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Applying Cuckoo Search Algorithm to Solve
Fractional Differential Equation Based on Cubic
Spline Function

Xinming Zhang, He Huang, and Xi Zhang

Abstract—In this paper, a swarm intelligence technique is
presented for solving the fractional differential equations (FDE)
based on the cubic spline function and cuckoo search algorithm.
In this technique, we approximate FDE with the cubic spline
approximation and use the cuckoo search algorithm as a tool for
the accurate and rapid solution. Based on this method, the given
problem is transformed into a problem for solving a nonlinear
equation system, and by solving this system, we obtain the
solution of FDE. Furthermore, special attention is given to the
error analysis of this method. The presented scheme is evaluated
on two initial value problems of FDE. The numerical simulation
results demonstrate that the proposed algorithm has higher
accuracy and is feasible and effective in solving initial value
problem of FDE.

Index Terms—fractional differential equation, cubic spline
approximation, cuckoo search algorithm

I. INTRODUCTION

ITH the development of science and technology, great

breakthroughs have been made in theoretical analysis
and numerical algorithm of fractional calculus. Analytical
solutions of fractional differential equations are usually
represented by some special functions, such as Green function,
Mittag-Leffler function, and so on. Up to now, the main
methods to solve the analytical solutions of fractional
differential equations include Fourier transform, Mellin
transform, Laplace transform, etc. However, it is an extremely
difficult task to find the analytical solution for general
fractional differential equation. Therefore, many researchers
tend to use numerical approaches to solve the fractional
differential equations in the recent thirty years, including
linear multi-step method[1-2], finite difference method[3-4],
Adomian decomposition method[5], homotopy perturbation
method[6-7], variational iteration method[8-9], artificial
neural network method[10], collocation method[11-12] and
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operation matrix method[13-14], the Legendre wavelet
method[15], Chebyshev wavelets method[16], the hybrid
Taylor series expansion with MHPM[17] , Stochastic
methods[18-20], and so on. However, there is still room for
investigation into numerical methods which can improve
results in terms of accuracy and reliability, with better
convenience, e.g. modern intelligent optimization algorithms.
These random search algorithms generally based on
biological intelligence or physical phenomena and are not
perfect in theory. However, from a practical viewpoint, such
algorithms usually do not require the continuity and convexity
of the objective function and constraints. Even if there is no
analytical expression, it is quite adaptable to the uncertain
data in calculation, which can overcome the limitations of
traditional methods to some extent.

In this paper, Cuckoo Search (CS) algorithm along with
cubic splined approximation is used, for the first time as per
our literature survey, to solve fractional differential equation.
The CS is a swarm intelligent algorithm developed by Yang
and Deb in 2009 that inspired from the nature[21]. Due to its
favorable efficiency, CS has been attracting considerable
attentions since it was born and has shown promising
superiority in many science and engineering fields, such as

inverse problems and shape optimization[22], phase
equilibrium and stability calculations[23], structural
optimization[24], hydraulic parameter estimation

problem[25], solution of nonlinear equation system[26],
multi-objective optimal power flow[27], hyperspectral image
classification[28], and so on. To the best of our knowledge,
the application of CS along with cubic splined approximation
(CS-CS) to solve fractional differential equation has not been
reported, and for the first time, this topic is investigated in the
literature. The aim of our study is to identify the relative
strengths of the proposed algorithm for the solution of
fractional differential equation. This study shows that CS-CS
algorithm offers a reliable performance for solving these
differential equation of fractional order.

The rest of this paper is organized as follows: In Section 2
some basic definitions and the proposed numerical algorithm
(CS-CS) are given. Section 3 shows the error analysis of the
presented method. In Section 4, several numerical
experiments are conducted to verify the feasibility and
effectiveness of the proposed method for solving fractional
differential equations, and finally, the conclusions are derived
in Section 5.
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Il. MATHEMATICAL MODEL FOR SOLVING FRDE
For positive real number v, 0<n-1<v<n,the order
v Caputo fractional derivative of the function f(t) defined
on the interval [0,T] is
1 J-‘ £ (r)dr

if 0<n-1<v<n,
r'(n-v)

(o) )

‘D'f(t)=

if v=neN.

