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Abstract—This paper is concerned with the parameter esti-
mation problem for Constantinides-Ingersol model with small
Lévy noises from discrete observations. The least squares
method is used to obtain the parameter estimators and the
explicit formula of the estimation error is given. The consis-
tency of the estimators are derived when a small dispersion
coefficient ε → 0 and n → ∞ simultaneously by using Cauchy-
Schwarz inequality, Gronwall’s inequality, Markov inequality
and dominated convergence. The simulation is made to verify
the effectiveness of the least squares estimators.

Index Terms—Least squares estimator, Lévy noises, discrete
observations, consistency.

I. INTRODUCTION

Itô stochastic differential equations are important tools for
studying random phenomena and are widely used in the
modeling of stochastic phenomena in the fields of physics,
chemistry, medicine and finance [2], [3], [5], [6], [13], [18].
However, part or all of the parameters in stochastic model
are always unknown. In the past few decades, some popular
methods have been put forward to estimate the parameters
in Itô stochastic differential equations, such as maximum
likelihood estimation [1], [20], [21], least squares estimation
[4], [17], [19] and Bayes estimation [8]–[10], [12]. But,
in fact, non-Gaussian noise can more accurately reflect the
practical random perturbation. Lévy noise, as a kind of
important non-Gaussian noise, has attracted wide attention
in the research and practice in the fields of engineering,
economy and society. From a practical point of view in
parametric inference, it is more realistic and interesting
to consider asymptotic estimation for stochastic differential
equations with small Lévy noises. Recently, a number of
literatures have been devoted to the parameter estimation for
the models driven by small Lévy noises. When the coefficient
of the Lévy jump term is constant, drift parameter estimation
has been investigated by some authors [14], [15].

The Constantinides-Ingersol model( [7]), which was in-
troduced in 1992, is a nonlinear economic model introduced
to exam the value of the timing option regarding the re-
alization of capital gains and losses on bondsand analyze
the effect of capital gains tax on their pricing. It is known
that parameter estimation for Constantinides-Ingersol model
driven by Brownian motion has been well developed based
on discrete observations( [22]). However, some features of
the financial processes cannot be captured by Constantinides-
Ingersol model, for example, discontinuous sample paths
and heavy tailed properties. Therefore, it is natural to re-
place the Brownian motion by the Lévy process. However,
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there has few literatures about the parameter estimation for
Constantinides-Ingersol model driven by Lévy process.

In this paper, we consider the parameter estimation prob-
lem for Constantinides-Ingersol model with small Lévy
noises from discrete observations. The decomposition of
the Lévy process is different from that in ( [11], [16]), so
the methods used to prove the asymptotic property of the
estimators are different. The process is discreted based on
Euler-Maruyama scheme, the least squares method is used to
obtain the explicit formula of the estimator and the estimation
error is given as well. when the small dispersion coefficient
ε → 0 and n → ∞ simultaneously, the consistency of the
least squares estimator is proved by applying the Cauchy-
Schwarz inequality, Gronwall’s inequality, Markov inequality
and dominated convergence. Finally, the simulation result is
provided to verify the effectiveness of the obtained estimator.

This paper is organized as follows. In Section 2, the
Constantinides-Ingersol model driven by small Lévy noises
is introduced, the contrast function is given and the explicit
formula of the least squares estimator is obtained. In Section
3, the estimation error is derived and the consistency of the
estimator is proved. In Section 4, the results are extended to
semi-martingale noises. In Section 5, some simulation results
are made. The conclusion is given in Section 6.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Ω,F ,P) be a basic probability space equipped
with a right continuous and increasing family of σ-algebras
({Ft}t≥0). Let (Lt, t ≥ 0) be an ({Ft})-adapted Lévy
noises with decomposition

