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A Class of Momentum-Preserving Fourier
Pseudo-Spectral Schemes for the Korteweg-de
Vries Equation

Jin-Liang Yan and Liang-Hong Zheng

Abstract—The invariant preserving is one of important three conservation laws are
factors in designing numerical algorithms. The structure-

preserving algorithms often have better stability and long time b

tracking ability than nonconservative schemes. In this paper, M = / udz,

based on the bi-Hamiltonian structure of the wave equation, a

a class of momentum-preserving Fourier pseudo-spectral algo- 1 b 9

rithms are proposed for the Korteweg-de Vries (KdV) equation. K= 9 / u” du,
a

The proposed schemes can conserve the discrete momentum b
to machine precision, and have smaller phase and amplitude H _/ [_ lgug —i—l u2:| de
errors than the nonconservative scheme. At last, some examples o 6 2“ z ’
are presented to validate the effectiveness of the proposed ¢

schemes. which are respectively named mass, momentum and energy.
Index Terms—Momentum; Bi-Hamiltonian systems; Fourier In scientific research, it is often difficult or even impossible
Pseudo-Spectral method; KdV equation to obtain the exact solution of the nonlinear equation. Thus,

we often have to resort to numerical simulation [6]-[8].
The numerical simulations of the KdV equation can capture
a series of interesting wave phenomena, such as solitary
I. INTRODUCTION wave, the interaction of two solitary waves, and so on.
Many numerical methods have been used to solve the KdV

N this paper. we consider the numerical aporoximation gﬁuation, such as finite difference methods [9]-[11], finite
baper, pp ement methods [12]-[14], finite volume methods [15],

. . ; e
the following Korteweg-de Vries (KdV) equation [16], spectral methods [17]-[19], and discontinuous Galerkin

methods [20]-[22], and so on.
Up + EUUL + PUgze = 0, () Numerous theoretical and experimental results show that
the structure-preserving algorithms often have good numer-

wheree and 1 are given constants. The KdV equation ugﬂal properties, i.e., the excellent ang—time behavior, the
is a nonlinear partial differential equation (PDE), which wa ear error growth, af_“?' smaller amplitude an_d phase Eerrors,
originally described the propagation of a solitary wave on tf1d SO on. In the spirit of structure-preserving algorithms,

water surface. The KdV equation is one of the simplest mofl- 900d numerical method should preserve the physical
els featuring nonlinear convection (the term,) and linear quantities underlying the partial differential equations as

dispersion (the higher-order termy...,) [2]. The interaction far as possible. This presents a challenge for accurate and

of the dispersion term and the nonlinear term will producdficient numerical simulations, as the proposed schemes
permanent and localized wave forms; This phenomenon witPuld conserve the invariants of the KdV equation as
first observed numerically by Zabusky and Kruskal (196®00n as possible. Researchers have proposed many structure-

[3], long after John Scott Russell's experimental observatigieServing algorithms for the KdV equation. For example,
of solitons in 1834. symplectic algorithms [23], energy-preserving algorithms

20], [22], [24], and the momentum-preserving algorithm
The KdV equation is a completely integrable equation [4L I 122], [24] um-preserving aigorithms

: 121, [21], [25], and so on.
and has an infinite number of conservation laws [5], the fir t] [21], [25] S

In fact, the KdV equation is a bi-Hamiltonian system. On
the one hand, the KdV equation is a Hamiltonian PDE [26],
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On the other hand, the KdV equation can also be refomhere N'(u) is a skew-symmetric operator. Eq.(5) satisfies

mulated as another Hamiltonian form [27], the following momentum conservation law
du oK 1t K )
= i S — =0, e, K=C.
Fy N(u)(éu)’ K 2/11 u” dz, (3) 7
9 | 2 1 . . . In fact,
whereN (u) = —(02 + Fud, + 30,u) is a linear and anti-
symmetric operator. Based on the above property, we can K= (VK)'a = (VK)'N(u)VK =0,

construct various momentum-preserving algorithms. . )
The focus of the present paper is on the momentuffh€re VK denotes the gradient o€ and« represents the
preserving schemes, which is based on the second Harffrvative ofu with respect tor.
tonian system, i.e., Eq. (3). To our knowledge, the scheme
has been considered in the context of multi-symplectic PDBs Space discretization

