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Abstract—The aim of this paper is to investigate the oscillato-
ry properties of solutions for a class of delay partial difference
equation with three parameters. In order to study the oscillation
results, the regions of non-positive roots of its characteristic
equation which is equivalent to the oscillation results are
investigated. Some necessary and sufficient conditions by means
of the envelope theory are derived.

Index Terms—delay partial difference equation, oscillation,
envelope, characteristic equation.

I. INTRODUCTION

PArtial difference equations are types of difference equa-
tions that involve functions of two or more independent

variables. Delay partial difference equations have numerous
applications as in molecular orbits, population dynamic with
spatial migrations, image processing, random walk problems,
material mechanics, etc[1-7].In recent years, the study of the
qualitative analysis for the oscillatory property of delay par-
tial difference equation has attracted considerable attention,
see [8-12] and the references therein.

In [8], by means of the z-transform, B. G. Zhang and
R. P. Agarwal have investigated the following first order
delay partial difference equation

Am+1,n +Am,n+1 − pAm,n +

µ∑
i=1

qiAm−ki,n−li = 0,

where p, q are real numbers, ki and li ∈ N0, i = 1, 2, ..., µ,
Nt = {t, t + 1, ...}, and µ is a positive integer. They gave
some sufficient conditions for the equation to be oscillatory.

In [12], Chunhua Yuan and Shutang Liu studied the
following first order delay partial difference equation

um+1,n + aum,n+1 + bum,n + cum−σ,n−τ = 0,

where a, b, c are real numbers with a2 + b2 + c2 6= 0, and
m,n, σ, τ are nonnegative integers. By applying the envelope
theory, they achieved the necessary and sufficient conditions
for the equation to be oscillatory.

Motivated by the above research, this paper investigates
the following second order delay partial difference equation

um+2,n + pum,n+2 + qum,n + rum−σ,n−τ = 0, (1)

where p, q, r are real numbers with p2 + q2 + r2 6= 0, and
m,n, σ, τ are nonnegative integers.

The purpose of this paper is to apply the envelope theory
of the family of planes, to derive necessary and sufficient
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conditions for the delay partial difference equation (1) to be
oscillatory.

Before stating our main results, some definitions used in
this paper are presented.

Definition 1 A solution of (1) is a real double sequence
{um,n} which is defined for m ≥ −σ,n ≥ −τ and satisfies
(1) for m ≥ 0 and n ≥ 0.

Definition 2 A solution {um,n} of (1) is said to be eventually
positive (or negative) if um,n > 0 (or um,n < 0 ) for m > M
and n > N , where M and N are some large integers. It
is said to be oscillatory if it is neither eventually positive
nor eventually negative. (1) is called oscillatory if all of its
nontrivial solutions are oscillatory.

II. PRELIMINARIES

This section will give some lemmas that will be used in
the proof of the main results in section 3.

Lemma 1 [11] The following statements are equivalent:
(i) Every solution of equation (1) is oscillatory.
(ii) The characteristic equation of equation (1)

λ2 + pµ2 + q + rλ−σµ−τ = 0

has no positive root.
Lemma 2 [12] Suppose that f(x, y), g(x, y), h(x, y) and
v(x, y) are differentiable on (−∞,+∞)×(−∞,+∞). Let Γ
be a two-parameter family of planes defined by the equation

f(λ, µ)x+ g(λ, µ)y + h(λ, µ)z = v(λ, µ),

where λ and µ are parameters. Let Σ be the envelope of the
family Γ. Then the equation

f(λ, µ)a+ g(λ, µ)b+ h(λ, µ)c = v(λ, µ)

has no real root if and only if there is no tangent plane of
Σ passing through the point (a, b, c) in xyz-space.
Lemma 3 [13] Suppose that f(x), g(x), h(x) and v(x) are
differentiable on (−∞,+∞). Let Γ be the one-parameter
family of planes defined by the equation

f(λ)x+ g(λ)y + h(λ)z = v(λ),

where λ is a parameter. Let Σ be the envelope of the family
Γ. Then the equation

f(λ)a+ g(λ)b+ h(λ)c = v(λ)

has no real root if and only if there is no tangent plane of
Σ passing through the point (a, b, c) in xyz-space.
Lemma 4 [11] Suppose that f(x) is differentiable on
(0,+∞) such that f(x) is not identically zero on (0,+∞)
and limx→+∞ f(x) > 0 or limx→0+ f(x) > 0. Then

F (x, y) = y + f(x) = 0
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has no positive root on (0,+∞) × (0,+∞) if and only if
f(x) = 0 has no positive root on (0,+∞).
Lemma 5 Assume that

f(λ, q, r) = λσ+2 + qλσ + r,

where σ is a positive integer, q and r are real parameters.
Then the equation f(λ, q, r) = 0 has no positive root if and
only if q ≥ 0 and r ≥ 0 or q < 0 and

r > (−1)
σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

q
σ+2
2 .