Lt = Bt +

∫ t

0

∫
|z|>1

zN(ds, dz) +

∫ t

0

∫
|z|≤1

zÑ(ds, dz),

(1)
where (Bt, t ≥ 0) is a standard Brownian motion, N(ds, dz)
is a Poisson random measure independent of (Bt, t ≥
0) with characteristic measure dtν(dz), and Ñ(ds, dz) =
N(ds, dz) − ν(dz) is a martingale measure. We assume
that ν(dz) is a Lévy measure on R\0 satisfying

∫
(|z|2 ∧

1)ν(dz) <∞.
In this paper, we study the parameter estimation for

Constantinides-Ingersol model with small Lévy noises de-
scribed by the following stochastic differential equation:{

dXt =αX2
t dt+ εX

3
2
t dLt, t ∈ [0, 1]

X0 =x0,
(2)

where α is an unknown parameter. Without loss of generality,
it is assumed that ε ∈ (0, 1].

Consider the following contrast function

ρn,ε(α) =
n∑
i=1

|Xti −Xti−1
− αX2

ti−1
∆ti−1|2

ε2X3
ti−1

∆ti−1
, (3)
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where ∆ti−1 = ti − ti−1 = 1
n .

It is easy to obtain the estimator

α̂n,ε =

∑n
i=1

Xti
−Xti−1

Xti−1

∆ti−1
∑n
i=1Xti−1

. (4)

Before giving the main results, we introduce some assump-
tions below.

Let X0 = (X0
t , t ≥ 0) be the solution to the underlying

ordinary differential equation under the true value of the
parameter:

dX0
t = α0(X0

t )2dt, X0
0 = x0.

Assumption 1: α0 is positive true valve of the parameter
α.

Assumption 2: inf0≤t≤1{Xt} > 0, sup0≤t≤1{Xt} ≤
K <∞.

In the next sections, the consistency of the least squares
estimators are derived and the simulation is made to verify
the effectiveness of the estimators.

III. MAIN RESULT AND PROOFS

In the following theorem, the consistency in probability
of the least squares estimators is proved by using Cauchy-
Schwarz inequality, Gronwall’s inequality, Markov inequality
and dominated convergence.

Theorem 1: The least squares estimators α̂n,ε is consistent
in probability, namely

α̂n,ε
P→ α0.

Proof: By using the Euler-Maruyama scheme, from (2),
we have

Xti −Xti−1
= α(Xti−1

)2∆ti−1 + ε(Xti−1
)

3
2 (Lti − Lti−1

).
(5)

Then, it is easy to see that

n∑
i=1

Xti −Xti−1

Xti−1

(6)

= α
1

n

n∑
i=1

Xti−1
+ ε

n∑
i=1

√
Xti−1

(Lti − Lti−1
).

Substituting (6) into the expression of α̂n,ε, it follows that

α̂n,ε − α =
ε
∑n
i=1

√
Xti−1(Lti − Lti−1)

1
n

∑n
i=1Xti−1

. (7)

Let Mn,ε
t = X[nt]/n, in which [nt] denotes the integer part

of nt. We will prove that the sequence {Mn,ε
t } converges to

the deterministic process {X0
t } uniformly in probability as

ε→ 0 and n→∞.
Observe that

Xt−X0
t = α0

∫ t

0

((Xs)
2−(X0

s )2)ds+ε

∫ t

0

(Xs)
3
2 dLs. (8)

By using the Cauchy-Schwarz inequality, we have

|Xt −X0
t |2

≤ 2(α0)2|
∫ t

0

((Xs)
2 − (X0

s )2)ds|2

+ 2ε2|
∫ t

0

(Xs)
3
2 dLs|2

≤ 2t(α0)2
∫ t

0

|(Xs)
2 − (X0

s )2|2ds

+ 2ε2|
∫ t

0

(Xs)
3
2 dLs|2

= 2t(α0)2
∫ t

0

|Xs −X0
s |2|Xs +X0

s |2ds

+ 2ε2|
∫ t

0

(Xs)
3
2 dLs|2

≤ 8K4t(α0)2
∫ t

0

|Xs −X0
s |2ds

+ 2ε2|
∫ t

0

(Xs)
3
2 dLs|2

.

