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Dynamic Behaviors of an /NV-species
Lotka-Volterra Model with Nonlinear Impulses

Mengxin He*, Zhong Li, Fengde Chen,

Abstract—For a logistic model with nonlinear impulses, we
investigate the permanence, extinction and existence of positive
equilibrium of the model. All our results show that the nonlinear
impulse plays an important role in the dynamic behaviors of
the model. Further we utilize the obtained results to study the
dynamic behaviors of an N-species Lotka-Volterra model with
nonlinear impulses.

Index Terms—Logistic model, Lotka-Volterra model, Nonlin-
ear Impulse, Permanence, Extinction.

I. INTRODUCTION

HE logistic equation is one of the most important

models in mathematical ecology, which admits a unique
globally asymptotically stable positive equilibrium. In recent
decades, many perfect results of its modified models have
been obtained (for the logistic system with discrete time
delay, see [1], [2]; for the logistic system with Allee effect
and feedback control, see [3]).

However, external effects on the development of the
species can cause jumps in the quantity of biomass, such
as with a single removal of part of the biomass or with the
introduction of a supplementary quantity of biomass into the
bioreactor [4]. Such processes can also be seen in control
theory, optimization theory, population dynamics, biology,
and some physics or mechanics problems. So to naturally
describe such observed evolution processes, many scholars
have considered impulsive differential equations, which are
regarded as an important mathematical tool for a better
understanding of several real world problems in applied
sciences. [5] offered a systematic treatment of the theory
of impulsive differential equations. [6], [7], [8] investigated
some periodic logistic model with impulses. [9] considered
an almost periodic logistic model with impulses. [10] studied
a logistic model with linear impulse and discussed the perma-
nence and global attractivity of the model. For more results
on impulsive differential equations, please see [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20] and references
therein.

But all the above impulsive perturbations are linear. Note
that the ecological system is often inevitably perturbed by hu-
man activities such as planting and harvesting, which can not
also be linear. Thus, it is important to consider systems with
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nonlinear impulses, which cover those with linear impulses
as species cases. Clearly, the results obtained as well as the
techniques used in the above papers cannot be applied to
study systems with nonlinear impulses. Motivated by this, we
propose the following logistic model with nonlinear impulse

&(t) = z(t)(a — ba(t)), t# 1k,

oy x(tk) _ (1)
) = de@y P bE

where z(t) is the density of the species at time ¢; @ > 0, b >
0, h > 0 and d > 0 are constants; t;1 = t; + 6 are impulse
points with @ > 0 being a constant and limy_, 1 oo tx = +00.
It is obvious that the system considered in [10] is a special
case of (1).

On the other hand, two or more species also interact with
each other in order to compete for the limit resource (see
[21], [22], [23], [24], [25], [26]), which can be explained
by competitive Lotka-Volterra systems. The dynamics of
N-species competitive Lotka-Volterra systems such as the
permanence, stability and extinction have been extensive-
ly investigated. [27], [28], [29], [30], [31] considered the
continuous Lotka-Voleterra systems. [11], [32], [33], [34],
[35], [36], [37] investigated the Lotka-Voleterra systems with
linear impulses. [38] studied a predator-prey Lotka-Voleterra
system with nonlinear impulse on the prey. [39] discussed the
existence of periodic solutions of a Lotka-Voleterra system
with linear pulses. In this paper, we propose the following
N-species Lotka-Volterra competitive system with nonlinear
impulses

N
gi(t) = wi(t) (ait) - zjlbij(t)xj(t)>, t# by,
j=
o X (tk)
zilli) hir, + digzi(ty)’
where z;(t) (¢ = 1, ---, N) is the density of species z;
at time ¢; a;(t) and b;;(¢) are continuous functions, bounded
above and below by positive constants; h;;r > 0 and d;; > 0
are constants; ty+1 = ti + 6 with & > 0 being a constant
and limy 4 oo g, = +00; {hiy : k= 1,2,---} is a positive
sequence bounded above and below by positive constants;
{dir. : k = 1,2,---} is a bounded nonnegative sequence.
When d;;, = 0, system (2) is reduced to system (1.3) in
[36].

This paper is organized as follows. In Section 2, we
investigate the permanence and global attractivity of system
(1), while in Section 3, we utilize the obtained results to
study the dynamic behaviors of system (2). In Section 4, we
give some examples with their numerical simulations.

