T =
−N (u). Thus

d

dt
K(u) = ∇K(u)Tu′(t) = ∇K(u)TN (u)∇K(u) = 0.

B. Time discretization

We now turn to time discretization of Eq. (8). Denotetn =
nτ , Ω∆t = {tn|0 ≤ n ≤ N}, ∆t = T/N denotes the time
step, andN is a positive integer. SupposeU = {Un|0 ≤ n ≤
N} is a grid function onΩ∆t. For convenience, introducing
the following notations:

tn+1/2 =
1

2
(tn + tn+1), U

n,1
=

1

3
(Un+1 + Un + Un−1),

Un+1/2 =
1

2
(Un + Un+1), U

n,2
=

1

2
(Un+1/2 + Un−1/2).
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Firstly, we employ the leap-frog scheme, andN (u) is
approximated byN (U

n,1
),

Un+1 − Un−1

2∆t
= N (U

n,1
)
Un+1 + Un−1

2
, (10)

wheren = 1, 2, . . . , T/∆t.
On the other hand, ifN (u) is approximated byU

n,2
, we

have

Un+1 − Un−1

2∆t
= N (U

n,2
)
Un+1/2 + Un−1/2

2
, (11)

wheren = 1, 2, . . . , T/∆t.

Remark II.1. In what follows, for convenience, the first
scheme is named CMFPM1 and the second one is named
CMFPM2.

Remark II.2. The CMFPM1 and the CMFPM2 are two
three-level momentum-preserving schemes. The initial value
U1 is approximated by the the following momentum-
preserving scheme

U1 − U0

∆t
= J2(U

0)
U0 + U1

2
. (12)

III. C ONSERVATIVE PROPERTY OF THE PROPOSED

SCHEMES

In this section, we analyze the conservative properties of
the CMFPM1 and the CMFPM2.

Theorem III.1. Let Un be the solution of the scheme (10)
and (12), and assume it satisfies the periodic boundary
condition, then the solution of the scheme (10) satisfies

K(Un) = K(U0), K(Un) ≈
1

2

M
∑

k=0

(Un
k )

2h, (13)

wheren = 1, 2, . . . , T/∆t.

Proof: By computing theL2 inner product of (12) with
(U0 + U1)/2, we have

(U1 − U0

∆t
,
U0 + U1

2

)

=
(

N (U0)
U0 + U1

2
,
U0 + U1

2

)

,

whereN (U0) is aM ×M skew-symmetric matrix, thus

1

∆t
(K(U1)−K(U0)) =

(U0 + U1

2

)T
N (U0)

U0 + U1

2
= 0,

then
K(U1) = K(U0).

Similarly, by computing theL2 inner product of (10) with
(Un+1 + Un−1)/2, we have

(Un+1 − Un−1

2∆t
,
Un+1 + Un−1

2

)

=
(

N (U
n,1

)
Un+1 + Un−1

2
,
Un+1 + Un−1

2

)

,

whereN (U
n,1

) is aM ×M skew-symmetric matrix, thus

1

2τ
(K(Un+1)−K(Un−1))

=
(Un+1 + Un−1

2

)T
N (U

n,1
)
Un+1 + Un−1

2
= 0,

Therefore,

K(Un) = K(U0), n = 1, 2, . . . , T/∆t− 1.

Theorem III.2. Let Un+1/2 be the solution of the scheme
(11) and (12), and assume it satisfies the periodic boundary
condition, then the solution of the scheme (11) satisfies

K(Un+1/2) ≡ K(U1/2), K(Un+1/2) ≈
h

2

M
∑

k=0

(U
n+1/2
k )2,

wheren = 1, 2, . . . , T/∆t− 1.

