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Abstract—We investigate the dynamics in a discrete-time can-
cer system. Firstly, we give necessary and sufficient conditions
for the existence and stability of the fixed points. Secondly, we
demonstrate that the system is chaotic in the sense of marotto
when the parameters of this system satisfy some conditions.
And third, we present numerical simulations not only to show
the consistency with our theoretical analysis but also to exhibit
the complex but interesting dynamical systems. Numerical sim-
ulations included bifurcation diagrams, Lyapunov exponents,
Lyapunov dimension and attractor strange.

Index Terms—Discrete-Time, Cancer-system, Stability,
Lyapunov-exponents, Marotto’s-Chaos, Bifurcation.

I. INTRODUCTION

CANCER is one of the main causes of morbidity and
mortality in the world. There are several different stages

in the growth of a tumor before it becomes so large that is the
healthy body produces millions of cells a day and millions
of other cells die. However, failure of the cell to perform
this process normally causes many diseases, including cancer
see [10] and [21-23]. Many laboratories across the world are
spending large sums of money on cancer research in order to
find cures and improve existing treatments. In comparison to
molecular biology, cell biology, Mathematical systems can be
used to understand and design new experiments, by formulat-
ing hypotheses regarding the potential biological mechanisms
that could lead to delays cancer relapses or to the permanent
elimination. Many authors have used mathematical models to
describe the interactions of tumor cells with healthy host cells
and immune system cells are the main components of these
models and these interactions may yield different outcomes.
There are many existing reviews of mathematical systems of
tumor see [2], [3], [12] and [19].

Actually discrete-time systems described are more rea-
sonable than the continuous-time systems when populations
have nonoverlapping generations. Moreover, using discrete-
time models is more efficient for computation and numerical
simulations. By analysis, it is proved that the discrete-
time system has different properties and structures compared
with the continuous one and these results reveal far richer
dynamical behaviors of the discrete-time system compared
to the continuous one see [6], [20] and [29].

In this paper, we consider the following discrete-time
cancer system:



xn+1 = s1xn

(
1− xn

q1

)
− p12xnyn − p13xnzn,

yn+1 = s2yn

(
1− yn

q2

)
− p21xnyn,

zn+1 = s3

(
xnzn
xn + q3

)
− p31xnzn − ηzn,

(1)

where x denotes the number of cancer cells, y denotes the
healthy host cells and z denotes effector immune cells, and
s1, s2, s3, q1, q2, q3, s2, p12, p21, p13, p31 are positive param-
eters see [9], [14] and [16]. Here s1 represents the growth
rate of cancer cells in the absence of any effect from other
cell populations with maximum carrying capacity q1, p12 and
p13 refers to the cancer cells killing rate by the healthy host
cells and effector cells respectively, s2 represents the growth
rate of healthy host cells with maximum carrying capacity
q2, p21 represents the rate of inactivation of the healthy cells
by cancer cells. The rate of recognition of the cancer cells
by the immune system depends on the antigenicity of the
cancer cells. Since this recognition process is very complex,
in order to keep the model simple, assume the stimulation
of the immune system depends directly on the number of
cancer cells with positive constants s3 and q3. The effector
cells are inactivated by the cancer cells at the rate p31 as
well as they die naturally at the rate η.

II. EXISTENCE AND STABILITY OF FIXED POINTS

We nondimensionalize our system (1) by using the follow-
ing rescaling for the continuous-time t see [7-9].

u =
x

q1
, v =

y

q2
, w =

z

q3
, τ = s1t

where the new parameters:

a12 =
p12q2

s1
, r2 =

s1

s2
, a21 =

p21q1

s1
, r3 =

s3

s1
, k3 =

q3

q1
,

a31 =
p31q1

s1
, a31 =

p13q3

s1
, d3 =

η

s1

then the system (1) is converted to
un+1 = un(1− un)− a12unvn − a13unwn,
vn+1 = r2vn(1− vn)− a21unvn,

wn+1 = r3

(
unwn
un + k3

)
− a31unwn − d3wn.

(2)

For simplicity, we will still use x and y instead of u, v
and w. Thus, the system (1) can be rewritten as:

xn+1 = xn(1− xn)− a12xnyn − a13xnzn,
yn+1 = r2yn(1− yn)− a21xnyn,

zn+1 = r3

(
xnzn
xn + k3

)
− a31xnzn − d3zn.