The generic non-linear quadratic fractional differential
equations solved in this article can be written as

dy()

= p(M) +a®)y(®) +r®)y (1),0<t<T (2)

with initial condition given as
k

;j?y(O):ck,k=0,1,2,...,n—1, 3)

where v is the order which satisfies v>0, ve®R, n=[v].
y(t) is the solution of the fractional differential equation.
p(t), q(t), r(t) are known functions, and T,c,_ are known
parameters.

A. Cubic spline approximation

For the initial value problem of fractional differential
equation (2) and (3), in this sub-section, we discretize
fractional differential equations into nonlinear algebraic
equations by cubic spline function.

Taking m+1 nodes on the interval [0,T] and dividing the
interval into m subintervals [t ,t,],[t,,t.],...[t, t.,,.] -Using
a cubic spline function on each subinterval, that is
y,(t)=at’ +bt’ +ct+d, ,t, <t<t,,,i=L2,..m (4)

Since the second derivative of the cubic spline is
continuous, we have

9i (t)|t=ti+1 = 9i+1 (t)|t=ti+1 = 1; 2, .y M —1
yi @ (t)‘tﬂi,,l = yi{l_(l) (t)‘t:t, s ’ I = 11 21 reny m-—
50|, =920, i=12..m-1

Since the above equations satisfy the initial condition
9(0) =y, , we can get at’+bt*+ct+d|,_,=Y, ,thatis

d=y, .

Then take | small nodes on each subinterval, and let the
function value of each small node approximate the fractional
differential equation. So there is

pt) +q)y, @) +r@)y2 ) =y, (t),i=12,...,m-l. (5)
Thus, the problem is transformed into the following
nonlinear algebraic equations with undetermined coefficients.

1) Casel. O<v<l,

50 = 9ia®| iy i =12,,m -1

9o = 91a®O) i, i =12, m -1

910)ee, = s O, i=120m -1

d, =Y, 6)

9. ()= p(t) + a() y(t) + r©)y° (1),
i=12,...m-I

where
O F(l )J‘t(t—r)’V(Saiz'2 +2bz+c)dr
_F(l )J(t )Vl +
rale“‘ﬂw“'ra [0 rde
3a| 1-v

= @raoy kI

Ci 1-v 2b| J“Td (t _ 2_)1—v
A1-V)I'(L-V) AL-V)[(L-v) 7o
63, v
7(1 A j r(t—7)"dr +
[ v, Zb, 2y
@-v)ra-v) 2-v)Q-V)I'(L-vV)
— 6ai _t3fv
T (3-V)(2-v)(1-V)T(1-V)
C. 1v Zb 2-v
i t 4+ ' a
@-vra-v) 2-v)Q1-v)I(1-v)
)
2) Case2. l<v<2 ,
50, = 9ia®)| i, =12, m -1
GOy, = 9Oy Lm-1
90|, = 9120, =12, m 1 (8)
dl =Y
G = y(,)
9, (1) = p(t) + q(®) y(t) + r(t) y° (1),
i=12,...m-l
where
y{v)(t)_r(2 )j (t ff) (6ar+2b)dr
6a,
T v)j(— ) dr+r(2 )j (t- r) “rdr
~ 2b -
C(2-V)[(2-V)
_6a 2-v
7(2 AT )[ (t-1) j(t 7) dr}
2b, 2v 64, v
T 2-Wre-v) B-v)2-r@2-v)
©)
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3) Case3. 2<v<3 ,

50, = s ®)] i, 1 =12,.,m =1
9]y, = 12Oy, i=22,m -1
9Oy, = 92Oy, 1 =22, m -1
d1:YO
¢, =Y
2b =y,
9, (®) = pt) +q®) y(t) + r() *(t),
where
9O (t) = ! It(t—T)LVGavdz’
' r'(3-v)-o '
_ _6ai L _\3vt
T(3-V) 3—v(t o
—6a, 1 5 (11)
=0
__ B 1 e
rGe-v) 3-v

To sum up, transforming the initial value problem of
fractional differential equation into a nonlinear equation
model involves three steps. First, we divide the interval
[0,T] into m subintervals , [t ,t,1,[t,,t,],....[t,. t,.], and

express the unknown function with cubic spline
function in each interval
y,(t)=at’ +bt* +ct+d, ,t <t<t, i=12,..,m.Seco

nd, based on the fact that the second derivative of cubic spline
function is continuous, we transform the fractional differential
equation into a model of nonlinear equations. Third, for the

part 9 (t) which is difficult to solve in the nonlinear
equations model, we discuss it in several cases.

