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Direct Integration of Fourth Order Initial and Boundary
Value Problems using Nystrom Type Methods

S. N. Jator?, E. O. Adeyefa® *

Abstract— Nystrom type methods are widely used
for the numerical integration of initial value problems
(IVPs) in ordinary differential equations (ODEs).
Specifically, they are extensively used for directly
solving second order IVPs. Nevertheless, they are
not normally used for the numerical integration of
boundary value problems (BVPs). This paper focuses
on the formulation of a family of block Nystrém type
methods (BNM (7,p)) for the numerical solution of
fourth order IVPs and BVPs, where nis the number
of off-grid points and p is the order of the method.
The family of BNM (7,p) is formulated from contin-
uous schemes obtained via collocation and interpola-
tion techniques and applied in a block-by-block man-
ner as numerical integrators for fourth order ODEs.
The convergence properties of this family of methods
are discussed via zero-stability and consistency. Nu-
merical examples are included and comparisons are
made with existing methods in the literature.
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tions, Zero-stability and consistency, Block Nystrom
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1 Introduction

The theory of differential equations (DEs) has connec-
tions with several fields such as engineering, science, and
management. In particular, DEs have applications in
fluid dynamics (see Alomari et al. [3]), beam theory (see
Jator [21]), electric circuits (see Boutayeb and Chetouani
[8]), ship dynamics (see Wu et al. [35], Twizell [32],
Cortell [11]) and neural networks (see Malek and Bei-
dokhti [27]). They are also applied to the reaction and
diffusion of chemicals, the dynamics of populations in
biology, the development and treatment of diseases in
medicine, molecular dynamics, the motion of rocket, and
several other areas. So, the demand for the solution of
DEs is on the increase as the quest for numerical meth-
ods has increasingly been of much interest to researchers
owing to the fact that most of these DEs are difficult to
solve or their analytical solutions do not exist. Thus, the
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focus of this paper is to develop a family of block Nys-
trém type methods for the numerical solution of the ODE
of the form

12y

Y = flo,y, v y"y"), € lxo,zn], (1)

subject to initial conditions

y(@o) =yo, ¥'(wo) =w0, ¥'(xo) =wo, ¥ (o) =0
which are not a restriction on the proposed method, since
the method can also handle ODEs with Dirichlet, Neu-
mann or Robin boundary conditions with only minor
modifications in the boundary conditions.

The IVP of the form (1) is solved by reduction to an
equivalent system of first order ODE and an appropriate
numerical method is employed to solve the resultant sys-
tem (see Adesanya et al. [1], Butcher [10], Lambert [25],
Hairer et al. [17], and Dormand [13]). This approach has
been reported to increase the number of equations four
times and thereby more function evaluations need to be
evaluated and hence resulting in a longer execution time
and more computational effort (see Jator [21], Awoyemi (
[4],[6]), Waeleh et al. [34], Mehrkanoon [28]). Moreover,
Bun and Vasil’yer [9] reported that the in some instances
the system of equations to be solved when the method
of reduction is applied cannot be solved explicitly with
respect to the derivatives of the highest order.

A successful application of numerical algorithm for di-
rectly solving a general fourth order initial value problems
of the form (1) has been demonstrated in the literature
(see Awoyemi ( [5],[6]), Kayode ([22], [23])). However, all
these methods were implemented in predictor-corrector
mode and hence, according to Jator, (Jator [21]) the im-
plementation of such schemes is more costly since the
subroutines for incorporating the starting values lead to
lengthy computational time. Besides, they advance the
numerical integration of the ordinary differential equa-
tions in one-step at a time, which leads to overlapping of
the piecewise polynomials solution model. To address the
setback of the predictor-corrector method, Vigo-Aguiar
and Ramos [33], Jator [20], Mohammed [29], Kayode et
al. [24], Awoyemi et al. [7], Yap and Ismail [36], Hussain
et al. [19], Adeyefa [2] among others independently pro-
posed block methods for solving higher order ordinary
differential equation which do not require the develop-
ment of separate predictors, but simultaneously generate
approximations at different grid points within the interval
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of integration without overlapping of sub-intervals expe-
rienced in the predictor-corrector method. Furthermore,
the BNM (7, p) is superior to those mentioned above since
it is equipped with block extension for solving BVPs.

The aim of developing new methods has always been to
improve on the efficiency and convergence of existing
methods with the ultimate aim of reducing the error of
approximation. Thus, in what immediately follows in
Section 2, we formulate the proposed methods for
directly integrating fourth order ODEs. The analysis of
the BNM (7, p) is discussed in Section 4, the
implementation of the methods is given in Section 5 and
numerical examples are given to show the efficiency of
the methods in Section 6. Finally, the conclusion of the
paper is discussed in Section 7.