(3)
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Below we consider the above modified system (3).
It is clear that the fixed points of system (3) satisfy the
following equations:

x = x(1− x)− a12xy − a13

y = r2y(1− y)− a21xy,

z = r3

(
xz

x+ k3

)
− a31xz − d3z.

In order to obtain the fixed points of the system (3), we
set {

x = 0,
x = −a12y − a13z.

(4)

 y = 0,

y =
r2 − 1

r2
− a21

r2
x.

(5)

 z = 0,

x2 +

(
k3 +

d3 − r2 + 1

a31

)
x+

k3

a31
= 0.

(6)

The solution of Equations (4)-(6) together yields to five
fixed points. We discuss their local behavior according to
their biological relevance. Now, we study the stability of
these fixed points.

(1) For the first fixed point is trivial and given as
v1 = (0, 0, 0), the corresponding characteristic
equation is λ3 − (1 + r2 − d3)λ2 + r2d3 = 0. The
eigenvalues are λ1 = 1, λ2 = r2 and λ3 = −d3.
Since all the parameters are positive this equilib-
rium has two unstable and one stable eigenvalue.
Therefore, we have a saddle at this fixed point.

(2) For the second fixed point is obtained as v2 =(
0,
r2 − 1

r2
, 0

)
when r2 6= 1, the Jacobian matrix

evaluated at v2 is given by
−a12

(
r2 − 1

r2

)
+ 1 0 0

−a21

(
r2 − 1

r2

)
2− r2 0

0 0 −d3


Clearly, J(v2) has eigenvalues λ1 = 1 −
a12

(
r2 − 1

r2

)
, λ2 = 2 − r2 and λ3 = −d3.

| λi |< 1 (i = 2, 3) holds iff 1 < r2 < 3, d3 < 1

and | λ1 |< 1 if r2 > 1, 0 ≤ a12 <
2r2

r2 − 1
.

Stability of v2 depends on the values of r2, d3 and
a12.

For the cancer system (3), the following
statements are true:

(i) v2 is asymptotically stable if 1 < r2 < 3,

d3 < 1 and 0 ≤ a12 <
2r2

r2 − 1
.

(ii) v2 is unstable if one of the following
conditions holds:
(a) 0 < r2 < 1 and a12 > 0
(b) d3 > 1

(c) r2 > 1 and a12 >
2r2

r2 − 1
.

(3) The third fixed point is v3 =(
a12(r2 − 1)

a12a21 − r2
,

1− r2

a12a21 − r2
, 0

)
, provided that

a12a21 − r2 6= 0 and r2 6= 1. If r2 = 1 then is
v3 = v1 and if a12a21 − r2 = 0 then is v3 = v2.
The eigenvalues of the Jacobian matrix at fixed
point v3 are
λ1 = a12(r2 −
1)

(
r3

a12a21k3 + a12r2 − k3r2 − a12
− a31

a12a21 − r2

)
λ2,3 =

1

2

(
2a12a21 − a12r2 + r2

2 + a12 − 3r2 ∓
√

∆

a12a21 − r2

)
where
∆ = (r2 − 1)2

(
r2
2 + 2a12 + a2

12 − 4a21a
2
12

)
(i) If r2

2+2a12+a2
12 > 4a21a

2
12 we have three

real eigenvalues.
(ii) If r2

2 +2a12 +a2
12 < 4a21a

2
12 we have one

real and two complex eigenvalues.
v3 is asymptotically stable if | λi |< 1 where (i =
1, 2, 3).

(4) The fourth fixed point of the system is v4 =
(−a13z

∗, 0, z∗), where z∗ 6= 0. The Jacobian ma-
trix evaluated at v4 is given by

4

 L11 L12 L13

0 L22 0
L31 0 L33,


where

L11 = a13z
∗ + 1, L12 = a21a13z

∗, L13 = a2
13z
∗,

L22 = a21a13z
∗ + r2,

L31 =
r3z
∗

−a13z∗ + k3
+

r3a13z
∗ 2

(−a13z∗ + k3)
2 − a13z

∗,

L33 =
r3a13z

∗

a13z∗ − k3
+ a31a13z

∗ − d3.