Proof Consider the family of straight lines defined by
Lλ:f(λ, x, y) = 0, where λ ∈ (0,+∞). Since

fλ(λ, x, y) = (σ + 2)λσ+1 + σλσ−1x,

the determinant of the system f(λ, x, y) = 0 = fλ(λ, x, y) is
−σλσ−1 which does not vanish for λ > 0. The characteristic
region of f(λ, x, y) which belongs to C \ (0,+∞) is just
the multiplicity-2 set with order 0 of the envelope G for
the family {Lλ|λ ∈ (0,+∞)} ([13],Theorem 2.6). The
parametric functions of G could be given by ([13],Theorem
2.3)

x(λ) = −σ + 2

σ
λ2, y(λ) =

2

σ
λσ+2, λ > 0.

Actually, G can also be described by the graph of the
function y = G(x), where

G(x) = (−1)
σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

x
σ+2
2 .

Since

G′(x) = (−1)
σ+2
2

σ σ2
(σ + 2)

σ
2
x
σ
2 ,

G′′(x) = (−1)
σ+2
2

σ σ+2
2

2(σ + 2)
σ
2
x
σ−2
2 ,

G(x) is a positive and strictly decreasing, strictly convex
function on (−∞, 0) such that G(0−) = 0, G(−∞) = +∞.
From the property of the function G(x), we can see that the
equation f(λ, q, r) = 0 has no positive root if and only if
q ≥ 0 and r ≥ 0 or q < 0 and

r > (−1)
σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

q
σ+2
2 .

The proof is complete.

III. MAIN RESULTS

In this section, some necessary and sufficient conditions
for the oscillatory properties of equation (1) are established.

To facilitate discussions, we divide nonnegative integers
σ and τ into four mutually exclusive cases: (i) σ ≥ 1 and
τ ≥ 1, (ii) σ ≥ 1 and τ = 0, (iii) σ = 0 and τ ≥ 1, (iv)
σ = 0 and τ = 0.
Theorem 1 Assume that σ ≥ 1 and τ ≥ 1. Then every
solution of equation (1) oscillates if and only if p ≥ 0, q ≥ 0
and r ≥ 0 or p > 0, q < 0, and

r > (−1)
σ+τ+2

2
2σ

σ
2 τ

τ
2 q

σ+τ+2
2

(σ + τ + 2)
σ+τ+2

2 p
τ
2

.

Proof When σ ≥ 1 and τ ≥ 1, the characteristic equation
of equation (1) is

φ(p, q, r, λ, µ) = λ2 + pµ2 + q + rλ−σµ−τ = 0. (2)

Let
F (p, q, r, λ, µ) = λσµτφ(p, q, r, λ, µ)

= λσ+2µτ + pλσµτ+2 + qλσµτ + r = 0.
(3)

From (3), we can see that (2) has no positive root if and
only if (3) has no positive root. Since we mainly discuss
the oscillatory solutions of equation (1), by Lemma 1,
attention will be restricted to the case where λ > 0 and
µ > 0. We will consider (p, q, r) as a point in xyz-space,
and try to search for the exact regions containing points
(p, q, r) in xyz-space such that (3) has no positive root.
Actually, F (x, y, z, λ, µ) = 0 can be regarded as an equation
describing a two-parameter family of planes in xyz-space,
where x, y and z are the coordinates of point of the planes
in xyz-space and λ, µ are parameters.