2 Development of the BNM (7,p)

In order to numerically integrate (1), we consider
the partition Qn given by Qn := {z, = x9 + nh},
n=0,1,...,N, h = Z8%0,

and then use the proposed BNM (7, p) consisting of the
following discrete formulas

Ynil = QOYn + ho‘f)% h2a//y// + h3a/// ///

1
+’h4 j{:ﬁ%fh+j*_j£:ﬁ%jfn+q
j=0 j=1
Ynte; = QioYn + had gy,
1 n
Zﬂi,jfn+j + ZBZ’,ijnJer )
j=0 j=1
Phi1 = 1y + haty, + halyl + Wiy

+ h2a” // hSO/N y;{/

1 n
+ht ZijTH-j + Z’ch fn+cj
hy;z-‘rci = Qi1Yn + ha 1yn + h2a// y// + h3a/// ///
+ ht Z’Yi,jfn—&-j + Z’Yi,cj fn+0j )
Jj=0 j
thZJrl = aYn + ho/gyn h2a// // h3a/// ///
1 i
+h4 Z(ijn+j +Zécjfn+0j
j=0 j=1
Ry e, = Qipyn + had 5y, + h2al 5y + hialyy,!
1 U
+ ht Z 6i,jfn+j + Z 6i,cj‘ fn+0j )
=0 =
h3y/// 1= Q3Yn + haéyn + h2a// " + h3a/// ///
1 N
H RS B fari Y ey fate,
7=0 j=1

hBy/// e, = i 3Yn + ha;’gyn +h2 /lgyn + hd //3y;{/

1 n
Y Kijfnii Y i, fre,
i=0 =

+h

where

{ Yn+15Yntc;s hy;H-la hy;-i,-ci ) thg-Hv h2yz+cia (2)
h3y;1//+17 hSy;{;ciz =1,...,n

to integrate (1) over the partition considered, where
Ak, O | a;g7 a;kv agv Ckl k> CVZ/, agl,llw Bja Bi,jv 6cj , ﬂi,c]' ,
Yi> Yiygs Vejs Viseys 5j76’b,j766J 6i,Cja KjsKijs Rejy Riyejs
k=1,...,3 are coefficients and c; are the off-grid points.
The coefficients of the methods are chosen so that the
method integrates the ODE (1) exactly, where the solu-
tions are members of the linear space (1,z,..., 2™+ w=1)
where m is the number of interpolation points and
w is the number of collocation points. We note that
Yn+j and Yni., denote the numerical approximations
to the analytical solutions y(z,4;) and y(an]) re-

spectively; and for; = f(n+;, yn+]ﬂyn+]7yn+_77 y#&—y)
and fn+cj = f(xn+Cj yYntcjs y;Jch ) ynJch s yi{’ﬂ ) The

coefficients of (2) are provided by the continuous scheme
derived next.

2.1 Continuous approximation for the BNM

In general, the coefficients of (2) are chosen so
that the method integrates the ODE (1) exactly,
where the solutions are members of the linear space
U2) = (Uo(@) Us(2), s Unngur1(2)), Us(a) = at,j =
0,1,...,m+w—1 are basis functions. In order to obtain
the coefficients in (2), we begin by seeking an approxi-
mate solution of the form

on the interval [z,,z,41], where T is the transpose,
T = (ap,a1,...;amiw—1) is a vector of coefficients
to be determined, m and w are number of inter-
polation and collocation points respectively. The
continuous scheme is constructed by demanding
that the function Y (z) passes through the points
(xnv yn)a (xn+c1 y Ynt-cy )7 cee ($n+cn ) yn+cn)v (xn-O-la yn+1)
and satisfies m 4+ w equations obtained by imposing that
the following conditions hold.

Y(zn) = yn, Y'(%0) = 45, Y (20) = 1y
Y7 (z,) = Y2,

Y(anrj) = Yntj, J=0,1,

Y“)(xn+0j) = fn+cj7.] = 17 EREY/E

(4)

We note that equation (4) leads to a system of (m + w)
equations which is solved with the aid of Mathematica to
obtain the coefficients a;-s, given by the vector Y. Specif-
ically, we proceed as follows:

MY =V (5)
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=MV (6)

where M is a matrix given as

U,(xn) Um+w(xn)
U (,In) Um+w($")
U:/(xn) Uv;:z,-i-w(xn)
Upm(xn) . UW,, w(Tn)

M=3 Uy (@) Opeuwl@n) 4,
Uy (Tnter) Um+w(xn+01)
U(l):::,(xn+cn) %L:;/-w (xn+cn)

UO (zn+1) Um—i—w(zn-‘rl)

and V is a vector defined as

T
7 1" 1’
V= Yns Yns>YnrYn afnafnJrcla .- ~afn+c_7-afn+1:| .

The coefficients a}s, given by the vector YT are now known
and given by (6). Our continuous scheme which is used to
provide the coefficients in (2) is obtained by substituting
(6) into (3) to yield

Y(z) =U(a)(M'V). (7)

The continuous method (7) and additional methods pro-
vided by differentiating (7) are used to specify the pro-
posed BNM (7,p) given by (2). In particular, (2) is

specified by evaluating (8) at © = x,41 and = =
Tpie, and imposing that Y(zn11) = Yny1, Y (Tnie,) =
Yntc;s y;z+1 = Y/(m)|x:zn+1= y;ercJ = Y/( )|x*xn+cjv

Ynt1 = Y'(@)|o=enirs Ynae, = Y (@)o=rnie)s U1 =

Y (@) le=wnins and Yl e, = YV (@) o=, o0 = 1,000

Y (a) = Ula)(M 1Y),
Y”m:%g(v( DOV
V(@) = e (U@ Y))

v (@) = s (U@ (MV)).