B. Implementation of cuckoo search algorithm

After transforming the fractional differential equation into
a nonlinear equations model, common traditional algorithms
for solving nonlinear algebraic equations include newton
method, conjugate gradient method, least squares method, etc.
However, it has been pointed out that these methods require
extremely high in the selection of initial points. In recent years,
several modern intelligent algorithms have been developed to
calculate nonlinear equations, such as Genetic algorithm,
particle swarm algorithm, ant colony algorithm, etc. These
algorithms not only overcome the problem of selecting the
initial points existing in traditional algorithms, but also have
strong global optimization ability to some extent. In this
section, we will use the cuckoo search algorithm to solve the
transformed nonlinear equations. In order to better implement
the cuckoo search algorithm, three ideal states are assumed:

(1) Each cuckoo produces only one egg at a time, and
randomly chooses a nest to place it;

(2) Inthe process of searching bird's nest, we calculate the
optimal nest position and save it to the next generation;

(3) The probability of host finding cuckoo’s eggs and

abandoning themis p,, p, €[0,1] .
Thus, the update formula of cuckoo search can be

expressed as

" =xO p - L(B),1=1,2,3,...,n, (12)

where x indicates the position of the i th bird nest in the

t th iteration; a represents the step size, usually take o =1;
L () obeys Levy distribution

u

L(B)=001x—L x(x? —=X),0< #<2,  (13)
M
u,v obeys normal distribution, u ~ N (0, 52 ),v ~N (O, &5 ) ,
r(+ p)sin(zp/2) |
C [ p)/2]x 2" p (14)
5, =1.

In this way, we can refer to the cuckoo search for the
optimal nest and hatching process to implement the cuckoo
search algorithm. The specific steps are as follows:

Step 1: Define and initialize the objective
function f(X), X = (X, %,,... X,)", d is the dimension of
bird's nest, and randomly generate N initial nest position
X;(i=12,...,n) . Initialize the rejection probability p, .

Step 2: Calculate the value of objective function of each
bird nest position, and select the bird nest with the optimal
value.

Step 3: Preserve the optimal nest location of the previous
generation, and update the nest location with Levy flight (13).

Step 4: Compare the current value of position function with
the previous optimal value. If better, update the value of the
current objective function, otherwise, retain the optimal value
of the previous generation.

Step 5: After updating the position, generate the random

numberr €[0,4]. If r> p,, renew X" and compare the
new nest, then calculate the global position ph; .

Step 6: Determine whether f (pb) meets the maximum

iterations or minimum error requirement, and if so, the output

f (pb;) is the global optimal solution gb .Otherwise, return
to step 2.

I1l. ERROR ANALYSIS

In this section, we will analyze the error of approximating
the solution function of the fractional differential equation
with cubic spline function, and derive the convergence order.

For general nonlinear quadratic fractional differential
equation

dy(t) _

o = p®)+a@)yt) +rt)y*(t),t =[0,T],v>0, (15)
ngky(0):ck,k=o,1,2,...,n—1,n=[v1, (16)

Taking m+1 nodes on the interval [0,T] and dividing the
interval into m subintervals, [t,t ][t t],....[t, t...] -
Using a cubic spline function on each subinterval, one gets

§/i ) =at’ +bt* +ct+d, t <t<t,,, 17)
i=12,..,m.
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and W ©-%'0)
§i () =3at* + 2bt+c;, 9" (1) (18) \ ") -9 () + (
o _ =Y ) =Y )+,
. - Bait + 2bi 'Y (t) N 6ai Y»(A) (t) y‘(5) (t)
Using Taylor expansion on the interval [t,t, ], we have +T(t ~1)? +T(t ~t)°
y.(t) =at’ +bt* +ct+d, :

m ~m

(ti) —Yi (ti))(t _ti) _O(h)