in [28]. It is shown that this scheme exactly preserves the|n this paper, we consider the KdV equation (5) over the
local momentum, as well as multi-symplectic conservatiqiteryal I = [a,b], andz; = a + jh, (j =0,1,...,M — 1)

law. In addition, Bona et al. [2] constructed a class of coRfenote the mesh nodés= (b—a)/M represents the spatial
servative discontinuous Galerkin schemes for the generalizgdp, andis is a even number. In the following, lat =
Korteweg-de Vries equation. The schemes can precisely cop; v, ... uy_1)7, andu; (0 < i < M — 1) denotes the
serve the discrete mass and momentum. Liu [21] proposgghroximation tou(z;, ¢).

a direct discontinuous Galerkin method based on the Seconq'he crucial Step of the Fourier pseudo_spectral method is

Hamiltonian system of the KdV equation. to approximate the partial differential operators. From [29],
In this paper, we shall construct two high-ordefe know that the first-order partial differential operathyr

momentum-preserving schemes based on the Eq. (3). V¥gids the Fourier spectral differential matd, the second-

first approximated the spatial derivative of the KdV equatiogrder partial differential operatod,, yields the Fourier

by using the Fourier pseudo-spectral method, and obtajpectral differential matrixD,. Here D is a M x M skew-
a semi-discretized system, which can exactly conserve Wgnmetric matrix with elements

semi-discrete momentum. Subsequently, two second-order . o
accurate finite difference methods are employed to discretize (Dy) _ {5(—1)rn+n cot(wimstn)  m £ n, ©)

the resulting ordinary differential equations (ODESs) and two 0, m=n.
fully discrete momentum-preserving schemes are derived. . . L
In this paper, we will investigate the effectiveness o?ndD? Is a M x M symmelric matrix with elements
the proposed schemes, in particular discretization errors, Lo (—ymintl L £,
wave amplitude, and phase errors are discussed. The resulf82)m.n = o 1242 sin®(wSmg =) -
demonstrate that the conservative properties of the numerical YT m=.

methods could be critical in obtaining the long time behavior In particular, the partial differential operatars and .,

of the solutions. are respectively approximated %, u and Dsu. Therefore,
The paper is organized as follows. In Sectibh, we first we have the following semi-discrete scheme
approximate the spatial derivatives of the KdV equation by du SK

the Fourier pseudo-spectral method and obtain corresponding — =N(u)—, (8)
semi-discrete scheme. Then in Sectib®, we discretize the dt ou

above semi-discretized system using two second-order acéfiere N (u) = —3(diag(u)Dy + Didiag(a)) — uDs, and
rate finite difference methods. In Secti®nwe investigate the K= EuTu-

conservative properties of the semi-discrete scheme and thé is clearly seen thak is also conservative after spatial
fully discrete schemes. Finally, in Sectidnsome examples Seémi-discretization. In fact, by (8), we have

are presented to validate the effectiveness of the proposed du

1
schemes. T JuVEK(u), Jy = EN(U% (9)

where N'(u) is a skew-symmetric matrix, i.eA(u)? =
Il. MOMENTUM-PRESERVINGFOURIER ~N(u). Thus
PSEUDOSPECTRAL METHODS '
In this section, the momentum-preserving Fourier pseudoiK(u) = VK (t) = VK(u)" N(u)VK (u) = 0.
spectral methods are proposed for the following KdV equa-

tion B. Time discretization
Ut = —EUUL — UUgza, (4) . . .
) o N We now turn to time discretization of Eq. (8). Denofe=
subject to periodic boundary condition nt, Qar = {t,]0 < n < N}, At = T/N denotes the time
w(a,t) = u(b, t), step, andV is a positive integer. Suppoge= {U"|0 < n <

N} is a grid function orf24;. For convenience, introducing
whereu(z,t) is the exact solution of (4), and y, a andb  the following notations:
are constants.