The eigenvalues of the Jacobian matrix at this point
are

λ1 = L22 = a21a13z
∗ + r2, (7)

λ2,3 =
1

2

[
(L11+L33)∓

√
(L11 − L33)

2
+ 4L31L13

]
(8)

(i) If (L11 − L33)
2

+ 4L31L13 > 0 we have
three real eigenvalues.

(ii) If (L11 − L33)
2

+ 4L31L13 < 0 we have
at this point has one real and two complex
eigenvalues with stable real parts with the
selected parameter sets.

And the characteristic equation of the Jacobian
matrix J(v4) can be written as

P (λ) = λ3 +A2λ
2 +A1λ+A0, (9)

where

A0 = −L33L22L11 + L31L13L22,

A1 = L11L22 + L11L33 − L13L31 + L33L22,

A2 = −L33 − L22 − L11.

According to the Jury conditions [10], in order
to find the asymptotically stable region of v4, we

=J(v2)

1. L emma 

J(v ) =

xz,

,

,
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need to find the region that satisfy the following
conditions:
P(1) 0, P (−1) < 0, | A0 |< An, | B0 |>| Bn−1 |
where Bk =

∣∣∣∣ A0 An−k
An Ak

∣∣∣∣ .
Since

P (1) = 1 +A2 +A1 +A0,

P (−1) = −1 +A2 −A1 +A0,

According the relations P (1) > 0, P (−1) < 0, |
A0 |< An, | B0 |>| Bn−1 |, we have that
| A0 |< 1, | A0 + 1 |>| A1 | and | A0 − 1 ||
A0 +A1 + 1 |>| A0A1 −A2 |.

(5) The fifth fixed point is a nontrivial v5 =
(x∗, y∗, z∗). The Jacobian matrix of the system (1)
at v5 is given by

J(v5) =

 S11 S12 S13

S21 S22 0
S31 0 S33

 , (10)

where

S11 = −a12y
∗ − a13z

∗ − 2x∗ + 1,

S12 = −a12x
∗, S21 = −a21y

∗,

S13 = −a13x
∗, S22 = r2 (1− 2y∗)− a21x

∗,

S31 =
r3x
∗

x∗ + k3
− r3x

∗z∗

(x∗ + k3)
2 − a31x

∗,

S33 =
r3x
∗

x∗ + k3
− a31x

∗ − d3.

And the characteristic equation of the Jacobian
matrix J(v4) can be written as
P∗ (λ) = λ3 + C2λ

2 + C1λ+ C0 = 0.
According to the Jury conditions [10], in order
to find the asymptotically stable region of v5, we
need to find the region that satisfy the following
conditions:
P∗(1) > 0, P ∗(−1) < 0, | C0 |< Cn, | D0 |>|
Dn−1 |,
where Dk =

∣∣∣∣ C0 Cn−k
Cn Ck

∣∣∣∣ .
Since

P ∗(1) = 1 + C2 + C1 + C0,

P ∗(−1) = −1 + C2 − C1 + C0,

from the relations P ∗(1) > 0, P ∗(−1) < 0, | A0 |<
An, | B0 |>| Bn−1 |, we have that
| C0 |< 1, | C0 + 1 |>| C1 | and | C0 − 1 ||
C0 + C1 + 1 |>| C0C1 − C2 |.

III. CHAOTIC DYNAMICS FOR THREE-DIMENSIONAL
DISCRETE CANCER SYSTEM

Li and Yorke (1975) introduced the first mathematical
definition of discrete chaos see [11] and established a simple
criterion for chaos in one-dimensional dynamical system.
Then Marotto see [4-5] generalized the result to higher-
dimensional dynamical systems, there exists an error in
the condition of the original Marotto theorem, it has been
corrected and modified this important theorem by Shi and

Chen see [25]. In this section, we shall prove that the system
(3) exhibit chaotic dynamics with the selected parameter set.

Let I ⊂ R be an interval and F : I → I be a
continuous map see [24]. Assume that there is a point a ∈ I ,
satisfying

F 3(a) ≤ a < F (a) ≤ F 2(a) or F 3(a) ≥ (a) ≥ F 2(a)

then:
(1) For every i = 1, 2, ..., there is a periodic point of

F i with period n in I .
(2) There are an uncountable set S ⊂ I (containing no

periodic points) and an uncountable subset S0 ⊂ S,
such that

(A) for every p, q ∈ S0 with p 6= q

lim
n→∞

sup | Fn(p)− Fn(q) |> 0

and

lim
n→∞

inf | Fn(p)− Fn(q) |= 0,

(B) for every p ∈ S and periodic point q ∈ I
with p 6= q

lim
n→∞

sup | Fn(p)− Fn(q) |> 0.