(n) t
—at’®+bt’+ct +d, +... +(yr']f(2'))'(t —t)"* +0o(h"?)
it (I i 19 According to (10), fractional differential equation (15) an
+(3at”+2bt. +c)(t-t) (19) di (10), fractional diff ial ion (15) and
N (6at; +2b,) (t—t) +%(t —t)+o(h?) (16) can be reduced to the following equations
2! A%) YOy, = Via®]e, i=12,m-1
B AT _ Y._. _ 2 ot ’ ;
=¥,(t)+ Vi) t-t)+ o1 (t-t) , ('[)|t:t“l =Y, (t)|t:t“1 a=12,..m-1
+yi3—(lti)(t —ti)3 +o(h?), Y; (t)|t:ti+l =Y (t)|lzlm i=12,..,m-1 (22)
| d,=y,=C
§/(t) = 3at? + 2bt +c, 1= o
B ) i (20) C=Y=(
= 3(;31;[i +2bt, +c, +(6at, +2b)(t-t;) o = y! =C,
a gy
+7|'(t—ti)2 +o(h*), ¥, (0) = p(®) +a) y(®) +r)y* ),
) i=12,...m-l
§I(t) = 6a,t+2b ' m
(21) Theorem 1

=6at, +2b, +6a, (t—t)+o(h).
The real analytic solution y. (t) of (15) and (16) can be If the analytical solution y(t) of the problem (15) and (16)

expanded to has n order continuous derivative on the interval [0,T], then

. y-" (t) the local truncation error of the approximate solution function
yi®=yt)+V, (ti)(t—ti)+?(t—ti)2 9.(t),i=12,..mused to simulate the real analytic solution
o y(@t) is o(h*) .
P2 g s 2 0 g o) Proof:
) n ” Onthe interval [t,t,] , where t =0 ,
0=y 6)+y -1+ 2 -ty %0~ %.0)

Y1 (t:l.) - )71 (t:l.) + (yl, (t1) - yl, (tl))(t _tl)

s IOy oy

(n-1) V) M)y vl W) 5T
WO =% 6y 6)E-t) TR T T
(M (t. 3 y1(4) (t) 4 yl(n) t) n n
+ Elrll_(ztl))l (t_ti)n72+0(hn—2) —O(h )+T(t—t1) ++T(t—t1) +0(h )
Then, we get C, 2 ) 1’" 0) 6 3
|yl(t)_yl(t)| =C1_d1+(C2_C1)t+(E_2_b|l)t +(_y 3(| )_3_a|1)t

O30+ ©) -5 -1

yi” (ti) _ yi"(ti)
2! 2!

(4) (n)
—o(h®) +y14—'(0)-t4 +...+yl—|(0)~t" +o(h")
! n!

~m

)(t—ti)2+(yi (ti)_yi (ti))(t—ti)s—o(hs)

+ 31 31

"

y, (0) 6a, s 3
( 3 —?)'t —o(h)

+w(t—ti)4 +...+M(t—ti)n +o(h")
41 n!

o YO0 o YOO L
¥ O-5/@) I B BB o)

S OB AORICAORSAONEEY

3! 3!

O 83y ey

"

+( 2(!ti) - yiz—(!ti))(t —t)*—o(h’)

Y2 () RS ) oyt 1
+ 3 (t-t) +"'+(n—1)!(t t)"+o(h™)

Volume 50, Issue 1: March 2020



TAENG International Journal of Applied Mathematics, 50:1, [JAM_50 1 05

AGEAU]

yl’ (tl) - )71, (t1) + (y1” (tl) - ylﬂ (t1))(t _tl)

BB By gy oy

y1(4) (tl) _+)3 yl(n)(tl) _ n-1 n-1
+T(t t) +'"+—(n—1)!(t t)" +o(h"™)

Cz—cl+(C3—2b1)~t+(m—6ili)-tz

2! 2!
—o(h?)+ %) P+ %" 1" +o(h™?)
3l (n—1)!

|0 _6a, o o
= (lT—T)'t —o(h%)

) ()
+ y1 (O) t3 +. o+ y1 (0) .tn—1+0(hn—l)

3l (n—1)!
< yl_(m_%_l‘.o(h?)