: . f : n+1/2 1 n n+1 771 1
Eq. (4) can be rewritten as the following Hamiltonian formé = E(t +¢"Y), U7 =<

oK

Ea

(Un+1 + Un + Unfl),

w

ug = N (u) N(u) = fg(ué?z + 0p) = pOras, (5) U2 = %(U" +Uth, TV = %(U"“/Q + U2,
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Firstly, we employ the leap-frog scheme, and(u) is [ ]
. —n,1
approximated byV(U""), Theorem 111.2. Let U™+1/2 be the solution of the scheme
grtt gt NT™! urtl 4 yn—t 10 (11) and (12), and assume it satisfies the periodic boundary
IAL =N( ) 2 ' (10) condition, then the solution of the scheme (11) satisfies
wheren =1,2,...,T/At. B 1
—=n n — n n
On the other hand, iV'(u) is approximated by/™>, we K (U™"/?) = K(U'?), KU/ ~ 5 DT,
have k=0
yntl _pn-1 —po Untl/2 4 gn—1/2 wheren =1,2,...,T/At — 1.
e =N{T") . , (1) _ _ .
2At 2 Proof: By computing theL? inner product of (11) with
wheren = 1,2,...,T/At. (Un+1/2 4 Uyn=1/2) /2, we have
Remark 11.1. In what follows, for convenience, the first  Unt+1/2 — yn-1/2 pyn+1/2 4 n-1/2
scheme is named CMFPM1 and the second one is named At ’ 2
CMFPM2. (N(UTL’Q)UnHN +yn—1/2 gntl/2 4 gn-1/2
Remark 11.2. The CMFPM1 and the CMFPM2 are two 2 ’ 2 ’

three-level momentum-preserving schemes. The initial VaWﬁereN(U"’Q) is a M x M skew-symmetric matrix, thus
U' is approximated by the the following momentum-

preserving scheme é([(((]nﬂ/?) — K(U”—l/Q))
Ut -u° U+ Ut [n+1/2 n—1/2 nt1/2 n—1/2
— ) 12 _ +U T =n2 U +U B
N Jo(U?) 5 (12) = ( 5 ) NT) 5 = 0.
IIl. CONSERVATIVE PROPERTY OF THE PROPOSED Thus,
SCHEMES KU™/?) = KUY?), n=1,2,... T/At—1.
In this section, we analyze the conservative properties of
the CMFPM1 and the CMFPM2. u

and (12), and assume it satisfies the periodic boundary

condition, then the solution of the scheme (10) satisfies In this section, we will consider the following five test

problems: the propagation of a single solitary wave (see

. 0 . 1 M - Figure 7), the interaction of two solitary waves (see Figure

KU") =K({U"), K(U")~ D) Z(UU h, (13) 11), the interaction of five solitary waves (see Figure 13), the

k=0 Zabusky-Kruskal's problem (see Figure 15), and the linear

wheren =1,2,...,T/At. KdV equation (see Figure 18). Through these numerical

examples, we show that the proposed schemes are effective
in simulating the KdV equation, and that they can precisely
conserve the discrete momentum.

Proof: By computing theL? inner product of (12) with
(U°+U"Y) /2, we have

Ul _ UO UO +U1 UO +U1 UO + Ul

) = N(UO) ) )
( At 2 )= 2 2 ) A. Example 1
o . .
where NV (U?) is a M x M skew-symmetric matrix, thus In this example, we consider the following initial value
1 U+ Ut Ul +yut roblem
KUK ) = () N0 - =0, P
At 2 2 Ug + Uy + fUgee =0, T € [Oa 1]; t>0, (14)
then u(z,0) = uo(z), =z €1]0,1],
KUY = K(UY).

subject to periodic boundary conditions. Eqg. (14) has the
Similarly, by computing the? inner product of (10) with following cnoidal-wavesolution,
(Ut +Un—1)/2, we have