According to the Gronwall’s inequality, we obtain

|Xt −X0
t |2 ≤ 2ε2e8K

4t2(α0)
2

|
∫ t

0

(Xs)
3
2 dLs|2. (9)

Then, it follows that

sup
0≤t≤T

|Xt −X0
t | (10)

≤
√

2εe4K
4T 2(α0)

2

sup
0≤t≤T

|
∫ t

0

(Xs)
3
2 dLs|.

Therefore, for each T > 0, it is easy to check that

sup
0≤t≤T

|Xt −X0
t |

P→ 0. (11)

As [nt]/n → t when n → ∞, we get that the sequence
{Mn,ε

t } converges to the deterministic process {X0
t } uni-

formly in probability as ε→ 0 and n→∞.

Next we will prove that

n∑
i=1

√
Xti−1

(Lti − Lti−1
)
P→

∫ 1

0

√
X0
sdLs.

Note that

n∑
i=1

√
Xti−1

(Lti − Lti−1
) =

∫ 1

0

√
Mn,ε
s dLs. (12)
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Then, it is elementary to see that

|
∫ 1

0

√
Mn,ε
s dLs −

∫ 1

0

√
X0
sdLs|

= |
∫ 1

0

(
√
Mn,ε
s −

√
X0
s )dBs

+

∫ 1

0

∫
|z|>1

(
√
Mn,ε
s −

√
X0
s )zN(ds, dz)

+

∫ 1

0

∫
|z|≤1

(
√
Mn,ε
s −

√
X0
s )zÑ(ds, dz)|

≤ |
∫ 1

0

(
√
Mn,ε
s −

√
X0
s )dBs|

+ |
∫ 1

0

∫
|z|>1

(
√
Mn,ε
s −

√
X0
s )zN(ds, dz)|

+ |
∫ 1

0

∫
|z|≤1

(
√
Mn,ε
s −

√
X0
s )zÑ(ds, dz)|.

It is easy to check that

|
∫ 1

0

∫
|z|>1

(
√
Mn,ε
s −

√
X0
s )zN(ds, dz)|

≤
∫ 1

0

∫
|z|>1

|
√
Mn,ε
s −

√
X0
s ||z|N(ds, dz)

≤ sup
0≤s≤1

|
√
Mn,ε
s −

√
X0
s |
∫ 1

0

∫
|z|>1

|z|N(ds, dz)

P→ 0,

as ε→ 0 and n→∞.
By using the Markov inequality and dominated conver-

gence, we have

|
∫ 1

0

(
√
Mn,ε
s −

√
X0
s )dBs|

P→ 0, (13)

and

|
∫ 1

0

∫
|z|≤1

(
√
Mn,ε
s −

√
X0
s )zÑ(ds, dz)| P→ 0. (14)

Thus, combining the previous results, it follows that
n∑
i=1

√
Xti−1(Lti − Lti−1)

P→
∫ 1

0

√
X0
sdLs. (15)

Let
XN = inf

0≤ti−1≤1
{Xti−1}. (16)

From (16), we obtain

1

n

n∑
i=1

Xti−1 ≥ XN .

Then, we get

1
1
n

∑n
i=1Xti−1

≤ 1

XN
.

Therefore, when ε→ 0 and n→∞, we have

εσ
n∑
i=1

√
Xti−1(Lti − Lti−1)

P→ 0, (17)

and
α̂n,ε

P→ α0. (18)

The proof is complete.
Theorem 2: When ε→ 0 and n→∞,

ε−1(α̂n,ε − α0)
P→

∫ 1

0

√
X0
sdLs∫ 1

0
X0
sds

.