According to the envelop theory, the points of the envelope
of the two-parameter family of planes defined by (3) satisfy
the following equations

F (x, y, z, λ, µ) =0,

Fλ(x, y, z, λ, µ) =(σ + 2)λσ+1µτ + σλσ−1µτ+2x

+ σλσ−1µτy = 0,

Fµ(x, y, z, λ, µ) =τλσ+2µτ−1 + (τ + 2)λσµτ+1x

+ τλσµτ−1y = 0,

(4)

where λ > 0 and µ > 0. Eliminating λ and µ from (4), we
get the function of the envelope

z(x, y) = (−1)
σ+τ+2

2
2σ

σ
2 τ

τ
2 y

σ+τ+2
2

(σ + τ + 2)
σ+τ+2

2 x
τ
2

, (5)

where x > 0, y < 0. Consequently, we have

∂z

∂x
= (−1)

σ+τ
2

σ
σ
2 τ

τ+2
2 y

σ+τ+2
2

(σ + τ + 2)
σ+τ+2

2 x
τ+2
2

,

∂z

∂y
= (−1)

σ+τ+2
2

σ
σ
2 τ

τ
2 y

σ+τ
2

(σ + τ + 2)
σ+τ
2 x

τ
2

,

∂2z

∂x2
= (−1)

σ+τ+2
2

(τ + 2)σ
σ
2 τ

τ+2
2 y

σ+τ+2
2

2(σ + τ + 2)
σ+τ+2

2 x
τ+4
2

,

∂2z

∂y2
= (−1)

σ+τ+2
2

(σ + τ)σ
σ
2 τ

τ
2 y

σ+τ−2
2

2(σ + τ + 2)
σ+τ
2 x

τ
2

,

∂2z

∂x∂y
= (−1)

σ+τ
2

σ
σ
2 τ

τ+2
2 y

σ+τ
2

2(σ + τ + 2)
σ+τ
2 x

τ+2
2

.

When x > 0, y < 0, we have ∂2z/∂x2 >
0, ∂2z/∂y2 > 0, ∂2z/∂x2 · ∂2z/∂y2 − (∂2z/∂x∂y)2 =

σσ+1ττ+1yσ+τ

2(σ+τ+2)σ+τ+2xτ+2 > 0 and z(x, y) > 0. Hence, z(x, y) is a
positive and strictly convex function on (0,+∞)× (−∞, 0).
Moreover, the envelope defined by (5) is a strictly convex
surface S over (0,+∞)× (−∞, 0) as described in Figure 1.
Thus from Figure 1, it is clearly seen that when (p, q, r) is
in the first closed octant, namely, p ≥ 0, q ≥ 0 and r ≥ 0,
or when (p, q, r) is vertically above the envelope S, namely,
p > 0, q < 0 and

r > (−1)
σ+τ+2

2
2σ

σ
2 τ

τ
2 q

σ+τ+2
2

(σ + τ + 2)
σ+τ+2

2 p
τ
2

,
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there cannot be any tangent plane of the envelope S which
passes through the (p, q, r). Since (2) is the same as (3)

Fig. 1. Envelope surface for σ = 1 and τ = 1

for the existence of positive solutions. Lemma 1 implies the
statement of this theorem. The proof completes.

Theorem 2 Assume that σ ≥ 1 and τ = 0. Then every
solution of equation (1) oscillates if and only if p ≥ 0, q ≥ 0
and r ≥ 0 or p ≥ 0, q < 0 and

r > (−1)
σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

q
σ+2
2 .

Proof When σ ≥ 1 and τ = 0, the characteristic equation
of equation (1) is

φ(p, q, r, λ, µ) = λ2 + pµ2 + q + rλ−σ = 0. (6)

When p < 0, it is obvious that (6) has positive solutions.
We just need to consider two cases: (a) p = 0 and (b) p > 0

Case (a). p = 0. (6) can be written as

φ(p, r, λ) = λ2 + q + rλ−σ = 0. (7)

Let

f(q, r, λ) = λσφ(p, r, λ) = λσ+2 + qλσ + r = 0. (8)

Since (8) is same as (7) for the existence of positive solutions,
from Lemma 5, (6) has no positive root if and only if q ≥ 0
and r ≥ 0 or q < 0 and

r > (−1)
σ+2
2

2σ σ2

(σ + 2)
σ+2
2

q
σ+2
2 .

Case (b). p > 0. (6) can be rewritten as

φ(p, q, r, λ, µ) = p(
1

p
λ2 + µ2 +

q

p
+
r

p
λ−σ) = 0.