u(z,t) = Acn®*(AW(m)(x — vt — x0)), (15)
Un+1 _ Un—l U7L+1 + Un—l
9AL ; 5 wherecn(z : m) is the Jacobi elliptic function with modulus
LU gl gl gl m = 0.9, A = 192muW?(m), v = 64u(2m — 1)W?(m),
=WNT™) 5 , 5 , and zo = 1/2. Here, the functionV(m) is the complete
- elliptic integral of the first kind. It is worth noting that
where V(U ") is aM x M skew-symmetric matrix, thus the cnoidal-wavess a kind of stable solutions of the time
1 i . dependent problem [30], so numerical errors will not lead
5 (EWU™) = K(U") to instabilities of the continuous problem. Thus, any insta-
Untl L ygn-1_ 5 . yntl 4yl bility that appears is caused by the numerical scheme. This
= (f) NUT ) = =0, example is derived from [2].
Therefore Let {U'0 < j <M —1,0 <n < N} be the numerical
' solution of the proposed schemes ar(d;, ¢,) be the exact
KU"=KU", n=12,....,T/At—1. solution at nod€z;,t,). In order to estimate the error and
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convergence order of the proposed schemes, we define dhserved that the proposed schemes reach spectral accuracy

following error norms in spatial direction, as expected.
M—1 We compare the proposed methods with the momentum-
L= Z \UF = u(zi, t™)| h, preserving methods within references in terms of accuracy.
j=0 Table V shows that thd.s-errors of different methods at
M—1 1/2 t = 10. Itis observed that the proposed methods have smaller
Ly = ( Z %4 —u(zy, t))? h> , errors than the implicit midpoint discontinuous Galerkin
§=0 method (IMDGM) in [2] and Crank-Nicholson discontinuous
Lo = max U@ —u(x;,t")], Galerkin method (CNDGM) in [21] fork = 3, and the
0sjsM—1 proposed methods have larger errors than the schemes in
and convergence order [25]. On the other hand, it is also noted that the CMFPM2
| Ush — u has smaller errors than the CMFPM1.
order= logzm- We now verify the conservative property of the proposed

methods, and compare it with a non-conservative Fourier

On the other hand, in order to measure the conservatiygq ,qo-spectral method (NCMFPM). Here, for convenience,

properties of the proposed schemes, the discrete invariagis .onsider the implicit Euler method for the time discretiza-
and corresponding relative errors are respectively deflnedt%%_ The implicit Euler method, though only first order

M-1 ) in time, is easy to implement in simulating various wave
M@U™) =h Z U, patterns and is also a non-conservative method. By resorting
k=0 to it, we derive the following NCMFPM,
M-1
h
)y _ (n)y2
K(U ) 2 kZO (Uk ) ’ Un-H —_yn B 777D (U"L-‘rl)? _uD UTL+1
M1 At 28 PESE
n)y _ € rr(n Hor(n) (n)
HU™) =h — 2™y + Eulm (D,u )y,
P [ 6 27" ] where D; and D3 are Fourier differential matrices.
lat |1 — 19 We start with thecnoidal-wavedest problem withAt =
relative error= logio o] 0.001 and M = 20, 40, 80, 160. Fig.2 and Fig.3 compare the

) . . ) numerical solutions of three proposed methods-at20. The

In the following, unless we specify otherwige= 1/24%, oy act solution is provided as a reference in the plots. It is
and computational domain is divided intd/ cells. To (oqry seen that the NCMFPM has a large phase errors, and
measure the orders of convergence in time, we compygih cMEPM1 and CMEPM2 makes a good approximation
the numerical solutions with four different time step size§ he exact solution. Besides the large phase error, the

At = 0.1,0.05,0.025,0.0125 and spatial step is chosen ag,yjitude of the wave produced by the NCMFPM decays
h = 1/200. This choice guarantees that the discretizati time increases. As is shown in Fig. 6b, the relative error

error in spatial direction can be neglected. The results 8¢ he momentum of the CMFPM1 is aboli®—'4. 10-3

presented in Tables | and lll. The results show that thg, the cMEPM2 and10-! for the NCMFPM. Thus. if

convergence of the proposed schemes are second ordef,@Synomentum is not conserved, the amplitude of the wave

expected. In addition, it is noted that the relative errors @f,rease with time. Fig. 5 presents the time evolution of

the mass and energy are also second order accuracy, Whil;, _error. It shows that thé..-error of the conservative
is displayed in Figure 1. methods have smaller errors. Indeed, at tirse 20, the error
of the NCMFPM is abou297 times larger than the proposed
methods, and thé .-errors of the proposed methods grow

linearly with time.
10t N We also evaluate the long time behavior of the proposed
o schemes. To this end, we s&f = 80, time stepAt =