The one dimensional dynamical system vi+1 = F (vi) that
satisfies the above conditions is said to be chaotic in the sense
of Li and Yorke .

Marotto (1978) generalized the work of Li and Yorke
(1975) to the n-dimensional consider the following theorem.

Marotto theorem given in [24-27]. consider
the following n-dimensional discrete system:

vn+1 = F (vn), n = 0, 1, 2, ..., (11)

where vn ∈ Rn and F : Rn → Rn is continuous. Let
Br(v) denote the ball in Rn of radius r centred at point v
and Br(v) its interior. Also, let ‖ v ‖ be the usual euclidean
norm of v in Rn. Then, (1)⇒ (2)

(1) All eigenvalues of the Jacobian DF (v) of map
(11) at the fixed point v are greater than one with
euclidean norm.

(2) There exist some s > 1 and r > 0, such that for
all u, v ∈ Br(v),

‖ F (u)− F (v) ‖> s ‖ u− v ‖ .

Shi and Chen (2004b), proved that there exists an error in
the condition of the original Marotto theorem which has been
corrected and a modified version of this theorem is given as
follows:

(A Modified Version of the Marotto Theorem
see [24])

Consider the n-dimensional discrete dynamical system:

vn+1 = F (vn), n = 0, 1, 2, ..., (12)

where vn ∈ Rn and F : Rn → Rn, suppose that the
system (12) has a fixed point v∗.

Assume that
(1) F is continuously differentiable in some neighbour-

hood of v∗ and all the eigenvalues of DF (v∗) have

>

|

2. L emma 

Theorem 2.  

Theorem 1. 

a>F
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absolute values larger than 1, which implies that
there exists a positive constant r and a euclidean
norm, such that F is expanding in Br(v

∗) in
euclidean norm, and

(2) v∗ is a snap-back repeller of F with Fm(v0) = v∗

for some v0 ∈ Br(v∗), v0 6= v∗ and some positive
integer m. Furthermore, F is continuously differen-
tiable in some neighbourhoods of v0, v1, ..., vm−1,
respectively, and det[DF (vj)] 6= 0 for 0 ≤ j ≤
m− 1, where vj = F (vj−1).

Then, all the results of the Marotto Theorem hold.

A. A Proof of spatial chaotic behavior for the 3-D discrete
cancer system

In this subsection, using Theorem 3, to obtain the follow-
ing results of system (3).

If d3 > 1, 0 < r2 < 1, r2 6= a12 6=
0 and a12 6= r2

r2−1 ,

or d3 > 1, r2 > 3, a12 >
2r2
r2−1 and r2 6= a12,

then the cancer discrete system given in equations (3) is
chaotic.

v∗ =

(
0, 1− 1

r2
, 0

)
= y∗.e2 ∈ R3, where

y∗ = 1− 1

r2
, e2 = (0, 1, 0).

The fixed point v∗ of the system (3) can be written v∗ =
F (v∗).
F (v) given in Theorem 3 of system (3), its continuously

differentiable in Br(v
∗) for some r > 0. The Jacobian

evaluated at the fixed point v∗ is given by

D(F (v∗)) =

 −a12y
∗ + 1 0 0

−a21y
∗ r2(1− 2y∗) 0

0 0 −d3

 .

Clearly, D(F (v∗)) has eigenvalues λ1 = 1 − a12(r2 −
1)/r2, λ2 = 2− r2 and λ3 = −d3.
| λi |> 1, (i = 1, 2, 3) holds iff
(i) d3 > 1, 0 < r2 < 1 and a12 > 0,

(ii) d3 > 1, r2 > 3 and a12 >
2r2

r2 − 1
.

If a12 = r2 and 0 < r2 < 1 then λ1 = −r2, | λ1 |< 1,
and if a12 = 2r2

r2−1 then λ1 = 0.

That is with conditions of Theorem 2, all the eigenvalues
of D(F (v∗)) are larger than 1 in absolute value, so v∗ is an
expanding fixed point of F given of system (3).