3 Specification of the Method

3.1 BNM with three off-grid points

In this section, we choose m = 4, w = 5, the number of
off-grid points n = 3, and BNM (5, p) = BNM (3, p). The
BNM (3, p) is then specified by evaluating (8) at © = x,41
and * = Zpqc;,j = 1,2,3, where {c1,ca,c3} = {i, %, %}
In Figure 1, we give the coefficients of BNM (3, p).

3.2 BNM with five off-grid points

In this subsection, m and w are respectively 4 and 7. We
choose the number of off-grid points = 5, and BNM
(n,p) — BNM (5,p). The BNM (5, p) is then specified by

evaluating (8) at * = x,41 and z = xn+C],j =1,...,5,
where {c1,co,c3,¢4,05}F = {é, é, ;, g, 6} In Figure 2, we
give the coefficients of BNM (5, p). where

w 7(yn+é + yn-‘,—% +yn+% + yn-&-% + yn—i—% + yn-i-l);

W =Wrps + Yppr Tis + Yppe T Ups T Yng),

"o__(, 1 " " 7 " "

W = T Ypps TYnis F iz T Uis T Unsa)s
"o (1 " " " " "
W (y"_;'_% + yn_;’_% ern_;'_% + yn_;’_% + yn+% + yn+1)7

T " T
9=(1,1,1,1,1,1)",¢'=¢" = ¢" = (0,0,0,0,0,0,)
(1 1 1 2 I T
d_(673’2’3767) d (11111,1)
_ _ 1 1 2 25 1\T
d _d _(0 050707070) (Qaﬁag 59 720 §) )
— (L 1 1 2 25 I\NT _/ 11125 T
6*(7 555 ) €= (673 55617
_ (1 1 1 2 25 1IN\NT _m __ T
e _(7778g572’2) e —(1,1,171, ,1
T 1 1.4 125 1N\T
e” =(0,0,0,0,0,0,)".c = (3355> 163 38 51+ 1306 ) >
/" 11 2 5 T o
¢ (6,372a§a631) ) € *(131a1,17171)
k’_( 95929 4127 5471 488 807125 191 )T
14702924800’ 18370800’ 6451200’ 229635’ 188116992’ 25200

kK = ( 343801 6887 1959 3863 505625 33 )
1783820800 3061800’ 358400’ 382725 31352832 1400/’
k! = ( 28549 1027 253 272 35225 41 )

4354560 68040 10752 8505’ 870912 840

k" = ( 19087 1139 137 143 3715 g)
3628807 22680’ 26887 28357 725767 840

m = ( 4001 4391 423 7808 701875 39 )
1679616007 91854007 179200’ 11481757 47029248° 1400/

m = ( 6031 1499 1599 4664 162125 ﬁ)
9331200’ 255150’ 89600’ 127575° 26127367 350/°

3

" o__ ( 275 97 165 376 8375 i)
T \207367 1890 17927 28357 48384 14/

m!" = (2013 AT 27 283 725 9 )
15120° 189> 112 945> 3024 35/°
n= (23088 —199  —39 632 790625 3 )
940584960 * 524880’ 28672 229635 188116992 560 /°
n = (32981 233 537 226 85625 3
52254720 58320 71680° 25515 10450944 ° 560/
p/ = (3T 2 26T -2 3125 3
483840 81> 17920 945 290304’ 140/

n' = ( 15487 11 387 64 2125 9 )
120960 * 7560 4480’ 945> 241927 280
t = ( 811 97 29 256 59375 19 )
39191040 306180’ 23040’ 76545’ 7838208 1260/’
t = ( 5177 52 1 272 66875 2 )
9797760 15309° 120’ 15309’ 1959552 35

o (10621 197 5 656 25625 17
v = (R, 5L, o5, 5%, 2, ),
=~ 1088640 8505’ 128 8505 217728 105
mo_ (293 166 17 752 125 34
v = (E5, H%, 4, 55, 18, &)
~ \2835 2835 105° 2835 567 105/°
D = (10693 —127 | —99  —58 653135 3
=~ 940584960 > 734832’ 143360 32805’ 188116992 560/°
/_ ( —15107 _—379 —327 —31 —119375 —3
D' = ( 7%0)
~ \’52254720° 204120 71680 3645’ 10450944 280/
n_ ( —7703 —97 —363 —2 —625 _3
D" = (%5 7 T 5 et 2%)
1451520 7560 17920 81’ 96768 280 /°
D" = (8737 -269 243 29 3875 9
= 120960 7560 » 4480 ’ 945 24192 280 /7
_ 4219 499 39 128 7625 3
E=( )
= \1175731200° 9185400 179200’ 229635 6718464 1400/’
B = (2247 149 120 344 1625 3 )
~ \65318400° 255150 89600’ 127575’ 373248 ° 350/

B = (;A03 23 5T 8 275 3
~ \241920° 5670 8960° 945’ 20736 70/°

E///:( 263 11 9 8 235 g)
151207 9452 5607 9457 3024’ 35
G = ( —2323 —137 —193 —88 —29375 -1 )
4702924800 18370800’ 6451200 1148175’ 188116992’ 3600/’
G = ( —9809 —491 —71 —142 —18625 —1 )
783820800’ 6123600’ 358400’ 382725’ 313528327 1200/’
G// ( —199 —19 —47 -2 —1375 0)
870912 34020’ 53760’ 1701’ 870912
and
Q" = ( —863 —37 —29 -4 =275 ﬂ)
3628807 22680’ 13440’ 2835’ 72576’ 840
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4 Analysis of the methods