Proof: Since

ε−1(α̂n,ε − α0) =

∑n
i=1

√
Xti−1(Lti − Lti−1)

1
n

∑n
i=1Xti−1

.

According to the results in Section 3, it is easy to check
that

1

n

n∑
i=1

Xti−1

P→
∫ 1

0

X0
sds.

Since
n∑
i=1

√
Xti−1

(Lti − Lti−1
)
P→

∫ 1

0

√
X0
sdLs.

We obtain that

ε−1(α̂n,ε − α0)
P→

∫ 1

0

√
X0
sdLs∫ 1

0
X0
sds

. (19)

The proof is complete.

IV. GENERALIZATION TO SEMI-MARTINGALE NOISES

In this section, we discuss the extension of our main results
in Section 3 to the general case when the driving noise is
a semi-martingale. Let Qt = Q0 + Mt + At be a semi-
martingale, where Mt is a local martingale and At is a finite
variation process. Then, we can replace the driving Lévy
process Lt by the semi-martingale Qt to get{

dXt =αX2
t dt+ εX

3
2
t dQt, t ∈ [0, 1]

X0 =x0,

where α is an unknown parameter. Without loss of generality,
it is assumed that ε ∈ (0, 1].

All the related information about the least squares estima-
tor of α discussed in this section is same to Section 2. We
are interested in the consistency and asymptotic behavior of
the least squares estimator of α.

Now we state the new results as follows.
Theorem 3: Under Assumptions 1−2, ε→ 0 and n→∞,

the least squares estimators α̂n,ε is consistent, namely

α̂n,ε
P→ α0.

Proof: According to the results in Section 3, it is easy
to get the error of estimation

α̂n,ε − α0 =
ε
∑n
i=1

√
Xti−1

(Qti −Qti−1
)

1
n

∑n
i=1Xti−1

.

By applying the same methods, it can be checked that
n∑
i=1

√
Xti−1

(Qti −Qti−1
)
P→

∫ 1

0

√
X0
sdQs.

Since
1

n

n∑
i=1

Xti−1
≥ XN .
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Then, we get

1
1
n

∑n
i=1Xti−1

≤ 1

XN
<∞.

Therefore, when ε→ 0 and n→∞, we obtain

α̂n,ε
P→ α0.

The proof is complete.
Theorem 4: When ε→ 0 and n→∞,

ε−1(α̂n,ε − α0)
P→

∫ 1

0

√
X0
sdQs∫ 1

0
X0
sds

.

Proof: Since

ε−1(α̂n,ε − α0) =

∑n
i=1

√
Xti−1

(Qti −Qti−1
)

1
n

∑n
i=1Xti−1

.

According to the results in Section 3, it is easy to check
that

1

n

n∑
i=1

Xti−1

P→
∫ 1

0

X0
sds.

Since
n∑
i=1

√
Xti−1

(Lti − Lti−1
)
P→

∫ 1

0

√
X0
sdQs.

We obtain that

ε−1(α̂n,ε − α0)
P→

∫ 1

0

√
X0
sdQs∫ 1

0
X0
sds

. (20)

The proof is complete.
Remark 1: If Constantinides-Ingersol model is driven by

small α-stable noises as follows{
dXt =αX2

t dt+ εX
3
2
t dZt, t ∈ [0, 1]

X0 =x0,

where α is an unknown parameter, ε ∈ (0, 1] and Z =
{Zt, t ≥ 0} is a strictly symmetric α-stable Lévy motion.

A random variable η is said to have a stable distribu-
tion with index of stability α ∈ (0, 2], scale parameter
σ ∈ (0,∞), skewness parameter β ∈ [−1, 1] and location
parameter µ ∈ (−∞,∞) if it has the following characteristic
function:

φη(u) =



exp{−σα|u|α(1− iβsgn(u) tan
απ

2
) + iµu}

ifα 6= 1,

exp{−σ|u|(1 + iβ
2

π
sgn(u) log |u|) + iµu}

ifα = 1.