2! 2!

¥ ©-%"0)

= y1” t)- y]_” )+ (y,

" ~m

) -y W)(t-t)—o(h)

y1(4) (t1) 2 y1(5) (t1) 3

fAE ) A )
yl(n) (tl) _ n-2 n-2
+...+—(n - 2)!(t )" +o(h"")
C,—2b +(y,"(t) -6a) -t —o(h)
y1(4) (O) .tz + y1(5) (O) ~t3 +
2! 3!

Y (©)-6a,~1-o(h)
On the interval [t,,t,] ,
|y2 (t) - 92 (t)l
= |yZ (tz) - yz (tz) + (yé(tz) - 9; (tz))(t _tz)

+( ygz(tlz) _ 9g2(tlz))(t —t2)2 + (yé”?,(::z) _ 9;3(:2))(1: —t2)3 _0(h3)

y1(n)(0) . n-2 n-2
+m t"* +0(h™™)

+

<

o (4 & (n)
P ey e B oy o)

< |y1(t2) - 91(t2)|+|y1’(t2) - )71’(t2)|'0(h)

YA A
2! 2!

.O(h2)+(y£"3(lt2) _ yg’S(ItZ))(t —t2)3 _O(h3)

g 4 g (M
Pt ey eI oy o)

<88 o)+ LB oy o)

1 ” " t " t
+ | @ 6a,~f-ofhy-o(ny + U - T Xad il o(re)

9, (t Y, (¢ N
+2z ) 4!(2)(t—t2)" ot 2 n!(Z)(t_tz) +o(h”)
s[ yr' (0) _611_1‘+ yr'(0) _6;5\1_4

31 3 2121

1 " " t " t
@63, -+ ) y23‘!z)—1‘]~o(h3)-

In the same way, on each interval

. L1, 1.0, t,, ] we have
|y, (®) = % ()] <C, -o(h*)
where C, is an appropriate positive constant,i =1,2,...,m.

IV. NUMERICAL EXAMPLES

In order to verify the feasibility and effectiveness of the
new proposed method for solving fractional differential
equations. In this section, we will present two numerical
experiments based on the previous discussion.

A. Example 1

Consider fractional differential equation
d'yt) ., 2

dt r'(3-v)
The exact solution of this equation is

y(t) =t

According to (6), (23) can be transformed into the

following equations:

2V —y(t), t>0,y(0)=0,0<v<l.
(23)

YO, =Y., i=12.m-1
B0, =yl 0], i=12.m-1

YO0, =20, i=12.m-1

d =0
P2 Py p
r'(3-v) @-v)ra-v)
_ 2b, v _ 63, £
2-v)A-V)I'(L-vV) B-v)2-V)A-VIT'1-vV)
i=12,..m-I
For convenience, we first select