4.1 BNM (3,p)

4.1.1 Block form

Thus, the proposed BNM (3,p) can be given in block
form as follows:

AQY, =AWy, +r*BYE,_; +BYF,), (9)

where p=1,...,N, n=0,...,N—1, AW B® =0, 1
are matrices whose entries are given by the coefficients in
Figure 1 and A©) is an identity matrix. We also define
the vectors Y, Y,_1, Fj, and F,_; for BNM (3,p) as
follows:

— / / 2,11 2,11
1/;1 - (yn+6j7 Yn+1, hyn-i,-cja hyn+1a h yn+cj7 h yn+17

hSy///

n+c;

3,1 T
h yn+1) ’
F;L = (fn+c_j) fn+1» hf’r/L—'er’ h 7’7,—‘1-1’ hf’r/L/—‘rCJ" h r/L/+1a

T
hf'rlllf&-cja h.f'rlzlfﬁ-l) ’

Yu—l - ( y7z—0j7 Yn, hy;—cja hy'/m thZ—cjy th;{a
Wyn e By,
F‘/L—l == (fn—Cj7 f?’“ h’f;L—C]W hf;“ h TIL,—CJ'? h’ 7/L,7 h T/L”—Cj7
hf/// )T
n 9

where j = 1,2,3 and {c1,co,c3} = %, %, %} The

T4 ! 1 " /

addltlonal ynfcj 9 ynfcj ) ynfcj 9 yn—cj ) fnfcj ) fnfcj )
n—c;+ fn—c, introduced are to augment the zero entries

of the vector notations.

4.1.2 Local truncation error and Order

We define the local truncation error of the BNM using
(9) as

LY (z);h] = AQY, —AVy, ,—pn*(BWE, ,+BOF,),

(10)
where L[Y(x);h] is a linear difference operator
and impose that Y(z,41) = Yny1 = ylx, + jh),

Y(xn-‘rc]') = Yntc; = y('rn +th')a y’l"],-‘rl = Y/(x)‘w:wn,+l =
y,(xn + ]h), y;L“l‘Cj = Y/(x)‘m:mnﬁ-cj- = y/(x" + th)’
ygjtl = Y//(x)‘$:w7L+l = y//(xn + Jh)’ yZ‘FCj =
Y//(x)|I:$n+cj = y”('xn + th), ZUZ/+1 = Y/N('r)|$:wn+1 =
Y@+ 5h), e, = Y (@)lo=0nye, = ¥ (@0 + ¢jh),

h),

forn = y"(@n + jh), and fore; = ¢ (20 + ¢

j =1,...,n. Suppose that Y(x) is sufficiently differen-
tiable, then, the expansion of L[Y(x);h] about point x
using Taylor series gives

LY (z);h] = CoY(z) + C1hY (z) + ... + Cph?YP(z) +
oo+ CppahY P (2) + ...

where C;,7 = 0,1,... are column vectors whose entries
comprise the error constants.

Definition

The BNM have algebraic order at least p>1 provided
there exists a constant Cpy4 # 0 such that the local trun-
cation error E,, satisfies ||E,| = Cpysh?T + O(hPT5),
where ||| is the maximum norm.

According to this definition, the local truncation error
constants Cpi4 of (yn+k,hy;+k)T for BNM (3,p) are
given as Figure 3.

where C() = Cl = 02 =.. .Cp = ...Cp+3 = 0.

The order p of the BNM (3,p) has been obtained from the
computation of the local truncation error constant as five.

4.1.3 Consistency and Zero-stability of BNM
(3,5)

The consistency of the method is established by the fact
that the order of BNM (3,5) is greater than one (see
Jator [20], Henrici [18]).

The zero-stability of a numerical method reveals the be-
havior of the method with a given value of h > 0 i.e. the
stability of the difference system in the limit as h tends to
zero. Thus, as h— 0, equation (10) tends to the difference
system A(l)YM_l — A(O)YH = 0 whose first characteristic
polynomial is given by

p(R) = det(RA® — A (11)
The block BNM (3,5) has its A®) and A® as 16 by 16
matrices where A® is identity matrix and A has its
fourth, eighth, twelfth and sixteenth columns as Figure 4.

respectively while other entries are zero.
Substituting A®) and AY) in (11), we obtain p(R) = R'2
(R*—1).