Proof: By computing theL2 inner product of (11) with
(Un+1/2 + Un−1/2)/2, we have

(Un+1/2 − Un−1/2

∆t
,
Un+1/2 + Un−1/2

2

)

=
(

N (U
n,2

)
Un+1/2 + Un−1/2

2
,
Un+1/2 + Un−1/2

2

)

,

whereN (U
n,2

) is aM ×M skew-symmetric matrix, thus

1

∆t
(K(Un+1/2)−K(Un−1/2))

=
(Un+1/2 + Un−1/2

2

)T
N (U

n,2
)
Un+1/2 + Un−1/2

2
= 0.

Thus,

K(Un+1/2) = K(U1/2), n = 1, 2, . . . , T/∆t− 1.

IV. N UMERICAL EXPERIMENTS

In this section, we will consider the following five test
problems: the propagation of a single solitary wave (see
Figure 7), the interaction of two solitary waves (see Figure
11), the interaction of five solitary waves (see Figure 13), the
Zabusky-Kruskal’s problem (see Figure 15), and the linear
KdV equation (see Figure 18). Through these numerical
examples, we show that the proposed schemes are effective
in simulating the KdV equation, and that they can precisely
conserve the discrete momentum.

A. Example 1

In this example, we consider the following initial value
problem

{

ut + uux + µuxxx = 0, x ∈ [0, 1], t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

(14)

subject to periodic boundary conditions. Eq. (14) has the
following cnoidal-wavesolution,

u(x, t) = Acn2(4W(m)(x− vt− x0)), (15)

wherecn(z : m) is the Jacobi elliptic function with modulus
m = 0.9, A = 192mµW2(m), v = 64µ(2m − 1)W2(m),
and x0 = 1/2. Here, the functionW(m) is the complete
elliptic integral of the first kind. It is worth noting that
the cnoidal-wavesis a kind of stable solutions of the time
dependent problem [30], so numerical errors will not lead
to instabilities of the continuous problem. Thus, any insta-
bility that appears is caused by the numerical scheme. This
example is derived from [2].

Let {Un
j |0 ≤ j ≤ M − 1, 0 ≤ n ≤ N} be the numerical

solution of the proposed schemes andu(xj , tn) be the exact
solution at node(xj , tn). In order to estimate the error and
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convergence order of the proposed schemes, we define the
following error norms

L1 =

M−1
∑

j=0

|Un
j − u(xi, t

n)|h,

L2 =

(M−1
∑

j=0

|Un
j − u(xi, t

n)|2 h

)1/2

,

L∞ = max
0≤j≤M−1

|Un
j − u(xi, t

n)|,

and convergence order

order= log2
‖U2h − u‖

‖Uh − u‖
.

On the other hand, in order to measure the conservative
properties of the proposed schemes, the discrete invariants
and corresponding relative errors are respectively defined as

M(U (n)) = h

M−1
∑

k=0

U
(n)
k ,

K(U (n)) =
h

2

M−1
∑

k=0

(U
(n)
k )2,

H(U (n)) = h

M−1
∑

k=0

[

−
ε

6
(U

(n)
k )3 +

µ

2
U

(n)
k (D2U

(n))k
]

,

relative error= log10
|Ini − I0i |

|I0i |
.

In the following, unless we specify otherwise,µ = 1/242,
and computational domain is divided intoM cells. To
measure the orders of convergence in time, we compute
the numerical solutions with four different time step sizes
∆t = 0.1, 0.05, 0.025, 0.0125 and spatial step is chosen as
h = 1/200. This choice guarantees that the discretization
error in spatial direction can be neglected. The results are
presented in Tables I and III. The results show that the
convergence of the proposed schemes are second order as
expected. In addition, it is noted that the relative errors of
the mass and energy are also second order accuracy, which
is displayed in Figure 1.
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Fig. 1: The relative errors of the invariants versus time step.

On the other hand, in order to measure the error in spatial
direction, the time step size is chosen to be∆t =1.0e-05,
such that the discretization error in time direction can be
neglected. The results are presented in Tables II and IV. It is

observed that the proposed schemes reach spectral accuracy
in spatial direction, as expected.