)
k=1,2,--,

II. LOGISTIC MODEL

In this section, we first present the following definition
and lemmas which are useful in proving our main results.
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Let PC([0,4+c0), RN)={¢ [0,+00) — RN, ¢ is
continuous for ¢ # t,. Also ¢(t; ) and ¢(t;) exist with
o(t,) = o(tg), k = 1, 2,---}. By the basic theories of
impulsive differential equations in [1-2], system (1) has a
unique solution z(t) = z(¢, z¢) € PC([0,+00), RT).

Define Gy, = (tx_1,tx) x RN, k=1,2,---; G = |J Gu;

k=1
Vo = {V € C|[G, R*], there exist the limits V (¢, , Xo) and
V(tf, Xo) with V(t,,Xo) = V(tx, Xo), and V is locally
Lipschitz continuous}.
Definition 2.1 Let V € V;. For any (¢,2(t)) € [tk—1,tk) X

RY, the right-hand derivative DTV (¢, x(t)) along the solu-
tion x(t, xg) of system (1) is defined by

DYV (t,x(t)) = lilrgérif LV (t+ h,z(t + k) — V(t,z(t))].

Lemma 2.1°)  Assume that m € PC[R™, R] with points
of discontinuity at t = ty, is left continuous at t = ty, k =

1,2,---, and that
D+m(t) Sg(t7m(t))7 t#tkv k:1727 ) (3)
m(t) < dr(m(ty)), t=ty, k=12,

where g € C[Ry x Ry, R|, ¢ € C[R,R| and ¢y (u) is
nondecreasing in u for each k = 1,2,--- . Let r(t) be the
maximal solution of the scalar impulsive differential equation
t?'étk: k:1727"'7

t="1g, tp>to, k=1,2,---,

4)
existing on [to, +00), then m(ty) < wuo implies m(t) <
r(t), t > to.

U = g(tvu)v
u(ty) = dr(u(tr)) > 0,
u(t0+) = ug,

Lemma 2.2 Let x(t) be any solution of model (1) with
x(0T) > 0, then z(t) > 0, for all t > 0.

Proof. We prove this lemma by induction. For ¢ € [0, 1),
from the first equation of (1) and z(0") > 0, we can obtain

z(t) = 2(0T) exp (/Ot(a - bx(s))ds) > 0,

which implies x(t]) = z(t1)/(h + dx(t1)) > 0. Then for
t € [t1,t2), it is obvious that

x(t) = x(t]) exp (/tt(a — bw(s))ds) > 0.

Assume that for ¢ € [t_1,11), there is
t
a(t) = z(t}_,) exp (/ (a — bx(s))ds) > 0.
te—1

Obviously, z(t)) =
t e [tk,tk+1),

z(t) = z(t}) exp (/tt(a — bw(s))ds) > 0.

x(tg)/(h + dx(ty)) > 0. Therefore for

Thus z(t) > 0, for all ¢ > 0, which completes the proof of
Lemma 2.2.

Theorem 2.1 Let x(t) be any positive solution of system (1)
with z(07) > 0.
D If 0< h <1, there is
< limi <l <
my < ltlinﬁgaf x(t) < limsupz(t) < My,

t——+oo

b de®? -1 bho
(2 — My, = (—
where m (a + h(e®® — 1)) and M, (a@ —Inh *
dh )*1
e —n)

(D) Ifh > 1 and a® — Inh > 0, then
mo < liminf z(¢) < limsup x(t) < Ma,
t—o00

t—oo
boh dhe®® N -1 b
where mo 7_ga971nh+ ea‘gfh) and My = (a—l—
h(e®® —1)

(1) For any positive solutions x1(t) and x2(t) of system
(1) with z1(07) > 0 and z2(0%) > 0 respectively, if (1) or
(I) holds, we have

lim |z1(¢t) — z2(¢)| = 0.

t—+o0
Proof. Let x(¢) = 1/y(t), then system (1) is transformed
into )
y(t) = —ay(t) +b,  t#t, “
y(t) = hy(ty) +d, k=1,2,---.

Let y(t) be any solution of system (5), according to [4], we
can obtain

y(t):w(t,O)y(0)+b/O wit,s)ds+ 3 w(t,tf)d,

0<tp<t

where w(t, s) = ( 11 h)e_a(t_s). Note that w(t,tz) =
s<tp<t

1
Ew(t,tk), then

( 11 l“aeaty(())—l—b/ot( H l“)efa(tfs)ds

0<tp<t s<tp<t

4 (I e

0<tp<t tp<t;<t

y(t) =

(6)
(I) When 0 < h < 1, we have

¢
yt) < e_aty(o)-l-b/ eia(t*@ds—i—g Z e—alt—tr)
0 h
ng/k;t
b _ d(l —e ")
= —at (1 — at a\l—e )
O LA =) ey

where 7 is the number of the impulse points in the interval
[0,1).
Since e~ ® < 1, by letting ¢ — +o0 and obviously n —