Therefore, there exist some r > 0 and euclidean norm
‖ . ‖, such that F is expanding in Br(v∗).

That is, for any two distinct points u, v ∈ Br(v
∗) , we

have ‖ F (u)− F (v) ‖> s ‖ u− v ‖,
where s > 1 and u, v are sufficiently close to v∗.
Since F (u)−F (v) = DF (v)(u−v)+α, where ‖ α ‖ / ‖

u−v ‖→ 0 as ‖ u−v ‖→ 0, specially, ‖ F (v)−F (v∗) ‖=‖
DF (v∗)(v− v∗) +α ‖, with euclidean norm for (m,n) real

matrices A = (aij) is ‖ A ‖=
(∑m

i

∑n
j a

2
ij

) 1
2

.
Since F (v) is continuously differentiable, DF (v∗) is also

expanding for v ∈ Br(v
∗). The norm of DF (v∗) is given

by
‖ DF (v∗) ‖=

√
(a12r2 − a12 − r2)

2

r2
2

+
a2

12 (r2 − 1)
2

r 2
2

−r2
2
+d2

3> 1.

Thus, condition (1) and (2) of Theorem 2 is satisfied.

repeller, we need to find one point u ∈ Br(v
∗), such that

u 6= v∗, FM (u) = v∗, and det
[
DFM (u)

]
6= 0, for some

positive integer M .
In fact, we have

x(1− x)− a12xy − a13xz = x1

r2y(1− y)− a21xy = y1
r3xz
x+k3

− a31xz − d3z = z1

(13)


x1(1− x1)− a12x1y1 − a13x1z1 = x∗

r2y1(1− y1)− a21x1y1 = y∗
r3x1z1
x1+k3

− a31x1z1 − d3z1 = z∗
(14)

If x = 0 the solution of (13) and (14) is (x, y, z) =
(0, 1

r2
, 0).

Now, a map F 2 has been constructed to map the point
u = (x, y, z) to the fixed point v∗ = (x∗, y∗, z∗), after two
iterations if there are solutions different from v∗ for (13)
and (14). By calculating, the solutions different from v∗ for
system (3) are:

If x = x− =
−a31k3 −

√
a31k3r3

a31
, we have three

solutions is given by
(x−, y−, z−), (x−, y+, z+) and(
x−,

1

2
,

2− 2x− − a12

2a13

)
,

where y− =
r2 −

√
∆1

2r2
, y+ =

r2 +
√

∆1

2r2
, z− =

1− x− − a12y
−

a13
, z+ =

1− x− − a12y
+

a13
and ∆1 = r2

2 +

4(1− a12x
−)r2 − 4.

If x = x+ =
−a31k3 +

√
a31k3r3

a31
, we have three

solutions is given by
(x+, y′−, z′−), (x+, y′+, z′+) and(
x+,

1

2
,

2− 2x+ − a12

2a13

)
,

where y′− = r2−
√

∆2

2r2
, y′+ =

r2 +
√

∆2

2r2
, z′− =

1− x+ − a12y
′−

a13
, z′+ =

1− x+ − a12y
+

a13
and ∆2 = r2

2 + 4(1− a12x
+)r2 − 4.

Next, we accept the solution u = (0,
1

r2
, 0), where u 6= v∗

and F 2(u) = v∗,
the Jacobian matrix of F 2 evaluated at u is given by

a2
12r2 − a12r

2
2 − a2

12 + r2
2

r2
2

a21 (a12r2 − a12 − r2)

r2
2

− (r2 − 2)
2

0

d2
3


and

det[DF 2(u −
(
a2

12r2 − a12r
2
2 − a2

12 + r2
2

)
(r2 − 2)

2
d2

3

r2
26= 0.

The conditions of theorem 2 is satisfied.

Theorem 3.  

Proof. 

Remark  1. 

)

DF 2(u) =

Step 1. Let

Step 2. According to, Definition of (Theorem 2) snap-back

+( +2)

0 0

0 0

]=
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IV. NUMERICAL SIMULATIONS

In this example, numerical simulations are
shown for verifying the condition in Theorem 2.