Consider the following contrast function

ρn,ε(α) =
n∑
i=1

|Xti −Xti−1 − αX2
ti−1

∆ti−1|2

X3
ti−1

,

where ∆ti−1 = ti − ti−1 = 1
n .

It is easy to obtain the estimator

α̂n,ε =

∑n
i=1

Xti
−Xti−1

Xti−1

1
n

∑n
i=1Xti−1

.

Note that

Xti −Xti−1
= α

∫ ti

ti−1

X2
sds+ ε

∫ ti

ti−1

X
3
2
s dZs.

Then, we can give a more explicit decomposition for α̂n,ε
as follows

α̂n,ε

=
α
∑n
i=1

∫ ti
ti−1

X2
s

Xti−1
ds

1
n

∑n
i=1Xti−1

+
ε
∑n
i=1

∫ ti
ti−1

X
3
2
s

Xti−1
dZs

1
n

∑n
i=1Xti−1

This equation is different from Equation (7). Therefore,
the methods to prove the consistency of α̂n,ε is different as
well and it is more difficult.

V. SIMULATION

In this experiment, we generate a discrete sample
(Xti)i=0,1,...,n and compute α̂n,ε from the sample. We let
x0 = 0.1. For every given true value of the parameters-α0,
the size of the sample is represented as“Size n” and given in
the first column of the table. In Table 1, ε = 0.05, the size is
increasing from 500 to 3000. In Table 2, ε = 0.001, the size
is increasing from 5000 to 30000. The tables list the value
of “α0 − LSE” and the absolute errors (AE) of LSE, LSE
means least squares estimator.

Two tables illustrate that when n is large enough and ε is
small enough, the obtained estimators are very close to the
true parameter value. Therefore, the methods used in this
paper are effective and the obtained estimators are good.

TABLE I
LSE SIMULATION RESULTS OF α0

True Aver AE

(α0) Size n α0 − LSE α0

1

500 0.9652 0.0348

1000 0.9736 0.0264

3000 0.9814 0.0186

2.5

500 2.4663 0.0337

1000 2.4782 0.0218

3000 2.4875 0.0125

3.5

500 3.4653 0.0347

1000 3.4791 0.0209

3000 3.4856 0.0144

Next we give some simulation results of the confidence
interval of α0 under 0.95 confidence level. In Table 3, We
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TABLE II
LSE SIMULATION RESULTS OF α0

True Aver AE

(α0) Size n α0 − LSE α0

1

5000 0.9752 0.0248

10000 0.9814 0.0186

30000 0.9935 0.0065

2.5

5000 2.4768 0.0232

10000 2.4821 0.0179

30000 2.4963 0.0037

3.5

5000 3.4763 0.0237

10000 3.4882 0.0118

30000 3.4971 0.0029

let σ = 0.5, x0 = 0.1. In Table 4, We let σ = 0.1, x0 = 0.5.
For every given true value of α0, let ε = 0.01, the size of
the sample is increasing from 2000 to 10000. Table 3 and
Table 4 list the value of α0 − LSE and in the last column
of the table list the confidence interval of α0. Table 3 and
Table 4 illustrate that the length of the confidence interval is
becoming small when the size of the sample is increasing.

VI. CONCLUSION

In this paper, the parameter estimation problem for
Constantinides-Ingersol model with small Lévy noises has
been studied from discrete observations. The least squares
method has been used to obtain the estimator. The explicit
formula of the estimation error has been given and the
consistency of the least squares estimators has been proved.
The results have been extended to the semi-martingale noises
as well. However, due to the complexity of Lévy process, it
is difficult to obtain the explicit expression of estimator and
estimation error for diffusion parameter in Constantinides-
Ingersol model. Therefore, further research topics will in-
clude the diffusion parameter estimation for Constantinides-
Ingersol model with small Lévy noises and general nonlinear
stochastic differential equations driven by lévy noises.
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