+o00, it follows that
li t) <+ dec? L
imsu -t =
t—>+oopy “a  h(ew —1)

Next we prove that ltim+inf y(t) > 1/Mj. From (6), we obtain
—+o00

o

m1.

t
htle=ety(0) +b/ hT lemalt=9 s
0

d Pt 1 —a(t—tr)
+E Z h™e e @ k

0<tp<t

n(2) w0+ (M)

(- (1))

e — | ’

y(t) =

%

+
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where n is the number of the impulse points in the interval
[0,t). Similarly, we have

lim inf y(¢) > boh + dh__ _ L
oo N = 0 " h e —h My’

The above analysis shows that m; < liminfaz(t) <
t——+o0

limsup z(t) < M;.
t——+o0
(II) When h > 1, we have

t
hotle=aty(0) +b/ he tlemalt=e) g
0

d 4y —a(t—ty)
+o D b e *

O<tk<t
)+ bh/

— h(h
S (—)
n(5) 50+ () 1]
A=)

- (ly
F(x;h:)re n is the number of the impulse points in the interval

y(t) <

IN

_ho .
Inh > 0 that is —Z < 1, by letting t — +o00

and n — o0, it follows that ¢
limsup y(t) < boh + dhet? - L
TSP = 0 T T e — T oy

From (6) and h > 1, we obtain

t
d
t) > e—at b —a(t—s)d, ad —a(t—tk)
y(t) > e y(0)+/oe sty g e

0<t) <t
d(1 _ e—an@)
h(e®® —1) ~’

Since af —

—at (0)+ ( efa,t>+

(7
where n is the number of the impulse points in the interval
[0,t). Similarly, we have

lim inf y(¢) > b + 4 L
t—+o00 a  h(e*® —1) Mo
Therefore,
mao < hm inf 2(t) < limsup x(t) < Ms.
—+oo t—+o00

(I1) Denote z1(t) = 1/y1(t) and x2(t) = 1/y2(¢). Then
y1(t) and y2(t) are any solutions of (5). It follows from (6)
that

@) = w2 = (T h)e *"y:(0) ~ 3 (0)]

0<tr<t
Since 0 < h < 1, it is obvious that . liin ly1(t) —y2(t)] = 0.
—+o0
Note that
t) — t
|21 (t) — 22(t)] = M
y1(H)ya(t)
This together with the boundedness of y;(¢) and y2(t)
implies that lim |z1(¢) — xz2(¢)| = 0. This completes the
t——+oo
proof of Theorem 2.1.

Remark 2.1. When h = 1 and d = 0, system (1) is reduced

to the continuous logistic model. It follows from Theorem

2.1 that a/b < hmlnfar(t) < hmsupﬂc(t) < a/b, that is
+

lim z(t) = a/b, Wthh is cons1stent with the previous
t——+o0

result of the traditional logistic equation.
Theorem 2.2 If 1= h = 2 with 0 < h <1 and d # 0, then
(1) admits a posztlve equilibrium x* = ¢, which is globally
asymptotically stable, that is for any solution x(t) of system
(1), there is lim x(t) = a/b.
t—+o0
Proof. Obviously x* satisfies the following equations
a—bx* =0,
* x*

T htdat

The assumption of the theorem deduces z* = = . Next
we prove the global asymptotic stability of z*. Let x(t) be
any solution of system (1). According to Theorem 3.1, for
any £ > 0, there exists a 7" > 0 such that for ¢t > T,

1—h

x(t) < My +e.

Define a Lyapunov function as follows
1 1

V(t) = ‘— ——
*) x(t) x*

Fort >T and t # ty, k=1, 2,---
right derivatives of V' (¢), we have

, calculating the upper

b _
DY) = sl - ()0
b _ *
= sgn(z* — z(t)) (x(i)(t) z")
bl — o] ®
= o
< - orle() — |
- M1 + €
Fort =ty, k=1, 2,---, we obtain
o 1 1) jdz(ty) +h dz*+h
Vi) = }z(tzf) z* } x(tk) x* }
B ¥R S WP
x(ty) a* x(ty) a*
Consider the following inequalities
b
DH(V(t)) < “IL ele® =t E )
V() <Vte), k=12,

According to Lemma 2.1, we can easily verify that

V(t) + /t |x(t) — 2" |ds < V(T) < +o0.