Let
f(

1

p
,
q

p
,
r

p
, λ) =

1

p
λ2 +

q

p
+
r

p
λ−σ. (9)

Since limλ→+∞ f(1/p, q/p, r/p, λ) > 0 with p > 0 and
f(1/p, q/p, r/p, λ) is differentiable with regard to λ > 0.
By Lemma 4, (6) has no positive root if and only if (9) has
no positive root. Let

F (
1

p
,
q

p
,
r

p
, λ) = λσf(

1

p
,
q

p
,
r

p
, λ) =

1

p
λσ+2 +

q

p
λσ+

r

p
= 0.

(10)
Then (9) has no positive root if and only if (10) has no
positive root. Since we investigate oscillatory solutions of

(1), by Lemma 1, attention will be restricted to the case
where λ > 0. We will consider (1/p, q/p, r/p) as a point
in xyz-space and search for the exact regions including
points (1/p, q/p, r/p) in xyz-space such that (10) has no
positive root. Actually, F (x, y, z, λ) = 0 can be regarded as
an equation describing a one-parameter family of planes in
xyz-space, where x, y and z are the coordinates of point of
the plane in xyz-space and λ is a parameter.

According to the theory of envelope, the points of the
envelope of the one-parameter family of planes described by
(10) satisfy the following equations{

F (x, y, z, λ) = λσ+2x+ λσy + z = 0,

Fλ(x, y, z, λ) = (σ + 2)λσ+1x+ σλσ−1y = 0,
(11)

where λ > 0. Eliminating λ(> 0) from (11), we obtain the
function of the envelope

z(x, y) = (−1)
σ+2
2

2σ
σ
2 y

σ+2
2

(σ + 2)
σ+2
2 x

σ
2

, (12)

where x > 0 and y < 0. Consequently, we have

∂z

∂x
= (−1)

σ
2

σ
σ+2
2 y

σ+2
2

(σ + 2)
σ+2
2 x

σ+2
2

,

∂z

∂y
= (−1)

σ+2
2

σ
σ
2 y

σ
2

(σ + 2)
σ
2 x

σ
2
,

∂2z

∂x2
= (−1)

σ+2
2

σ
σ+2
2 y

σ+2
2

2(σ + 2)
σ
2 x

σ+4
2

,

∂2z

∂y2
= (−1)

σ+2
2

σ
σ+2
2 y

σ−2
2

2(σ + 2)
σ
2 x

σ
2
,

∂2z

∂x∂y
= (−1)

σ
2

σ
σ+2
2 y

σ
2

2(σ + 2)
σ
2 x

σ+2
2

.

When x > 0 and y < 0, we have z(x, y) > 0, ∂2z/∂x2 >
0,∂2z/∂y2 > 0 and ∂2z/∂x2 ·∂2z/∂y2−(∂2z/∂x∂y)2 = 0.
Hence, the envelope defined by (12) is a convex surface

Fig. 2. Envelope surface for σ = 1 and τ = 0

S over (0,+∞) × (−∞, 0) as depicted in Figure 2. Thus
we can easily see that there are two cases for the point
(1/p, q/p, r/p) through which there cannot be any tangent
plane of the envelope S which passes. The first case is that
(1/p, q/p, r/p) is in the first closed octant except on the pos-
itive coordinate axis x = 0, namely, 1/p > 0, q/p ≥ 0,and
r/p ≥ 0, which are equivalent to p > 0, q ≥ 0 and r ≥ 0.
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The second case is that (1/p, q/p, r/p) is vertically above the
envelope S in the forth octant, namely, 1/p > 0, q/p < 0

and r/p > (−1)
σ+2
2

2σ σ2

(σ+2)
σ+2
2

q
σ+2
2 , which are equivalent to

p > 0, q < 0 and r > (−1)
σ+2
2

2σ
σ
2

(σ+2)
σ+2
2

q
σ+2
2 . Meanwhile,

if (1/p, q/p, r/p) is lied in somewhere else except the above
two cases, such a tangent plane exists.

Since (6) is the same as (10) for the existence of positive
solutions, combining case (a) and case (b), one can see that
(6) does not have any positive root if and only if p ≥ 0, q ≥ 0
and r ≥ 0 or p ≥ 0, q < 0 and

r > (−1)
σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

q
σ+2
2 .