For a12 = 3.5, a13 = 2.5, a21 = 1.15, a31 = 0.2, d3 =
1.001, k3 = 3.9, r2 = 3.79, r3 = 0.5, x0 = 0, y0 =
0, 1 and z0 = 0, 1and the eigenvalues associated with v∗

is λ1 = −1.5765, λ2 = −1.79 and λ3 = −1.001, then
the system (3) is unstable. | λi |> 1, i = 1, 2, 3. And the
parameters satisfies the conditions of theorem 3, and there
exists a point u = (0, 0.2638, 0), satisfies that F 2(u) = v∗

and det(F 2(u)) = 0.3879 6= 0. Thus, v∗ is a snap-back
repeller.

A. Lyapunov exponents

In this subsection we calculated the Lyapunov exponents
and the Kaplan-Yorke dimension [1], [11] and [13]. The
Lyapunov exponents for a discrete n-dimensional systems
is given in [28] the following definition:

Consider the n-dimensional discrete dynam-
ical system:

vk+1 = F (vk) k ∈ Rn, k = 0, 1, 2, ... (15)

where F : Rn → Rn, is the vector field associated with
map (15), let J(v)be its Jacobian evaluated at v, also define
the matrix: Tp(v0) = J(vp−1)J(vp−2)...J(v1)J(v0).

Moreover, let Ji(v0, l) be the modulus of the ith eigen-
value of the lth matrix Tp(v0) where i = 1, 2, ..., n and
p = 0, 1, 2, ... .

Now, the Lyapunov exponents of a n-dimensional
discrete time models are defined by: λi (v0) =

ln
(

limp→+∞

(
Ji (v0, p)

1
p

))
.

Kaplan-Yorke dimension DKY defined as: DKY = k +∑k
i=1

λi

|λk+1| ,
Where λ1 ≥ λ2 ≥ ... ≥ λp and where k is the large integer

such that λ1 + λ2 + ... + λp > 0. particular Kaplan-Yorke
suggest that DKY is a lower bound of capacity dimension,
that is, DKY ≤ Dc.

Fig. 1. The attractor strange of system (3) with parameters a12 = 3.5,
a13 = 2.5, a21 = 1.15, a31 = 0.2, d3 = 1.001, k3 = 3.9, r2 = 3.79,
r3 = 0.5 and x0 = 0, y0 = 0.1, z0 = 0.1

Fig. 2. Projection of attractor of system (3) on (y, z)-plane
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Fig. 3. Time responses of the system (3) with parameters a12 = 3.5,
a13 = 2.5, a21 = 1.15, a31 = 0.2, d3 = 1.01, k3 = 3.9, r2 = 3.79,
and r3 = 0.5 with x0 = 0.001, y0 = 0.6 and z0 = 0.08,
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Fig. 4. The Lyapunov exponents of system (3) with parameters a12 = 3.5,
a13 = 2.5, a21 = 1.15, a31 = 0.2, d3 = 1.001, k3 = 3.9, r2 = 3.79,
and r3 = 0.5 with x0 = 0, y0 = −0.1 and z0 = 0.1,
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Fig. 5. The Lyapunov exponents of system (3) with parameters a12 = 3.5,
a13 = 2.5, a21 = 1.15, a31 = 0.2, d3 = 1.001, k3 = 3.9, r2 = 3.79,
and r3 = 0.5 with x0 = 0.1, y0 = 0 and z0 = 0.1.

Therefore, the Lyapunov exponents are computed to be
λ1 = 0.1618, λ2 = −0.0032 and λ3 = 0.3187 where
λ1 + λ2 + λ3 > 0, the Lyapunov exponents are illustrated
in Figure. 4, and the Kaplan-Yorke dimension is DKY =
2 + λ1+λ2

|λ3| ' 2.5 where DKY ≤ Dc.
If at least one Lyapunov exponent is positive for some

control parameters value, then the system (3) is chaotic at
that control parameters.

B. The bifurcation diagram
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Fig. 6. Bifurcation diagram of system (3) for (r2, y)−plane and a12 =
0.62, a13 = 1.39, a21 = 1.13, r3 = 0.2, k3 = 3.8, a31 = 0.56, d3 = 1
and x0 = 0.15, y0 = 0.2 and z0 = 0.08.

V. CONCLUSION

In this paper, we have presented the existence and stability
of fixed points for three dimensional discrete system, we have
proved that the system is Chaotic with Marotto theorem and
we calculated the Lyapunov exponents and the Kaplan-Yorke
dimension. We have presented some numerical results.
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