Mi+ e
“+o0
Therefore, V (¢) is bounded on [T, +00) and |z(t) —
lim |x(t)Tf x*| = 0.
t——+o0
Otherwise, for any given €; > 0 there are two cases:
Case A: For any 7' > 0, when t > T, |z(t) — z*| > €1.
Case B: For any 7' > 0, when ¢ > T, |x(t) — x*| is
oscillatory about €.
We first consider Case A. It is obvious that

+oo +oo
/ |z (t) — 2*|ds > / e1ds — +o0,
T T

2*|ds < +o00. Then we claim that
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which is a contradiction.
For Case B, we can choose two sequences {p, } and {p>}

satisfying T' < p1 < p] < -+ < pp < py, < --- and
limy 4 oo prn = limy— 4 oo p;, = +00 such that
|z(pn)—2*| > e1; |1’(P;L:)_x*| < e
lz(p)—z"| <er; a(py, )—x*| = e,
|z(t) — 2| < ey, forall t€ (pn,py);
|z(t) —2*)[ = &1, forall t€ (py,pn+t1)-
Then,
+oo
/ () — *|ds
T
+oo
- / +z/ +Z/ () - alas
n 1 n=1"°Pn
Prn+41
> / —0—2/ |mt)—x|ds+2/ e1ds
n=1
— 400,

which is also a contradiction. This completes the proof of
Theorem 2.2.

Theorem 2.3 Assume that a0 — Inh < 0. Let x(t) be any
positive solution of system (1). Then lim xz(t) = 0.
t—+oo
na
Proof. First we consider af — Inh = 0, that is —Z = 1.

Let y(t) be any solution of (5). Then from (6), we cbtain by
letting ¢ — 400 and n — +oo that

t
y(0) + b/ he Tlemalt=o) g
0

+§ Z B —1g—alt—tk)

0<tk <t

( 0)+h/
T O (o

0<tp<t

1 b d

where n is the number of the impulse points in the interval
[0,1).

y(t) > h%*lefat

\%

n—>—|—oo

1

h
Next we consider af — Inh < 0, which implies ne > 1
e(l
and h > 1. Similarly we have

> () 90+ i () -1

%\ nb
()" 1)
e/ J

h(h — ea?)
by letting ¢t — +o00 and n — 4o0. By the transforma-

tion z(t) = 1/y(t), the above analysis shows that when
ad —Inh < 0, , ligl x(t) = 0. This complete the proof
—+o0

of Theorem 2.3.

y(t)

+ — +00,

III. LOTKA-VOLTERRA MODEL

In this section, we study the dynamics of model (2).
Similar to the proof of Lemma 2.2, we can obtain the
following lemma.

Lemma 3.1 Let (21(t),xz2(t),--- ,xn ()T be any solution
of model (2) with x;(0%) > 0, then x:(t) > 0, for all t > 0.

Theorem 3.1 Let (z1(t),x2(t), -+ ,x
tion of system (2) with z;(07) > 0
Assume that
N
aip, — D
J=1,g#1

N
(aiL— Z bijMMj)f—lnhiM > 0,
J=1,j#i

bij]y[Mj > 0,
(10)

then we can obtain
m; < liminf z;(¢t) < limsup z;(t) < M;,

t——+o0 st oo
where
m; = min{ml(l)’ ml(?)}’ M, = max{Mi(1)7 Mi(2)}a
(1):( biirhir& dirhir, ) 1
‘ asz*hl th evim€ —h;r/)
(2) ( LZL : diL )_1
hir, azMﬁ—lnth) h’iL(eaiMf—hiL) )
(1) ( biineERine diMeAif )71
—Inhjp A€ —hy/
(2) ( biim & A€

) dzMe )*1
hint (A€ —Inhing) b2y, (e4€ —hing)/

N
with A; = a;, — Z
J=11#j

bij]qu.

Proof. Let (x1(¢t),z2(¢), -
system (2) with z;(07) >0 (i =1,2,---

,xn(t))T be any solution of
,N).

(1) We first prove limsup z;(¢t) < M,. From the ith (i =
t—+4o0
1,2,---, N) equation of system (2) we can obtain

Zi(t) < xi(t)(aing — biirxi(t)), t # ti,
;i (tk)

zi(th) < ——2=L

(te) < hir, + dirxi(ty)

According to Lemma 2.1 and Theorem 2.1, if h;;, < 1, that

is a;jpr€ — Inh;r, > 0, then

( biiphir§

aiMf — ln hiL

k=1,2---.