-2

10

8 .
g 0.001, and the computation is done up to time- 1000. The
5 10° numerical solutions of the proposed schemes are presented
S in Fig. 7 and Fig. 8. The exact solution is also provided as
jg . o CMEPM1 mass a reference in the plot. It is found that both methods make
10 ° gmm; energy|| a good approximation to the exact solution. Thg,-error
+ CMFPM2 rennf;y and the relative errors of three invariants are presented in
1070 L Ty Fig. 9 and Fig. 10. As is shown in Fig. 9b and Fig. 10, the
107 10 10° relative errors of the mass is abduk 10~%; the momentum

Bt is exactly conserved for the CMFPM1, ack 10~8 for the

Fig. 1: The relative errors of the invariants versus time ste@MFPM2; the energy is abo@t< 10~° for the CMFPM1 and
the CMFPM2. From Fig. 9a, it is noted that tlig,-error of
On the other hand, in order to measure the error in spattake proposed methods increase linearly with time. This may
direction, the time step size is chosen to Aé =1.0e-05, reflect the fact that all the solitons travel with well-preserved
such that the discretization error in time direction can k#hape and thus the principle part of the numerical error is
neglected. The results are presented in Tables Il and IV. Ittlee phase error [22].

(Advance online publication: 20 November 2019)
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TABLE I: The Ly, L, and L, errors and convergence orders in time for the CMFPML1.

At Ly order Lo order Loo order
1/20 3.7380e-01 — 4.4000e-01 — 7.9010e-01 —
1/40 1.0240e-01 1.8681 1.2290e-01 1.8400 2.1990e-01 1.8452
1/80 2.7100e-02 1.9179 3.2100e-02 1.9368 5.5200e-02 1.9941
1/160 6.7000e-03 2.0161 8.1000e-03 1.9866 1.4200e-02 1.9588
1/320 1.7000e-03 1.9786 2.0000e-03 2.0179 3.7000e-03 1.9403

TABLE II: The Ly, L, and L., errors and convergence orders in space for the CMFPML1.

h Ly order Lo order Loo order
1/10 5.5156e-04 — 6.3062e-04 — 8.7247e-04 —
1/20 1.1485e-05 5.5857 1.3227e-05 5.5752 2.1849e-05 5.3195
1/40 2.0793e-08 9.1094 2.4137e-08 9.0980 4.2917e-08 8.9918

TABLE Ill: The L, L, and L, errors and convergence orders in time for the CMFPM2.

At Ly order Lo order Loo order
1/20 2.0930e-01 — 2.4200e-01 — 4.0720e-01 —
1/40 5.6500e-02 1.8892 6.4100e-02 1.9166 1.0610e-01 1.9403
1/80 1.4100e-02 2.0026 1.6200e-02 1.9843 2.6500e-02 2.0014
1/160 3.5000e-03 2.0103 4.1000e-03 1.9823 7.1000e-03 1.9001
1/320 8.8524e-04 1.9832 1.0000e-03 2.0356 1.8000e-03 1.9798

TABLE IV: The L4, Ly and L, errors and convergence orders in space for the CMFPM2.

h Ly order Lo order Loo order
1/10 5.5156e-04 — 6.3062e-04 — 8.7247e-04 —
1/20 1.1485e-05 5.5857 1.3227e-05 5.5752 2.1849e-05 5.3195
1/40 2.0791e-08 9.1096 2.4142e-08 9.0977 4.3361e-08 8.9770

TABLE V: Ls-errors of the numerical solutions obtained from the different methods for the cnoidal-wave problem;

comparisons with the exact solution at tirhe- 10.