We compare the proposed methods with the momentum-
preserving methods within references in terms of accuracy.
Table V shows that theL2-errors of different methods at
t = 10. It is observed that the proposed methods have smaller
errors than the implicit midpoint discontinuous Galerkin
method (IMDGM) in [2] and Crank-Nicholson discontinuous
Galerkin method (CNDGM) in [21] fork = 3, and the
proposed methods have larger errors than the schemes in
[25]. On the other hand, it is also noted that the CMFPM2
has smaller errors than the CMFPM1.

We now verify the conservative property of the proposed
methods, and compare it with a non-conservative Fourier
pseudo-spectral method (NCMFPM). Here, for convenience,
we consider the implicit Euler method for the time discretiza-
tion. The implicit Euler method, though only first order
in time, is easy to implement in simulating various wave
patterns and is also a non-conservative method. By resorting
to it, we derive the following NCMFPM,

Un+1 − Un

∆t
= −

η

2
D1(U

n+1)2 − µD3U
n+1,

whereD1 andD3 are Fourier differential matrices.

We start with thecnoidal-wavestest problem with∆t =
0.001 andM = 20, 40, 80, 160. Fig.2 and Fig.3 compare the
numerical solutions of three proposed methods att = 20. The
exact solution is provided as a reference in the plots. It is
clearly seen that the NCMFPM has a large phase errors, and
both CMFPM1 and CMFPM2 makes a good approximation
to the exact solution. Besides the large phase error, the
amplitude of the wave produced by the NCMFPM decays
as time increases. As is shown in Fig. 6b, the relative error
of the momentum of the CMFPM1 is about10−14, 10−8

for the CMFPM2, and10−1 for the NCMFPM. Thus, if
the momentum is not conserved, the amplitude of the wave
decrease with time. Fig. 5 presents the time evolution of
theL∞-error. It shows that theL∞-error of the conservative
methods have smaller errors. Indeed, at timet = 20, the error
of the NCMFPM is about297 times larger than the proposed
methods, and theL∞-errors of the proposed methods grow
linearly with time.

We also evaluate the long time behavior of the proposed
schemes. To this end, we setM = 80, time step∆t =
0.001, and the computation is done up to timet = 1000. The
numerical solutions of the proposed schemes are presented
in Fig. 7 and Fig. 8. The exact solution is also provided as
a reference in the plot. It is found that both methods make
a good approximation to the exact solution. TheL∞-error
and the relative errors of three invariants are presented in
Fig. 9 and Fig. 10. As is shown in Fig. 9b and Fig. 10, the
relative errors of the mass is about6×10−6; the momentum
is exactly conserved for the CMFPM1, and2× 10−8 for the
CMFPM2; the energy is about3×10−5 for the CMFPM1 and
the CMFPM2. From Fig. 9a, it is noted that theL∞-error of
the proposed methods increase linearly with time. This may
reflect the fact that all the solitons travel with well-preserved
shape and thus the principle part of the numerical error is
the phase error [22].
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TABLE I: The L1, L2 and L∞ errors and convergence orders in time for the CMFPM1.

∆t L1 order L2 order L∞ order
1/20 3.7380e-01 — 4.4000e-01 — 7.9010e-01 —
1/40 1.0240e-01 1.8681 1.2290e-01 1.8400 2.1990e-01 1.8452
1/80 2.7100e-02 1.9179 3.2100e-02 1.9368 5.5200e-02 1.9941
1/160 6.7000e-03 2.0161 8.1000e-03 1.9866 1.4200e-02 1.9588
1/320 1.7000e-03 1.9786 2.0000e-03 2.0179 3.7000e-03 1.9403

TABLE II: The L1, L2 and L∞ errors and convergence orders in space for the CMFPM1.

h L1 order L2 order L∞ order
1/10 5.5156e-04 — 6.3062e-04 — 8.7247e-04 —
1/20 1.1485e-05 5.5857 1.3227e-05 5.5752 2.1849e-05 5.3195
1/40 2.0793e-08 9.1094 2.4137e-08 9.0980 4.2917e-08 8.9918

TABLE III: The L1, L2 and L∞ errors and convergence orders in time for the CMFPM2.