Lemma 1 implies the statement of this theorem. The proof
completes.

Theorem 3 Assume that σ = 0 and τ ≥ 1. Then every
solution of equation (1) oscillates if and only if p ≥ 0, q ≥ 0
and r ≥ 0 or p > 0, q < 0 and

r > (−1)
τ+2
2

2τ
τ
2 q

τ+2
2

(τ + 2)
τ+2
2 p

τ
2

.

Proof When σ = 0 and τ ≥ 1, the characteristic equation
of equation (1) is

φ(p, q, r, λ, µ) = λ2 + pµ2 + q + rµ−τ = 0. (13)

When p < 0, it is obvious that (13) has positive solutions.
We just need to consider two cases: (a) p = 0 and (b) p > 0.

Case (a). p = 0. In this case, it is easy that (13) has no
positive root if and only if q ≥ 0 and r ≥ 0.

Case (b). p > 0. In this case, let

f(p, q, λ, µ) = pµ2 + q + rµ−τ = 0. (14)

Since limµ→+∞ f(p, q, r, µ) > 0 for p > 0 and f(p, q, r, µ)
is differentiable with respect to µ > 0, from Lemma 4, we
can see that (13) has no positive root if and only if (14) has
no positive root. Let

F (p, q, r, µ) = µτf(p, q, r, µ) = pµτ+2+qµτ+r = 0. (15)

It is clear that (14) has no positive root if and only if (15) has
no positive root. Since we investigate oscillatory solutions
of (1), by Lemma 1, attention will be restricted to the case
where µ > 0. We will consider (p, q, r) as a point in xyz-
space and search for the exact regions including (p, q, r)
in xyz-space such that (15) has no positive root. Actually,
F (x, y, z, µ) = 0 can be regarded as an equation describing
a one-parameter family of planes in xyz-space, where x, y
and z are the coordinates of point of the plane in xyz-space
and µ is a parameter.

From the theory of envelope, the points of the envelope of
the one-parameter family of planes described by (15) satisfy
the follow equations{

F (x, y, z, µ) = µτ+2x+ µτy + z = 0,

Fµ(x, y, z, µ) = (τ + 2)µτ+1x+ τµτ−1y = 0,
(16)

where µ > 0. Eliminating µ(> 0) from (16), we obtain the
function of the envelope

z(x, y) = (−1)
τ+2
2

2τ
τ
2 y

τ+2
2

(τ + 2)
τ+2
2 x

τ
2

, (17)

where x > 0 and y < 0. From (17), we have

∂z

∂x
= (−1)

τ
2

τ
τ+2
2 y

τ+2
2

(τ + 2)
τ+2
2 x

τ+2
2

,

∂z

∂y
= (−1)

τ+2
2

τ
τ
2 y

τ
2

(τ + 2)
τ
2 x

τ
2
,

∂2z

∂x2
= (−1)

τ+2
2

τ
τ+2
2 y

τ+2
2

2(τ + 2)
τ
2 x

τ+4
2

,

∂2z

∂y2
= (−1)

τ+2
2

τ
τ+2
2 y

τ−2
2

2(τ + 2)
τ
2 x

τ
2
,

∂2z

∂x∂y
= (−1)

τ
2

τ
τ+2
2 y

τ
2

2(τ + 2)
τ
2 x

τ+2
2

.

When x > 0 and y < 0, we have z(x, y) > 0, and

Fig. 3. Envelope surface for σ = 0 and τ = 1

∂2z/∂x2 > 0,∂2z/∂y2 > 0 and ∂2z/∂x2 · ∂2z/∂y2 −
(∂2z/∂x∂y)2 = 0. Hence, the envelope defined by (17) is
a convex surface S over (0,+∞)× (−∞, 0) as depicted in
Figure 3. Thus we can easily see that there are two cases
for the point (p, q, r) through which there cannot be any
tangent plane of the envelope S which passes. The first case
is that (p, q, r) is in the first closed octant except on the
positive coordinate axis x = 0, namely, p > 0, q ≥ 0, and
r ≥ 0. The second case is that (p, q, r) is vertically above
the envelope S in the forth octant, namely, p > 0, q < 0 and
r > (−1)

τ+2
2

2τ
τ
2

(τ+2)
τ+2
2

q
τ+2
2 . Meanwhile, if (p, q, r) is lied in

somewhere else except the above two cases, such a tangent
plane exists.