According to Fatunla ([14], [15]), the method is zero-
stable since p(R) = 0 satisfies |R;| < 1, j = 1 and for
those roots with |R;| = 1, the multiplicity does not

exceed four.
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1 551 1
C . - 33973862400 142851340000 619315200
p+4 - 59 13 1

14515200 247726080 35271936

1548288

T
1 1 1
7257600 2642411520 22044960 7741440
-1 _7 __ _13 _1 __-1_
241920 4423680 8393080 552960  M560

Fig 3: Error constants of BNM (3,p)

1 1 11000400
1+ 211111
i L 8 1 1 1 31 1
3 8 32 2 4 2 4
1 1L 8 L 1 1 9 1
34 48 12 6 32 & 32 2
Fi

4.2 BNM (5,p)

4.2.1 Block form

The proposed BNM (5,p) can as well be given in block
form as

A(O)Y A W p F,_ 1+B(O)

)

Yy, 1+ 4B F,),

)

(12)

where y=1,...,N, n=0,.... N—1,B?. B i=0, 1
are matrices whose entries are given by the coefficients
in Figure 2, and X(O) is 24 by 24 identity matrix. We
also define the vectors Y),, Y,,_1, F,, and F},_; for BNM
(5,p) as follows:

— / / 2,11 2,11
YM - (yn-‘rcja Yn+1, hyn+cja hyn+la h yn+0j? h Yn+1>
3,1 3,1 T
h yn+0j7 h yn+1) ’

F;A = (fn-i—cjv fn+17 hf’r/L+Cj7 hfr/LJrlv hf;{+0j7 h 1/L/+1’
T
hfes hED)T

)/;L 1 — ( yn Cj yn7 hyn cj h’yna h2y71 cj h2y713

By, h%/”)
EL 1 —(fn cj .fna h n—c;? 717 hf n?
hf/// f/// )T

where 7 = 1,2,3,4,5 and {01702703704705} =
111°25

{g7§7§,§,g} The additional y,—c;, ¥;,_ o Y o
111 / 1 "

Ynicys frn—cjs Thoe;s fn-c;s fhile, introduced are to

augment the zero entries of the vector notations.

4.2.2 Local truncation error and Order

The local truncation error of BNM (5,p) is also defined
using (12) as

00000000
0000000CO
11110000
11311111

ig 4: The 4th, 8th, 12th and 16th columns of 4®

LY (2);h] =AYy, -AVy, BV E,_ 1 +BYE,),

(13)
where L[Y(x);h] is a linear difference operator
and impose that Y(z,41) = Uni1 = y(xzn + jh),

Y/(as) ‘$:J;n+1 =

Y($n+0j) = yn+cJ =y(xn +¢;h), Ypy1 = N
=Y (xn + th)a

y/(xn + jh) yn+cj =Y (l‘)|3; Tntc;

Ynr1 = Y'(@)|o=zon = ¥'(@n + Jh), Yoo,
Y &) e=apie, =y (@n + ¢jh), yii;l Y (@) =11
/)

y" (xn + jh), ylerc Y (x )‘z:rn+cj = y"(xn + cjh),
fotr = ¥ (w0 + jh), and fuie, = y"(zn + ch),
j =1,...,mn. Suppose that Y(x) is sufficiently differen-
tiable, then, the expansion of L[Y(x);h] about point x
using Taylor series gives

LY (z);h] = CoY(z) + C1hY (x) + ... + CphPYP(x) +
ot CppghY P () + ..

where C;,7 = 0,1,... are column vectors whose entries
comprise the error constants.

Thus, according to the definition given in section 4.1, the
local truncation error constant Cpi4 # 0 of BNM (5, p)
has been obtained as Figure 5

where the order, p = 7.

4.2.3 Counsistency and Zero-stability of BNM

(5,7)

As earlier discussed, the order p > 1 of BNM (5, 7)
established its consistency (see Jator [21], Henrici [18]).

The first characteristic polynomial of BNM (5,7) is
given by p(R) = det(RK(O) — K(l)) and its A" is a
24 by 24 matrix whose sixth, twelfth, eighteenth and
twenty-fourth columns are given as Figure 6

(Advance online publication: 20 November 2019)
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T

178 73 37 __lsgs 1 ___
10B612TIIB705600 3304147857030 11406038400 165729875850 4450925748224 1231718400
400 1% 2 765 1L _
C 109709R20734400  S5TI0R044800 50164531200  267R4626400  438BISIBWT6 391910400
P4 e 23 1 M 168 1 __375
Q142485811200 1428510800 391910400 3928208800 3656994324438 195955200 40633270272
1 1 1 275 =1
198404640 167215104 198404640 4063320272 1567641600
Fig 5: Error constants of BNM (5,p)
111111000000000000000000T
1 412 £ 1111111000000 000000
%%%%%%%%%%%1111111000000
S R R EEEEE R AR RN

Fig 6: The 6th, 12th, 18th and 24th columns of a®

respectively while other entries are zero and K(O) is 24
by 24 identity matrix.
Substituting A" and A" in p(R) = det(RA"” —X(l)),
we obtain p(R) = R?° (R* —1).

According to Fatunla ([14], [15]), the methods are
zero-stable since p(R) = 0 satisfies |R;| <1, j =1 and
for those roots with |R;| = 1, the multiplicity does not
exceed four.

5 Implementation of BNM

We implement the BNM using a written code in Math-
ematica 10.0 enhanced by the features NSolve[ | for
linear problems and FindRoot| ] for nonlinear problems
respectively. In what follows, we summarize how BNM
(n,p) is applied to solve initial value problems (IVPs)
in a block-by-block fashion as well as applied to solve
boundary value problems (BVPs) via a block unification
technique.