∆t L1 order L2 order L∞ order
1/20 2.0930e-01 — 2.4200e-01 — 4.0720e-01 —
1/40 5.6500e-02 1.8892 6.4100e-02 1.9166 1.0610e-01 1.9403
1/80 1.4100e-02 2.0026 1.6200e-02 1.9843 2.6500e-02 2.0014
1/160 3.5000e-03 2.0103 4.1000e-03 1.9823 7.1000e-03 1.9001
1/320 8.8524e-04 1.9832 1.0000e-03 2.0356 1.8000e-03 1.9798

TABLE IV: The L1, L2 and L∞ errors and convergence orders in space for the CMFPM2.

h L1 order L2 order L∞ order
1/10 5.5156e-04 — 6.3062e-04 — 8.7247e-04 —
1/20 1.1485e-05 5.5857 1.3227e-05 5.5752 2.1849e-05 5.3195
1/40 2.0791e-08 9.1096 2.4142e-08 9.0977 4.3361e-08 8.9770

TABLE V: L2-errors of the numerical solutions obtained from the different methods for the cnoidal-wave problem;
comparisons with the exact solution at timet = 10.

M ∆t CMFPM1 CMFPM2 LCNFPM [25] LFFPM [25] IMDGM [2] CNDGM [21]
20 1.0e-02 2.0412e-01 1.0781e-01 7.6349e-02 8.6369e-02 1.5809e-01 1.5809e-01
40 2.5e-03 1.2859e-02 6.7632e-03 1.9825e-03 5.2702e-03 1.2153e-02 1.2153e-03
80 6.25e-04 8.0401e-04 4.2274e-04 2.2552e-04 3.3000e-04 1.2048e-03 1.2046e-03
160 1.5625e-04 5.0260e-05 2.6422e-05 1.5682e-05 2.0630e-05 1.3999e-04 1.4093e-04
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Fig. 2: Numerical approximations of the cnoidal-wave problem using the CMFPM1, CMFPM2, and NCMFPM; comparisons
with the exact solution at timet = 20 with ∆t = 0.001.(a) 20 uniform elements,(b)40 uniform elements.

B. Example 2

In this example, we consider again the KdV equation with
ε = 1, µ = 1. The KdV equation has the following two

solitary waves

u(x, t) =
12

(1 + eθ1 + eθ2 + a2eθ1+θ2)2
[k21e

θ1 + k22e
θ2+

2(k2 − k1)
2eθ1+θ2 + a2(k22e

θ1 + k21e
θ2)eθ1+θ2 ],

(16)
wherea2 =

(

k1−k2

k1+k2

)2
= 1

25 , θ1 = k1x−k31t+x1, θ2 = k2x−
k32t+x2. In the following, we setk1 = 0.4, k2 = 0.6, x1 = 4,
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Fig. 3: Numerical approximations of the cnoidal-wave problem using the CMFPM1, CMFPM2, and NCMFPM; comparisons
with the exact solution at timet = 20 with ∆t = 0.001.(a) 80 uniform elements,(b)160 uniform elements.
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Fig. 6: Time history of the relative errors of the invariants obtained from the CMFPM1, CMFPM2, and NCMFPM with
∆t = 0.001 and80 uniform elements. (a) energy,(b) momentum.

x2 = 15, and the solution region is chosen as[−40, 40]. The
above solution represents a two solitary waves, i.e., a tall

solitary wave and a short one, both solitary waves travel
from left to right at a constant speed, and the speed of the
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Fig. 7: Numerical solutions att = 0, 200 with ∆t = 0.001 and80 uniform elements. (a)t = 0,(b) t = 200.
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and80 uniform elements. (a)L2-errors,(b) mass errors.

tall one is bigger than the short one.