M At CMFPM1 CMFPM2 LCNFPM [25] LFFPM [25] IMDGM [2] CNDGM [21]
20 1.0e-02 2.0412e-01 1.0781e-01 7.6349e-02 8.6369e-02 1.5809e-01 1.5809e-01
40  2.5e-03 1.2859e-02 6.7632e-03 1.9825e-03 5.2702e-03 1.2153e-02 1.2153e-03
80  6.25e-04 8.0401e-04 4.2274e-04 2.2552e-04 3.3000e-04 1.2048e-03 1.2046€-03
160 1.5625e-04 5.0260e-05 2.6422e-05 1.5682e-05 2.0630e-05 1.3999e-04 1.4093e-04
3 3
—exact —exact
25l o CMFPM1 | 25 o CMFPM1 |
* CMFPM2 * CMFPM2

oL * NCMFPM . J

-0.5¢ 1 -0.5¢ 1
-1 I I I I -1 I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
@) (b)

Fig. 2: Numerical approximations of the cnoidal-wave problem using the CMFPM1, CMFPM2, and NCMFPM; comparisons
with the exact solution at time= 20 with A¢ = 0.001.(a) 20 uniform elements,(b30 uniform elements.

B. Example 2 solitary waves

12
- (1+ efr + ef2 + a2691+6’2)
2(ky — k1)?e" T2 + a® (k3e” + kie’)e” 0],

u(z,t) = 3 (ke + k3e2+

(16)
In this example, we consider again the KdV equation witwherea? 21123)2 = 5,01 = kya—kit+z1, 03 = ko —

e = 1, p = 1. The KdV equation has the following two k3t+x. In the following, we set; = 0.4, ko = 0.6, 1 = 4,

(Advance online publication: 20 November 2019)
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3 : 3
exact exact

25 = CMFPM1 ] 25 = CMFPM1

+ CMFPM2 + CMFPM2

ol * NCMFPM ol * NCMFPM

15} 15}
s 1 s 1
0.5 0.5
0] 02
-0.5 -0.5
1 02 0.4 0.6 08 1 1 02 0.4 0.6 08 1
X X
(@) (b)

Fig. 3: Numerical approximations of the cnoidal-wave problem using the CMFPM1, CMFPM2, and NCMFPM; comparisons
with the exact solution at time= 20 with A¢ = 0.001.(a) 80 uniform elements,(b)60 uniform elements.

2

T 2 T
x CMFPM1 ——CMFPM1
+ CMFPM2 ——CMFPM2
NCMFPM M + CMFPM3
1.5} 15 —NCMFPM||
5 5
5 1r o 1
8 8
- —
0.5 05
[o; 0 —————————— O —
0 5 10 15 20 0 50 100 150 200
t t
(@) (b)

Fig. 5: Time history of thd..-error of the numerical approximations obtained from the CMFPM1, CMFPM2, and NCMFPM
for the cnoidal-wave problem withh¢ = 0.001 and a uniform mesh witl80 elements.(a) t=20,(b) t=200.

10 T T T 100 . T
Wﬁ'
——CMFPML1
%10" | g —+ CMFPM2
o P S . s —+—NCMFPM
2 107 ¢ 1
£
o S
s ——CMFPM1 E
S 10 ——CMFPM2 | S
= L NeMEPM 5 WWW
o @
g 2107 1
< T
r.%?‘ ReA ez @
Ik L L 10_15 L Il L
0 50 100 150 200 0 50 100 150 200
t t
(@) (b)

Fig. 6: Time history of the relative errors of the invariants obtained from the CMFPM1, CMFPM2, and NCMFPM with
At = 0.001 and80 uniform elements. (a) energy,(b) momentum.

x9 = 15, and the solution region is chosen|asl0, 40]. The solitary wave and a short one, both solitary waves travel
above solution represents a two solitary waves, i.e., a thbm left to right at a constant speed, and the speed of the
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2
—e—Exact
——CMFPML1
1.5+ —— CMFPM2 |
s 1f B
0.5f b
0 | s L L B L
0 0.2 0.4 0.6 0.8 1
X
() (b)

Fig. 7: Numerical solutions at= 0,200 with At = 0.001 and80 uniform elements. (a) = 0,(b) ¢t = 200.