5.1 IVPs-Block-by-block algorithm

e Step 1: Choose N, h = (xny—x()/N, on the partition
QN-

e Step 2: Using (6), n = 0,u = 1, for BNM (3,5),
solve for the values of
Y13 y3, 91,91, Y Vs Y1, YT YL s
y%//’ y/%//’ y/%//’ ylll/]T
simultaneously on the sub-interval [zg, 1], as yo, Y0,
yi and y{" are known from the IVP (1).

e Step 3: Next, for n = 1, u = 2 the values of
V3,93, 92915, Y5, Y7, 95, Y5, Y3, U7,
RN
are simultaneously obtained over the sub-interval
[x1,22], as y1, ¥}, ¥{ and y}” are known from the
previous block.

e Step 4: The process is continued for n =
2,...,N —1 and ¢ = 3,...,N to obtain the
numerical solution to (1) on the sub-intervals
[l‘o, (IJ1], [.’L’l,l‘g], ey [$N717xN]-

The procedure is the same for BNM (5, 7).

5.2 BVPs-Block unification algorithm

e Step 1: Choose N, h = (xny—x0)/N, on the partition
Qn.

e Step 2: Using (6), n = 0,u = 1, for BNM (3,5),

generate the variables
T .
i, viul w13 ()1
on the interval [xg, 1] and do not solve yet.

e Step 3: Next, for n = 1, u = 2 generate the variables
s, vz, yz,y0, 95,95 00, ¥, V8, ¥a, 7, U3, Us
4 2 4 4 2 4 4
e, T
I3-9947 5,92 ]
2 4

on the sub-interval [x1,z2], and do not solve yet.

e Step 4: The process is continued forn =2,... , N—1
and p = 3,...,N until all the variables on the
sub-intervals [z, z1], [z1, Z2], ..., [tN—1,2ZN] are ob-
tained.

e Step 5: Create a single block matrix equation by the
unification of all the blocks generated in Step 2 and
Step 3 on Qn-

e Step 6: Solve the single block matrix equation to
simultaneously obtain all the solutions for (1) on the
entire [zo, T N]-

The procedure is the same for BNM (5, 7).

6 Numerical Examples

In this section, we give some numerical examples to illus-
trate the accuracy of the method. We find the absolute
error of the approximate solution as |y — y(x)|. The rate
of convergence (ROC) was calculated using the formula
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ROC = log,(E?"/E"), where E" is the maximum abso-
lute error Err = Max|y(z) — y| using the step size h.
We investigate the effectiveness and accuracy of the pro-
posed BNM (3,5) and BNM (5,7) by solving seven test
problems.

Six IVPs and three BVPs solved by different existing
methods are considered. For each example considered,
we find the absolute error |y(x) — y,(x)| of the approxi-
mate solution.

6.1 IVPs

Example 1a: Consider the linear fourth order problem
(see Jator [21])) y™ =y +y" +y +2y, y(0) =y'(0) =
y"(0) =0,

y"(0)=30, 0<t<2

whose theoretical solution is y(t) = 22 -
— Osint.

This problem was solved by Yap and Ismail [36],
Awoyemi [5], Jator [21] adopting block hybrid collocation
method (BHCM4), multiderivative collocation method
in (Awoyemi), finite difference method (Jator). We solve
this problem using our methods, BNM (3,5) and BNM
(5,7) for 0 < t < 2 and compare the absolute error of
our result at t = 2 with these existing methods and the
Adams Bashforth-Adams Moulton method (Adams) as
shown in Table ITI. BNM (3,5) and BNM (5,7) compare
favourably well with these existing methods.

5e~¢ + 3cost

Table I17*: Numerical Results for Example 1a

h Method Absolute Error at t=2
0.1 BNM (3,5) 2.96(-8)
BNM (5,7) 1.85(-13)
BHCM4 1.74(-8)
ADAMS 2.11(-3)
JATOR 1.26(-4)
0.05 | BNM (3,5) 4.62(-10)
BNM (5,7 7.11(-14)
BHCM4 8.45(-11)
ADAMS 5.37(-4)
JATOR 1.91(-6)
0.025 | BNM (3,5) 6.27(-12)
BNM (5,7) 1.14(-12)
BHCM4 3.69(-13)
ADAMS 5.09(-5)
JATOR 2.96(-8)
0.02 | BNM (3,5) | 1.96(-12)
BNM (5,7) 1.99(-13)
BHCM4 7.11(-14)
ADAMS 2.25(-5)
JATOR 8.65(-9)
Remark

We note that the ROC of 4.28 in Tables 3-5 is due to
truncation error and x * x indicate an invalid ROC.

Table 1: Results for Example 1a

BNM (3,5) BNM (5,7)
N Err ROC ERr ROC
5 1.26 x 10—4 1.35 x 107
10 1.91 x 10=6 6.04 5.12x10710  8.04
20 2.96 x 1078 6.01 1.93x10712 8.05
40 4.62x10719  6.00 9.95x 10714 4.28
80 6.34x10712 612 7.11 x 10713 xxx

Example 1b: We consider the special fourth order

problem (see Kayode [24])

yiv =z,

y(0)=0, ¥y (0)=1, y"(0)=0, ¥y (0)=00<2z2<1
2

=120 + x.