For computation, we setM = 160, time step∆t = 0.1,

and the computation is done up to timet = 120. The
numerical solutions at four different times are presented in
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Fig. 10: The relative errors of the momentum and energy using the CMFPM1 and the CMFPM2 with∆t = 0.001 and80
uniform elements. (a) momentum errors,(b) energy errors.
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Fig. 11: Numerical solutions att = 0 and t = 60 with ∆t = 0.1 and160 uniform elements.(a)t = 0,(b) t = 60.
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Fig. 4: Numerical solutions of the cnoidal-wave problem
using the CMFPM1, CMFPM2, and NCMFPM; comparisons
with the exact solution at timet = 200.

Fig. 11 and Fig. 12. The exact solution is provided as a
reference in the plots. The plots show that the numerical
solutions agree quite well with the exact solution. As is
shown in Fig. 11 and Fig. 12, att = 0, the tall one located

on the left of the short one, att = 60, the tall one catches
up the short one, att = 80, the tall one and the short one
overlap together, and att = 120, the tall one and the short
one exchange the positions.

C. Example 3

In this example, we consider the KdV equation (1) with
ε = 1 andµ = 1 over the interval[−150, 150]. It has the
following initial condition

u(x, 0) =

5
∑

i=1

12k2i sech
2(ki(x− xi)), (17)

whereki, xi are constants.

k1 = 0.3, k2 = 0.25, k3 = 0.2, k3 = 0.2, k4 = 0.15, k5 = 0.1,

x1 = −120, x2 = −90, x3 = −60, x4 = −30, x5 = 0.

and adopt the periodic boundary condition. This example
is derived from [14]. Here, for computation, setk1 = 0.3,
k2 = 0.25, k3 = 0.2, k3 = 0.2, k4 = 0.15, k5 = 0.1,
x1 = −120, x2 = −90, x3 = −60, x4 = −30, x5 = 0,
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M = 256, and ∆t = 0.02. The numerical solution of
the CMFPM1 is presented in Fig. 13a. The initial solution
and the numerical solution of CMFPM1 att = 600 are
presented in Fig. 13b. It shows that the wave with taller
amplitude travels faster than the other waves, and the shape
and the amplitude are preserved very well at the final time.
We believe that the conservative properties of the proposed
schemes play a critical roles. Indeed, as illustrated in Fig. 14,
the CMFPM1 can exactly conserve the discrete momentum
to machine precision, and the CMFPM2 to5× 10−7.

D. Example 4

Like in the pioneering paper [3], we consider the KdV
equation withµ = 0.0222 in the periodic domain[0, 2], and
assume the following initial condition

u(x, 0) = cos (πx),

The solution starts with a cosine wave and latter on develops
a train of 8 solitons, which travel at different speeds and
interact with each other, see [3] for detailed description of
the solution. This example is derived from [24]. According to
[24], there are several critical moments in the development of
the solution: (i)t = tB = 1

π , the so-called breakdown time,
(ii) t = 3.6tB, a train of 8 solitons have been developed,
(iii) t = 0.5tR, wheretR = 30.4tB, all the odd-numbered

solitons overlap atx = 0.385 and all the even-numbered
ones overlap atx = 1.385, and (iv) t = tR = 30.4tB, the
so-called recurrence time, at which one expects to recover the
initial condition. In the following test, we setM = 200 and
∆t = 0.005

π . The numerical solution of the CMFPM1 over
t ∈ [0, 3.6tB] is displayed in Fig. 15a, from which we clearly
see8 solitons. In Fig. 15b, we show the numerical solutions
at different critical times. The plot shows that, at timetB, the
solution start to breakdown and at timet = 3.6tB, we discern
a train of8 solitons. These results are in well agreement with
the ones of [24], [31].