dirhir
e®im& — hir

lim sup z;(t) <

— %
t—+o0

)71 NYisE

N
> bz‘jMMj)ﬁ—ln hive >
J=Tai

In h;r, > 0, then

If h;r, > 1, noting that (aiL —
0 1mphes ang —

lim sup z; ()

t—+4o0 b 1
< ( ir§ + d;r, )
= \hir(aim€ —Inhir)  hip(e*M& — hig)
2 MmP.
Let M; = maX{Mi(1)7 MZ@)}, therefore,
limsupz;(t) < M;, i=1, ---, N.
t——+oo
(ii) We prove ltim+inf x;(t) > m;. For any £; > 0 small
— 400
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enough satisfying
N
(aiL = > biju (M +€1))§ —Inhi >0,
J;vlaﬁﬁl (11)
ai — >, bijm(Mj+e1) >0,
j=1.j#i

there exists a 17 > 0, such that for ¢t > T there is

17(t) < M; + €. (12)

Substituting (12) into system (2) deduces
N

Zi(t) > z4(t) (aiL - > b (Mj+er) - biiMl'i(t))a
J=1,i#j
t # tg,

X (tk)

) > ——
wilti) = hinve + ding i (t)
If hipr > 1, from (11), according to Lemma 2.1 and Theorem
2.1, letting €; — 0, then we have

k=12

dinset®

eAi& — hin

( biint §hinr

) 2w
Azg — ln hi]y[ v

i al (1) >

N
where Ai = Q;1, — Z bij]\/[Mj > 0.
J=1i#j
If hipr < 1, from (11), similarly we can obtain
il w)
( biins €
hine (Ai§ —Inhing)
(2)

i

dinset* )*1
hin (e4:€ — hinr)

Let m; = min{mgl)7 mEQ)}, then we derive

m; < liminf z;(¢t) < limsupx;(t) < M;, i=1,2,---,N.
t—+o0 t—+o00

This completes the proof of Theorem 3.1.
According to the proof of Theorem 3.1, we can obviously
obtain the following corollary.

Corollary 3.1 Let (z1(t),z2(t), - ,xn(t))T be any solu-
tion of (2) with z;(0Y) >0 (i =1,2,--- | N).

(1) When hi, < 1, hay > 1 and (a“; -
N

Z bij]qu(l))f — Inh;pr > 0, there is

i=Ti#i

ml(-l) < liminf x;(t) < limsupa;(t) < Mi(l).
t—+o0 t——4oco

N
(2) When hir, <1, hiyg <1 and ag— > by MY >
J=1,j#i '
0, there is

ml(-g) < liminf x;(t) < limsup a;(t) < Mi(l).
t—+oo t—+oo

N
() When hip > 1 and (ai = 3 biynMP)e -
Jj=1,j#i

In hips > 0, there is

ml(-l) < liminf x;(t) < limsup a;(t) < MZ-(Q),
t——+o0 t—+o00

where Mi(l), Mi(2)7 mgl), m'?

K2

are defined in Theorem 3.1.

Theorem 3.2 Assume that all the conditions of Theorem 3.1
are satisfied, and there exist p; and §; >0 (i =1, 2,--- ,N)

such that N
biiLpi — > bjimp; > i, (13)
j=1,j#i
ated < 1, (14)
where
o :max{l diar My dny My }
" hip 4+ dipmy’ "hnp +dnpmy )

. d0;my
0 = min

Pi

i=1,2,--

N},

with m,; = min{mgl),mgm} and M; = max{Mi(l),Mi(Q)}

being defined in Theorem 3.1. For any solutions
(xl(t)> xQ(t)> T 7xN(t))T and (yl (t)7 yQ(t)7 T 7yN(t))T
of system (2), there are

t_112100|mi(t)—yi(t)|:(), i=1,2,---,N.

Proof. Let (21(t), z2(t), - ,xn ()T and
(y1(t),y2(t), -+ ,yn())T be any positive solutions of
system (2). According to Theorem 3.1, for any €5 > 0 small
enough satisfying

1
m; —es >0 and af,e %2 <1, (15)
where
o _ max{l ding (M + e2)
= " hip +dip(my —e2)’
dny (My + €2) }
"hyp +dnp(my —e2) )’
S:(ms —
(552 :min{iz(n“ 82)’7;:1, 27"' 7N}7
Pi
there is a 75 > 0, such that for ¢ > T5,
mi—EQSxi(t)gMi+€27 i=1, 2,---,N. (16)

Using the mean value theorem, it follows that

1
o, —u@ = [nzi(t) — nyi()]
< ) - )
- m; — €2 ¢ Yi :
Define a Lyapunov function

V() = § pil i (1) — Inyi(t)].