2 :
2 : —e—Exact
——Exact ——CMFPM1
——CMFPM1 —— CMFPM2

— CMFPM2

15
15

sl

0.5
0.5 X

% 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(@) (b)
Fig. 8: Numerical solutions at= 500 and 1000 with At = 0.001 and 80 uniform elements. (a) = 500,(b) ¢ = 1000.
-5
1.4%10 : : : ,
e [rev=vi ‘ ‘ ‘ —o— CMFPML
—— CMFPM2 1.2t I dk —_ CMFPM2
0.3 ] ‘
0.25/ ] i | Pl (S I
\
S H
5 02 | £ 038y \ i i 1
T 2
_® 015} 1 £ 06 A ‘ |
0.1r | 0.4 \ b \
0.05} ] 0.2 ' 3 " 4
% 200 400 600 800 1000 0 200 400 600 800 1000
t t
(@) (b)

Fig. 9: Time history of thel..-error, the relative errors of the mass using the CMFPM1 and the CMFPM2Awith 0.001
and80 uniform elements. (a].2-errors,(b) mass errors.

tall one is bigger than the short one. and the computation is done up to tinte= 120. The
For computation, we set/ = 160, time stepAt = 0.1, numerical solutions at four different times are presented in
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Fig. 10: The relative errors of the momentum and energy using the CMFPM1 and the CMFPM2#with.001 and 80
uniform elements. (a) momentum errors,(b) energy errors.
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Fig. 11: Numerical solutions d@t= 0 and¢ = 60 with A¢ = 0.1 and 160 uniform elements.(a) = 0,(b) ¢t = 60.

— exact on the left of the short one, at= 60, the tall one catches
250 ity up the short one, at = 80, the tall one and the short one
ol + NCMFPM| overlap together, and @t= 120, the tall one and the short

one exchange the positions.

C. Example 3

In this example, we consider the KdV equation (1) with
e =1 andu = 1 over the interval—150, 150]. It has the

0.5 ] following initial condition
o 0.2 0.4 0.6 08 1 5
X u(z,0) = Z 12kZ sech® (ki (z — ;)), a7)
Fig. 4: Numerical solutions of the cnoidal-wave problem i=1

using the CMFPM1, CMFPM2, and NCMFPM; comparisongherek;, z; are constants.
with the exact solution at time = 200.
ki =0.3,ky =0.25 ks =0.2,ks = 0.2, ks = 0.15, k5 = 0.1,
Tr1 = —120,]}2 = —90,1)3 = —60,$4 = —30,$5 =0.
Fig. 11 and Fig. 12. The exact solution is provided as and adopt the periodic boundary condition. This example
reference in the plots. The plots show that the numeridal derived from [14]. Here, for computation, skt = 0.3,

solutions agree quite well with the exact solution. As i, = 0.25, ks = 0.2, ks = 0.2, ky = 0.15, k5 = 0.1,
shown in Fig. 11 and Fig. 12, &t= 0, the tall one located z; = —120, 3 = —90, 23 = —60, x4 = —30, z5 = 0,
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Fig. 12: Numerical solutions d@t= 80 andt = 120 with At = 0.1 and 160 uniform elements. (a) = 80,(b) ¢t = 120.

x10~

solitons overlap atz = 0.385 and all the even-numbered
ones overlap at = 1.385, and (iv)t = tg = 30.4tp, the

——CMFPM1
——CMFPM2
so-called recurrence time, at which one expects to recover the
initial condition. In the following test, we set/ = 200 and

At = 295 The numerical solution of the CMFPM1 over

t € [0, 3.6t5] is displayed in Fig. 15a, from which we clearly
see8 solitons. In Fig. 15b, we show the numerical solutions
at different critical times. The plot shows that, at time the
solution start to breakdown and at time- 3.6¢ 5, we discern

a train of8 solitons. These results are in well agreement with
the ones of [24], [31].

As in [24], [31], we then carry out the computation up to
the time0.5tR, tgr, 2tg, 5tgr, 10tg and 20tr. The results
are presented in Fig. 16. It is shown that these numerical
solutions are smooth and stable, since no spurious oscillation
are observed in the solution. Our results are agree quite
M = 256, and At = 0.02. The numerical solution of well with the ones of [31], but differ from the ones of [24]
the CMFPML is presented in Fig. 13a. The initial solutioafter 10¢z. On the other hand, to show the interactions of
and the numerical solution of CMFPM1 at= 600 are solitons in the solution, we display the (x-t)-contour plots
presented in Fig. 13b. It shows that the wave with tallef the numerical solutions in the time intervfll, tz] and
amplitude travels faster than the other waves, and the shap# 5, 20t ] in Fig. 17.
and the amplitude are preserved very well at the final time.