As in [24], [31], we then carry out the computation up to
the time0.5tR, tR, 2tR, 5tR, 10tR and 20tR. The results
are presented in Fig. 16. It is shown that these numerical
solutions are smooth and stable, since no spurious oscillation
are observed in the solution. Our results are agree quite
well with the ones of [31], but differ from the ones of [24]
after 10tR. On the other hand, to show the interactions of
solitons in the solution, we display the (x-t)-contour plots
of the numerical solutions in the time interval[0, tR] and
[19tR, 20tR] in Fig. 17.

E. Example 5

In this example, we consider the following linear KdV
equation







ut − ux + uxxx = 0, 0 ≤ x ≤ 2π, t > 0,
u(x, 0) = sin (x), 0 ≤ x ≤ 2π,
u(0, t) = u(2π, t), t > 0,

which has the following exact solution

u(x, t) = sin (x+ 2t).

Firstly, we use this solution to check the accuracy and con-
vergence rate of the proposed methods. To obtain the order of
convergence in time, set∆t = 1/5, 1/10, 1/20, 1/40, 1/80,
h = 1/160, and the computation is done up to timet = 1.
The numerical errors and the order of convergence are
presented in Tables VI and VII. The results show that the
proposed methods achieves second order accuracy in time,
as expected.

Secondly, we use this solution to check the long time
behavior and the conservative properties of the proposed
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methods. To this end, setM = 40, ∆t =2.5e-03, and the computation is done up to timet = 1000. The numerical
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TABLE VI: The L1, L2 andL∞ errors and convergence orders in time for the CMFPM1.

∆t L1 order L2 order L∞ order
1/5 3.3260e-01 — 1.4740e-01 — 8.3200e-02 —
1/10 1.0420e-01 1.6744 4.6200e-02 1.6738 2.6000e-02 1.6781
1/20 2.6500e-02 1.9753 1.1700e-02 1.9814 6.6000e-03 1.9780
1/40 6.7000e-03 1.9838 2.9000e-03 2.0124 1.7000e-03 1.9569
1/80 1.7000e-03 1.9786 7.3825e-04 1.9739 4.1651e-04 2.0291

TABLE VII: The L1, L2 and L∞ errors and convergence orders in time for the CMFPM2.

∆t L1 order L2 order L∞ order
1/5 1.0420e-01 — 4.6200e-02 — 2.6000e-02 —
1/10 2.6500e-02 1.9753 1.1700e-02 1.9814 6.6000e-03 1.9780
1/20 6.7000e-03 1.9838 2.9000e-03 2.0124 1.7000e-03 1.9569
1/40 1.7000e-03 1.9786 7.3825e-04 1.9739 4.1651e-04 2.0291
1/80 4.1660e-04 2.0288 1.8461e-04 1.9996 1.0416e-04 1.9995

results are displayed in Fig. 18, Fig. 19, Fig. 20, and Fig.
21. From the Fig. 18a, the Fig. 19 and the Fig. 20, it is clearly
seen that the proposed methods are very stable in long time
simulation, and the numerical solutions are perfectly matched
with the exact solution, i.e., the phase errors are vary small,
see Fig. 19 and Fig. 20. Fig. 18b shows that theL∞-errors
increase linearly with time, and the CMFPM2 has smaller
error than the CMFPM1. On the other hand, as is shown in
Fig. 21, the CMFPM1 and the CMFPM2 can conserve both
the discrete momentum and the discrete energy.

V. CONCLUSIONS

In this paper, two momentum-preserving Fourier pseudo-
spectral schemes are developed for solving the KdV equation.
Both schemes are analyzed to show that they can precisely
conserve the discrete momentumK. The proposed schemes
are more accurate than the non-conservative scheme, i.e., the
schemes produce smallerL∞ errors and smaller phase errors.
On the other hand, the CMFPM1 can precisely conserve the
discrete momentumK, the CMFPM2 only approximately
conserve the discrete momentum, and the proposed methods
all can conserve the discrete mass and energy in the approx-
imately sense.
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