Fort > T5 and t # tj, calculating the upper right derivatives
of V/(t), we have

N N
DIV = 5 prsen(ei(t) — ui0) (X b ()

N

— 3 by (0)5 (1)

= 3 s (050 [bi0) (31 (0)-:(0)
+_:§:¢_bij(t)(yj (t)-a5(1))]

< IEV: (* biir pit IXV: bjiMPj)m(t)*yi(tﬂ
1,;1 j=1,i#j

< > o) - w)

< SoLv,
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where 6., :min{m i1=1, 2,--- ,N}. For t =
Pi
i,
V()
= + +
= S pilIna() — nyi(r)|

Il
—

& zi(tr) yi(ts)
= P In —
Z; r hie + digx (tr) hik + dikyi(tr)
N
= Z:lpﬂ(lnfi(tk)—lnyi(tk))
—[1n(h,’k + dipw; (t]f))—ln(hik + dikyi(tk))”-

Using the mean value theorem, there is

|1n(hz‘12l+ dirwi(tr)) — In(ha + dikyi(tr))]
ik
= O () — it
ikSi Tk
= — 0 NIna;(ty) — Iny,(t
o +dik€i(tk)| (tx) yi(te)l
dine (M; + €2)

hir, + dip. (m; — €2)

where both &;(t;) and ¢;(tx) lie between z;(tx) and y; (tr).
Noticing that In x; (tx) —In y; (tx) and In(hg+dik i (tg)) —

In(hgr + dikyi(tr)) have the same sign, we can easily obtain
din (My + €2)

dh1L (-lj—wdlL(ml)— £2)’

Ny (MN + €2

. vV (t

R hNL+dNL(mN—52)} (t)

= chQV(tk).

From a., > 1 and (15), for ¢t — 400, there is

IN

[Inz;(tr) — Iny;(tr)],

V(tf) < max {1,

vy £ VI (I ae et
To<tp<t
t=Ty 4y
- a.f o—Beq (t—T2)
1 t—T>
= a€2 (aézefész)
— 0.

This implies
lim |[Inx;(t) — Iny; ()] =0,

t——+o0

that is

i=1,2,,N,

lim |z;(¢) —vi(t)| = 0,

t——+o0

i=1,2,--- N.
The proof of Theorem 3.2 is complete.

Theorem 3.3 Let (x1(t), z2(t), - ,xn(t))T be any solu-
tion of system (2) with z;(07) >0 (i = 1,2,---,N). For
1 <r < N, assume the following conditions

r
air — >, bijmM; >0, (17)
J=T 5
”
(aiL - > bijMMj)f —Inhin >0, (18)
=T
a;pm§ —Inh;p <0 (19)
hold, then we have
m; < liminf z;(¢) < limsupz;(t) < M;, 1<i<r,
t—+o0 t—+00
lim z;(¢t) =0, r<i<N\,
t—+o0

where M; (1 < i < r) are defined in Theorem 3.1 and

m; = min{m", m{?},

0 ( biing&hing fliMeA‘"5 )_1
! A& —Inhig  edi€ — hyy -
H® _ ( biin € duy@A’;f )*1
! hing (A€ —Inhing) — hiy (e — i)
with AZ = a;r, — Z bij]qu.
i=Li#j
Proof. Let (z1(t), 22(t), - ,on ()T and
(y1(t),y2(t), - ,yn(¥))T be any solutions of system
(2) with z;(07) > 0 and y;(07) > 0, respectively,
i=1,2,---,N. From system (2), there are
2 (t) < 2i(t)(asns — bispwi(t)), t# t,
i (T
Ii(tz)<M7 E=1,2,---.

= hip +dipxi(te)
According to conditions (17) and (18), similar to the proof
of Theorem 3.1, we can easily obtain

limsup z;(t) < M;,

t—+o0

i <.
From condition (19), according to Theorem 2.3, it deduces

lim z;(t) =0,

t——+o0

r<i<N.

For any 3 > 0 small enough satisfying

r N
ai, — >, bijm(Mj+e3)— > bijumes >0,
j=Li#j jmral
r N
(aiL— > b (Mj4es)— > bijMﬁg)f—ln hing >0,
j=T,i#j j=rt1

there exists a T3 > 0, such that for t > T3 we have

zi(t) < M +e3, i<,

xi(t) < es, r<i<N. (20)

Substituting (20) into system (2) leads to

r

Zi(t) = xi(t)(aw— > bigu (M +e3)
i
N J #Jj
— > bijmes — bn:MDUi(t)), t # t,
Jj=r+1
xz(tk)

ritf) > ——2 Rk =1,2,...
(t) hive + dinrxi(tr)
From Theorem 2.1, letting €3 — 0, one has
liminf x;(t) > m,,

1=1,2,---,7r
t—+00 B v

where m; = rnin{erZ(-l)7 77’11(-2)}7

m(l) _ ( bzz]\/lgth di]v[GA'ig )71
' Azf —1In h“\/j eAif — h“w 4

m® ( biine§ dﬁye&f )71
i th(Azf —In h’i]\l) h%M(6A7£ _ h’i]W) )

r

with 4; = a;;, — Y. bijne M. The proof is complete.