Example 1b was solved by Kayode et al. and Mo-

hammed. The results are compared with the result of

B(3,5) which shows its better performance.

whose analytical solution is y(z)

Table IIIb: Numerical Results for Example 1b

t MOHAMMED KAYODE BNM (3.,5)
0.1 7.00 x10~19 1832 x10~ ¥ 347 x10~18
0.2 8999 x10710  4.835 x107'2 1.39 x10~17
0.3 2.999 x107% 7214 x10~12 2.78 x10~17
0.4 5.100 x1079  6.832 x10~ ' 5.55 x10~16
0.5 7.799 x1079  7.416 x10~ 1! 0

0.6 1.180 x107% 2714 x10~ '  5.55 x10~17
0.7 1.240 x1079  2.815 x10~ ' 8.33 x10~17
0.8 1.410 x107% 3412 x10~0 1.11 x10~16
09 1.880 x107% 1936 x10~0 1.11 x10~16

Example 1c: We consider homogeneous fourth or-
der problem (see Awoyemi [7])
Yy =4y,

y(0) =1, ¥/(0) =3, ¥"(0) =0, y"(0) =16 0 <z <1
whose analytical solution is y(z) = 1 — x + €2* — e 2%,
Example 1lc was solved by Awoyemi et al. with no
comparison of the solution with existing method. Their
results are compared with the result of B(5,7).
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Table IITc: Numerical Results for Example Ic
t  AWOYEMI BNM (5,7)
0.1 0 0
0.2 0 2.22 x10~16
0.3 222 x10716 444 x10~16
0.4 244 x10~15 0
0.5 1.15 x1071% 4.44 x10~16
0.6 3.31 x10~'* 8.88 x10716
0.7 7.28 x10~* 8.88 x10~16
0.8 1.37 x10~ 1.78 x10~1°
0.9 231 x107'% 3.55 x1071°
Example 2: Consider the nonlinear fourth order

problem (see Awoyemi [5])

yiv — (y/)Q _ yy/// _ 4t2 + et(l + t2 _ 4t),

y(0) =y'(0) =1, ¥"(0) =3, y"(0) =1 0<t<1
whose analytical solution is y(t) = t2 + €.

Table IV*: Numerical Results for Example 2

h Method Absolute Error at
t=1

0.1 BNM(3,5) 4.76(-13)
BNM(5,7) 4.44(-16)
BHCM4 1.95(-14)
ADAMS 2.44(-6)
AWOYEMI 9.26(-5)

0.2 BNM(3,5) 3.06(-11)
BNM(5,7) 2.22(-15)
BHCM4 2.38(-12)
ADAMS 5.01(-7)
AWOYEMI 5.84(-4)

Table 2: Results for Example 2

BNM (3,5) BNM (5,7)
N Err ROC ERr ROC
5 1.26 x 104 1.35 x 107
10 1.91 x 10=6 6.04 5.12x10710  8.04
20 2.96 x 1078 6.01 1.93x10712 8.05
40 4.62x10710  6.00 9.95x1071*  4.28
80 6.34x10712 612 7.11x10713 Hokk

Example 3: This is an application problem from
Ship Dynamics which was stated by Wu [35] when a
sinusoidal wave of frequency 2 passes along a ship or
offshore structure, the resultant fluid actions vary with
time t. In a particular case study by Wu etal. [35], the
fourth order problem is defined as

Y™ 4+ 3y" 4+ y(2 + e cos(t)) = 0,

y(0) =1, ¥'(0) =¢"(0) =y"(0) =0, t>0

where e= 0 for the existence of the theoretical solution,
y(t) — 2 cos t - cos(tv/2). The theoretical solution is
undefined when € # 0 =0 (see Twizell [32]).

Table V*: Performance comparison for Wu equation
withe =0
h Method Absolute Error at
t=15
0.1 BNM(3,5) 3.4(-10)
BNM(5,7) 0
BHCM4 2.8(-10)
ADAMS 8.4(-5)
CORTELL 3.7(-5)
0.25 | BNM(3,5) 8.2(-8)
BNM(5,7) 1.7(-11)
BHCM4 5.2(-7)
ADAMS 4.9(-3)
TWIZELL 1.9(-4)
Table 3: Results for Example 3
BNM (3,5) BNM (5,7)
N Err ROC ERr ROC
5  1.26 x 1074 1.35 x 1077
10 1.91x107%  6.04 512x10710 8.04
20 2.96 x 10~8 6.01 1.93x1071'2  8.05
40 4.62x 10710  6.00 9.95x 107  4.28
80 6.34x 10712 6.12 711 x 10713 wxx

Tables 4* and 5* show the performance comparison
of results between the BNM and the existing Yap and
Ismail block hybrid collocation method [36], Adams
method, Jator finite difference method [21] and Awoyemi
multi-derivative collocation method [5]. The superiority
of BNM (5,7) which is of lower order to the order 8
of BHCMA4 is established as it more accurate than the
existing methods compared with.

Example 4: Counsider the linear system (see Hussain
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[19])

y* =ue’,y(0) = 1,5'(0) = —1,5"(0) = 1,5(0) = —1.
2 =16ye~*, 2(0) = 1,2/(0) = —2,2"(0) = 4,

2(0) = —8.

w = 8lze %, w(0) = 1,w'(0) = —3,w”(0) =9,

w'(0) = —27.

u = 256w e, u(0) = 1,4/(0) = —4,u”(0) = 16,

W (0) = —64.
The exact solution is given by

Y(@) = e, 2(2) = e w(e) = e ulz) = e

The problem is integrated in the interval [0, 2].