We believe that the conservative properties of the proposed Example 5

schemes play a critical roles. Indeed, as |II_ustrated inFig. 14,1 this example, we consider the following linear KdV
the CMFPML1 can exactly conserve the discrete momenttgauation

to machine precision, and the CMFPM2 o< 10~ 7.

momentum error

0 100 200 300 400 500 600
t

Fig. 14: The relative errors of momentum.

Ut—ux+ug;g;g;207 OS.ISQW, t>07
u(z,0) =sin(z), 0<z <2,
D. Example 4 uw(0,t) = u(2m,t), t>0,

Like in the pioneering paper [3], we consider the Kd\{;hich has the following exact solution
equation withy, = 0.0222 in the periodic domairi0, 2], and

assume the following initial condition u(z,t) = sin (x + 2t).

Firstly, we use this solution to check the accuracy and con-
vergence rate of the proposed methods. To obtain the order of
The solution starts with a cosine wave and latter on developsnvergence in time, sekt = 1/5,1/10,1/20,1/40, 1/80,

a train of 8 solitons, which travel at different speeds an@d = 1/160, and the computation is done up to time= 1.
interact with each other, see [3] for detailed description dfhe numerical errors and the order of convergence are
the solution. This example is derived from [24]. According tpresented in Tables VI and VII. The results show that the
[24], there are several critical moments in the developmentpfoposed methods achieves second order accuracy in time,
the solution: (i)t =t = % the so-called breakdown time,as expected.

(i) t = 3.6tp, a train of 8 solitons have been developed, Secondly, we use this solution to check the long time
(iii) t = 0.5tR, wheretr = 30.4tp, all the odd-numbered behavior and the conservative properties of the proposed

u(z,0) = cos (mz),
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Fig. 13: Interaction of five solitary waves for the CMFPM1 wiNt = 0.02 and256 uniform elements.(a) numerical solution
over [0, 600],(b) t = 600.
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Fig. 15: Numerical solutions of the CMFPM1 witht = 0.005/7 and 200 uniform elements. (a) numerical solution over
[0, 3.6¢5],(b) numerical solutions at= 0,tp and3.6¢tp ~ 1.1459.

(b)

Fig. 16: Numerical solutions of the CMFPM1 with¢ = 0.005/7 and 200 uniform elements. (a} = 0.5tg, tg, 2tr,(b)
5tr, 10t and 20t .

methods. To this end, sét/ = 40, At =2.5e-03, and the computation is done up to titne- 1000. The numerical
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(@) (b)
Fig. 17: Contour plots of the numerical solutions in thet)-plane. (a)t € [0,tg],(b) t € [19tg, 20tR].

TABLE VI: The Ly, Lo and L, errors and convergence orders in time for the CMFPM1.

At Ly order Lo order Loo order
1/5 3.3260e-01 — 1.4740e-01 — 8.3200e-02 —
1/10 1.0420e-01 1.6744 4.6200e-02 1.6738 2.6000e-02 1.6781
1/20 2.6500e-02 1.9753 1.1700e-02 1.9814 6.6000e-03 1.9780
1/40 6.7000e-03 1.9838 2.9000e-03 2.0124 1.7000e-03 1.9569
1/80 1.7000e-03 1.9786 7.3825e-04 1.9739 4.1651e-04 2.0291

TABLE VII: The L, Lo and L., errors and convergence orders in time for the CMFPM2.

At Ly order Lo order Loo order
1/5 1.0420e-01 — 4.6200e-02 — 2.6000e-02 —
1/10 2.6500e-02 1.9753 1.1700e-02 1.9814 6.6000e-03 1.9780
1/20 6.7000e-03 1.9838 2.9000e-03 2.0124 1.7000e-03 1.9569
1/40 1.7000e-03 1.9786 7.3825e-04 1.9739 4.1651e-04 2.0291
1/80 4.1660e-04 2.0288 1.8461e-04 1.9996 1.0416e-04 1.9995
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