. J=1,i#£j
Consider the following system
z;(t) = (1) (ai(t) — > bij(t)z; (t))7 t# ti,
Jj=1
i=1,2,-,r

k=1,2---.

(21)
ch(tk)

() = ——————
zilty) hik + digx; (i)
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Theorem 3.4 Assume that all the conditions of Theorem 3.3

hold, and there exist p; and 6; > 0 (i = 1, 2,--- ,r) such
that
N —
biiLpi — Y. bjinmpj > 0, (22)
J=Toii
ated <1, (23)
where
a = max{ din My e dras My }
5, " hip +digmy’ T hep +depm,
5 — mln{ m1 } = 1 2 }7

here m; = nrun{m(l)7 7§2)} and M; = maX{Mi(l),Mi(Q)}
are defined in Theorem 3.3.

Let (x1(t), x2(t), - ,zn ()T be any positive solution of
system (2), and (y1(t),y2(t), -+ ,y-(t))T be any positive
solution of system (21), then

Jimfzi(t) - yi(t)] =0,

Proof. Let (z1(t),z2(t),--- ,2n(t))T be any positive so-
lution of (2), and (y1(¢),y2(t), -+ ,y-(t))T be any positive
solution of system (21). According to Theorem 3.3, for any
€4 > 0 small enough satisfying

i=1, 2,7

1
m; —eqg >0 and as,e 0oy < 1, (24)

where
dine (M + e4)

hip +dip(my —eq)’
Adnm (M + €4) }

" hnr +dnp(mN — £4)

_ 5; (1 —
R e
Pi
there exists a T4 > 0, such that for ¢t > T},
m;—eqg <wi(t) < M;+eq, i=1,2,---,7,
zi(t) <eq, P>,

r N
> > pibijnmx(t) < es.

i=1j=r+1

Qe = max{l,

(25)

Using the mean value theorem, it follows that

L) —

- )] <
Tl —wo] <

|Inz;(t) — Iny;(t)]
mm() yi(t)]-

IN

Define a Lyapunov as follows
T

V(i) =X

pillnz;(t) — Iny;(t)].

For t > T4 and t # tj, calculating the upper right derivatives

of V(t), we have

D+V( )
= 3% prsnlas()-u:0) (5 b5 (003 iy (0)25(0)
= 3 pisan(ei(t) s () bir (1) (1) 4 (1))

3 by (1) s (0=, () =3 by (0, 1]

j=r+1

VAN
=
g
=3
\
L)
e~
-
=
&
S~—

, t) —Iny;(t)] +ea
< -4, V()+s4,
M‘izl 9 ... N}

Qi
the analysis of Theorem 3.2, we can

where ., = min {

For t = t;, similar to
easily obtain

_ dipr (My + €4)
V(t" < max{l
) =< dhl(L]\}-du( my —e4)’
rM +€4) }
, V t
hrL + er my — k)
£ 0_454 (tk)

From a., > 1 and (24), setting ¢ — +o00 and €4 — 0, there
is

V() < V(T;)( 11 a€4)e—&4<t—T4>
Ta<tp<t
t Q+1 _
+54/ (@54) ¢ e t=s) g
Ty
AL STy Tt
= Qey e V(T .
_ t—Ty
L 5450@47 [1 B (0754) € 6—854(t—T4)}
0:,6 —Ina,,
— 0,
hence t—lgg—noo |zi(t) —yi(t)] =0, ¢=1, 2,---,r. The proof

of the theorem is complete.
Similar to the proof of Theorem 2.3, we can easily verify
the following result.

Theorem 3.5 Let (z1(t), z2(t), -+ ,zn ()T
tion of system (2) with z;(0%) > O (i =
Assume that a;prE—Inh;p, <0, i=1,2,---
(2) is extinct, that is

lim z;(t) =0,

t—+o0

be any solu-
1,2,---,N).
, N, then system

i=1,2,---,N.

IV. NUMERICAL SIMULATION

In this section, we first show the influence of the
nonlinear impulse on dynamic behaviors of the logistic
model.