This example was chosen to show the performance of
BNM(3, 5) and BNM(5, 7) on a system. Looking at
Table VI, we deduced that BNM(3, 5) and BNM(5, 7)
exhibit an order 5 and 7 respectively, since on halving
the step size of each method, Err is reduced by a factor
2% or 27.

Table 4: Results for Example 4

BNM (3,5) BNM (5,7)
N Err ROC ERr ROC
5 1.21 x 103 4.74 x 10—6
10 218 x 1075 5.80 2.13 x 10~8 7.80
20 3.53x 1077 595 8.64x10-11  7.95
40  5.57 x 1079 599 344 x10713  7.97
80 8.73x10°11  6.00 1.78x10°15 7.60
80 1.39x10712 597 6.57 x 10715 xxx
6.2 BVPs

Example 5: We consider the following nonlinear bound-
ary value problem in [0, 1], (see [30], [31], [12]).

Y (2) = (y(2))? — 210 + 42° — 42® — 427 + 826 — 42*
+120z — 48

y(0) =0,4'(0) =0

y(1) =1,9(1) =1

with exact solution y(x) =x° — 2x* + 2x2.

This problem was solved by Noor and Mohyud-Din
([30] [31]) using variational method (NMD method) of
approximating polynomial of degree 14 and Costabile
and Napoli [12] (HBVP method) with polynomial of
degree 6. We compare the result of our method, BNM
(3,5) with their results as shown in Table VII.

It is obvious from the numerical results in Table VII that
the method is more accurate.

Table VII: Numerical Results for Example 5
t NMD HBVP BNM (3,5)
0.1 4.57 x10~10 735 x10~1®  6.94 x10~ 8
0.2 1.59 x10~1% 234 x10~15 1.39 x10~17
0.3 3.16 x10~1%  4.11 x10~15 2.78 x10~17
0.4 4.77 x10~1%  5.83 x10~15 1.11 x10~16
0.5 6.05 x1071% 5.99 x10~15 1.11 x10~16
0.6 6.66 x10~1% 5,55 x10~15 1.11 x10~16
0.7 6.66 x10~1% 5.21 x10~1% 1.11 x10~16
0.8 5.22 x10~1% 3.10 x10~™15 1.11 x10~1'6
0.9 255 x1071 555 x10716  1.11 x10~16

Example 6 (see [30], [12])

Y0 (1) = y(t) + 5" (t) + (= 3),t € 0,1
y(0) =1,4'(0) =0
y(]-) = 07:'/(1) =€

Exact solution is y(t) = (1-t)e’.

Table VIIT compares the results of NMD, HBVP and
BNM (3,5) methods. Its second and third columns show
respectively the error in the NMD and HBVP methods
each of polynomial of degree 15 while the last column
contains the error in the BNM (3,5) of degree 8.

Table VIII: Numerical Results for Example 6
t NMD ( dﬁ; Ji‘glj 5) BNM(3,5)
0.1 200 x1071° 197 x10°¥ 123 x10° ™
0.2 7.00 x1071%  1.56 x107*®  4.03 x107
0.3 135 x107° 1.83 x107* 713 x107
0.4 200 x107°  2.06 x107'® 953 x10~*
0.5 251 x107% 202 x107®  1.06 x10~ '3
0.6 272 x107°  2.25 x107*®  1.00 x107%?
0.7 221 x107°  2.04 x107*  7.88 x10™ !
0.8 1.80 x107%  1.98 x10™'%  4.71 x10™ ™
0.9 7.25 x107'° 218 x107'®  1.56 x10~ ™

Example 7 (see [30], [12])

y)(t) = sint + sin® t — (v (t))2,t € [0, 1]
y(0) =0,4'(0) =1
y(1) =sin(1),y'(1) = cos(1)

with exact solution y(t) — sin(t)

It was solved by Noor and Mohyud-Din (see [30], [31])
and Costabile and Napoli [12] taking h = 0.1 by using
NMD and HBVP methods of approximating polynomials
of degrees 11 and 8 respectively. We also solved for the
same step size with our method, BNM (3,5) and the
absolute errors at different points are shown in Table IX.
The superiority of BNM (3,5) is established numerically.
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Table IX: Numerical Results for Example 7

t NMD HBVP BNM (3,5)
0.1 7.78 x107% 4.45 x10~ 1 3.75 x10~ 16
0.2 272 x10™7 5.54 x10719 1.17 x10~1®
0.3 524 x1077 895 x10~'1 211 x10~1®
0.4 7.77 x10~7 2.03 x10719 2.78 x10~1®
0.5 9.71 x10~7 3.32 x10~'1  3.11 x10~1®
0.6 1.05 x107% 1.53 <1019 3.00 x10~1'®
0.7 9.63 x10~7 9.48 x10~'1 2.33 x10~1®
0.8 6.84 x10™7 5.18 x10719 1.33 x10~1®
09 271 x1077 4.15 x10710 444 x10716

7 Conclusion

A family of Nystrom type methods BNM (3,5) and
BNM (5,7) have been presented and implemented in a
block-by-block manner to solve fourth order IVPs and

BVPs.

It has been shown via the numerical examples

given in the Section 6 that the methods are accurate and
competitive with those given in the literature. Qur future
research will be focused on extending these methods to
solve partial differential equations via the method of lines.
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