Since (13) is the same as (15) for the existence of positive
solutions, it follows from case (a) and case (b) that (13) does
not have any positive root if and only if p ≥ 0, q ≥ 0 and
r ≥ 0 or p > 0, q < 0 and

r > (−1)
τ+2
2

2τ
τ
2 q

τ+2
2

(τ + 2)
τ+2
2 p

τ
2

.

By lemma 1, the proof completes.

Theorem 4 Assume that σ = 0 and τ = 0. Then every
solution of equation (1) oscillates if and only if p > 0 and
q + r = 0.
Proof When σ = 0 and τ = 0, one can rewrite equation (1)
as

um+2,n + pum,n+2 + (q + r)um,n = 0. (18)

IAENG International Journal of Applied Mathematics, 49:4, IJAM_49_4_32

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



The characteristic equation of equation (18) is

λ2 + pµ2 + (q + r) = 0. (19)

It can be clearly seen that (19) does not have any positive
root if and only if p > 0 and q+ r = 0. From Lemma 1, we
can see that every solution of equation (1) oscillates if and
only if p > 0 and q + r = 0. This completes the proof.

IV. ILLUSTRATIVE EXAMPLES

In this section, we give some examples to illustrate the
results obtained in Section 3.
Example 1 Consider the delay partial difference equation

um+2,n + 0.5um,n+2 + 0.2um,n + 0.3um−1,n−1 = 0. (20)

Clearly, σ = 1, τ = 1, p = 0.5, q = 0.2 and r = 0.3.
Since p = 0.5 > 0, q = 0.2 > 0 and r = 0.3 > 0, by 1,
every solution of equation (20) is oscillatory. The oscillatory
behavior of equation (20) is demonstrated by Figure 4.

Fig. 4. Oscillatory behavior of equation (20)

Example 2 Consider the delay partial difference equation

um+2,n+0.81um,n+2−0.1um,n+0.15um−1,n−1 = 0. (21)

In this case, σ = 1, τ = 1, p = 0.81, q = −0.1 and r = 0.15.
Since p = 0.81 > 0, q = −0.1 < 0 and

r = 0.15 >
1

72
= (−1)

σ+τ+2
2

2σ
σ
2 τ

τ
2 q

σ+τ+2
2

(σ + τ + 2)
σ+τ+2

2 p
τ
2

,

by Theorem 1, every solution of equation (21) oscillats.
The oscillatory behavior of equation (21) is demonstrated
by Figure 5.

Fig. 5. Oscillatory behavior of equation (21)

Example 3 Consider the delay partial difference equation

um+2,n + 0.7um,n+2 + 0.3um,n + 0.1um−1,n = 0. (22)

Obviously, σ = 1, τ = 0, p = 0.7, q = 0.3 and r = 0.1.
Since p = 0.7 > 0, q = 0.3 > 0 and r = 0.1 > 0, according
to Theorem 2, every solution of equation (22) is oscillatory.
The oscillatory behavior of equation (22) is demonstrated by
Figure 6.

Fig. 6. Oscillatory behavior of equation (22)

Example 4 Consider the delay partial difference equation

um+2,n + 0.64um,n+2 − 0.1um,n + 0.18um−1,n = 0. (23)

In this case, σ = 1, τ = 0, p = 0.64, q = −0.1 and r = 0.18.
Since p = 0.64 > 0, q = −0.1 < 0 and

r = 0.18 >

√
30

450
= (−1)

σ+2
2

2σ
σ
2

(σ + 2)
σ+2
2

q
σ+2
2 ,

according to Theorem 2, every solution of equation (23)
oscillats. The oscillatory behavior of equation (23) is demon-
strated by Figure 7.

Fig. 7. Oscillatory behavior of equation (23)

Example 5 Consider the delay partial difference equation

um+2,n + 0.8um,n+2 = 0. (24)

Clearly, σ = 0, τ = 0, p = 0.8, q = −0.02 and r = 0.02.
Since p = 0.8 > 0, and p+ r = 0, according to Theorem 4,
every solution of equation (24) is oscillatory. The oscillatory
behavior of equation (24) is demonstrated by Figure 8.
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Fig. 8. Oscillatory behavior of equation (24)
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