TABLE I
DYNAMICS OF SYSTEM (1)

Case a b h d 0  Figure

1 2 3 0.2 2.1 2 Fig. 1(a)
2 2 3 exp(2) 2.1 2 Fig 1(b)
3 2 3 0.2 1.2 2 Fig. 1(c)
4 2 3 exp(5) 2.1 2  Fig 1(d)

When i < 1, Fig. 1(a) shows that the species is permanent
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ve- : : 1-h __ a
and globally attractive; especially when the relation =5+ = ¢

holds, the species is globally attractive to a positive equilib-
rium (shown in Fig. 1(c)), which are in accordance with the
results of Theorem 2.1 (I) and Theorem 2.2 respectively. But
when h > 1, the dynamic behavior is more complex. Fig.
1(b) shows the global attractivity of the species, while Fig.
1(d) shows the extinction of the species; these behaviors can
be verified by the results of Theorem 2.1 (II) and Theorem
2.3 respectively.

Next, we show the influence of the nonlinear impulses on
dynamic behaviors of a three-species Lotka-Volterra model.
Let its coefficients be a;(t) = 2.15 — 0.15 cos(v/2t); biy =
9.2; b = 1.1 + 0.1sin(v/3t); bz = 095 +
0.05sin(v/3t); ao(t) = 1.35 4+ 0.05sin(v/5t); boy (t)
0.9 — 0.1sin(v/3t); bas = 9.25 + 0.05sin(v/2t); baz
0.4 — 0.1 cos(\/gt); as = 3.55 + 0.05 COS(\/gt); b3 =
2.2; bza = 5.1+ 0.1cos(V/3t); bzz = 9.9; dip = 2.55 +
0.05cos(mk); dar = 2.3 + 0.2cos(mk); dsr, = 2.35 +
0.15sin(wk); € = 0.78.

TABLE 11
DYNAMICS OF SYSTEM (2)

Case 1 2

hik 0.95 4 0.15cos(mk)  0.95 + 0.15 cos(mk)
hak 0.55 4 0.05sin(wk)  0.55 + 0.05 sin(7k)
h3g 1.2 + 0.1 cos(mk) 17.1 4 0.1 cos(mk)
Figure Fig. 2 Fig. 3

Choose pP1 = 1.97 p2 = 1.2, pP3 = 1.5, (51 = 12.97 (52 =
0.95 and 93 = 12.35. Considering Case 1 in TABLE II, we
can easily verify that all the conditions of Theorem 3.2 hold,
then the species x1, x2 and x3 are globally attractive, which
are respectively shown in Fig. 2 (a)-(c). When only changing
the values of h;;, presented by Case 2 in TABLE II, according
to Theorem 3.4, the species z; and zo are also globally
attractivity, but z3 is extinct, which are respectively shown
in Fig. 3 (a)-(c). In TABLES I and II, we keep the intrinsic
growth rate and the inter-species competition rate unchanged
but only adjust the values of the impulsive perturbation
parameters, then simulations show that the permanence and
extinction of the species are significantly changed.

1 0.8
0.8 0.6
= 0.6 = 0.4
0.4 0.2
0.2 [0)
0 10 20 30 40 0 10 20 30 40
time t time t
(a) (b)
1 0.8
0.8 & 0.6
=< 0.6 < 0.4
0.4 0.2
0.2 olis4
0 10 20 30 40 0 10 20 30 40
time t time t
() (d)

Fig. 1. Dynamical behaviors of system (1) with different parameter values
shown in TABLE I.

0.2 0.2
5 0.15 5N 0.15
fd
0.1 0.1
0 5 10 15 0 5 10 15
time t time t
(a) (b)
0.4
0.3
7 1
0.2
0.1
5 10 15

time t

()

Fig. 2. Dynamics of the Lotka-Volterra model with Case 1 in TABLE II.
0.25 0.2
02\
< <N 0.15
0.15 L
0.1 0.1
0 5 10 15 0 5 10 15
time t time t
(a) (b)
0.4
0.3
x> 0.2 y
0.1
0
0 5 10 15
time t
()
Fig. 3. Dynamics of the Lotka-Volterra model with Case 2 in TABLE II.

V. CONCLUSION

In this paper, we first consider a logistic model with
nonlinear impulse. It is interesting that with this type of non-
linear impulse, the system admits a globally stable equilibri-
um, which is absolutely impossible for the model with linear
impulse. When hj, < 1, the species is always permanent
and globally attractive. However when hj; > 1, the behavior
of the species is more complicated, which changes between
the permanence and extinction according to the relationship
between the impulsive perturbation parameter hj and the
intrinsic growth rate a. For a given intrinsic growth rate
a, the species is extinct when the value of the impulsive
perturbations Ay is large enough, but is globally attractive
when hy, is small enough. However for a given hy > 1, the
opposite is the case.
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