v=05m=11=20,T =1. At this time, the error tolerance

can reach Tol =10 | which takes 12.313966 seconds.
Moreover, in order to increase the credibility of the numerical
simulation, the results are averaged by considering 30
different executions. The comparison results are shown in
Fig.1. As we can see that the solution obtained by CS-CS is
almost close to the real analytical solution. Table I lists the
numerical solution and the error comparison of these methods.
From Table I, we can find that the accuracy of the cuckoo
search algorithm based on cubic spline approximation
(CS-CS) is much higher than the particle swarm optimization
based on artificial neural network (PSO-ANN) and
Grunwald — Letnikov classical numerical method[19].
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TABLEI
PSO-ANN, GL, CS-CS COMPARISON TABLE AT t=[0,1]
; Exact Solution of Solution of Solution of Error by Error by Error by
solution GL PSO-ANN CS-Cs GL PSO-ANN CS-Cs
0.0 0.00000 0.00000 5.45e-6 0.00000000000000 0 5.45e-6 5.2e-18
0.2 0.04000 0.04007 0.04045 0.04000000000000 7e-5 4.52e-4 0
0.3 0.09000 0.09011 0.09072 0.09000000000000 1.1e-4 7.18e-4 0
0.4 0.16000 0.16013 0.16045 0.16000000000000 1.3e-4 4.51e-4 0
0.5 0.25000 0.25016 0.24958 0.25000000000000 1.6e-4 4.25e-4 0
0.6 0.36000 0.36019 0.35827 0.36000000000000 1.9e-4 1.73e-3 -5.551e-17
0.7 0.49000 0.49021 0.48693 0.49000000000000 2.1e-4 3.07e-3 -5.551e-17
0.8 0.64000 0.64023 0.63619 0.64000000000000 2.3e-4 3.81e-3 0
0.9 0.81000 0.81026 0.80688 0.81000000000000 2.6e-4 3.11e-3 0
1.0 1.00000 1.00028 1.00004 1.00000000000000 2.8e-4 4.40e-5 0
12¢ 4
—a—[C5L5
1t Exact 15
GL
— PS0-ANN 1l
0.8
0.6} =
[=]
=] It
=
0.4f [=]
ﬂJ 1 5 -
CS-CS PSO-ANN
0.2t
ik
D u 5 F
Fxart
072 ! L ! L ! ! L ! ! | i
0 01 02 03 04 05 06 07 08 08 1 a
t
t
Fig. 1. Comparison of PSO-ANN, GL, CS-CSatt = [0, 1] Fig. 2. Simulation diagram of by CS-CS at t = [0, 2]
00 12000
gl | —% -C8CE —a - 0508
—— Exact
10000 -
B0
TOF
8000
B0 -
9
]S E 8000
401 ﬂ
b 4000
2
2000
101
W 1 2 3= 4 5 & 7 & 9 10 o

Fig. 3. Simulation diagram of by CS-CS at t = [0, 10]
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COMPARISON OF RESULTS FOR THE SOLUTION
OF EXAMPLE 1 (v =0.25,t =0, 1])

t

Exact solution

Error by EOC

Error by FWCW

Mean error by CS-CS

0.09375 0.0087890625 1.15137021309e-5 0.43017672757 e-13 1.243218491116710e-17
0.18750 0.0351562500 1.34008681836e-5 0.53908266740 e-13 1.089149585786740e-17
0.28125 0.0791015625 1.45485346092e-5 0.24466539905 e-13 1.850371707708590e-17
0.37500 0.1406250000 1.53757162245e-5 0.03941291737 e-13 1.757853122323160e-17
0.46875 0.2197265625 1.60223410662¢-5 0.64837024638 e-13 2 312964634635740e-17
0.56250 0.3164062500 1.65528139359%¢-5 0.54012350148 e-13 2.035408878479450e-17
0.65625 0.4306640625 1.70022170524e-5 0.09825473768 e-13 3 515706244646330e-17
0.75000 0.5625000000 1.73918021056e-5 0.17985612999 e-13 1.4802973661668806-17
0.84375 0.7119406250 1.77354280767e-5 0.31863400807 e-13 3.330669073875470e-17
0.93750 0.8789062500 1.80426383865e-5 2.01283434365 e-13 4.810966440042350e-17
COMPARISON OF RESULTS FOR THE SOLUTION
OF EXAMPLE 1 (v =0.75,t = [0, 1])

t Exact solution Error by EOC Error by FWCW Mean error by CS-CS
0.09375 0.0087890625 0.201409844130e-3 0.347308987125e-13 1.295260195396020e-17
0.18750 0.0351562500 0.312234854242¢-3 0.022967738822e-13 2.012279232133100e-17
0.28125 0.0791015625 0.397141377633e-3 0.198174809896e-13 2.359223927328460e-17
0.37500 0.1406250000 0.466219134874e-3 0.293931545769e-13 2.683038976177460e-17
0.46875 0.2197265625 0.524234122143e-3 0.221489493413e-13 2.220446049250310e-17
0.56250 0.3164062500 0.573965121404e-3 0.194289029309e-13 2.775557561562890e-17
0.65625 0.4306640625 0.617222689041e-3 0.170974345793e-13 2.775557561562890e-17
0.75000 0.5625000000 0.655271385754e-3 0.091038288019e-13 2.220446049250310e-17
0.84375 0.7119406250 0.689037602412e-3 0.119904086659e-13 4.810966440042350e-17
0.93750 0.8789062500 0.719224088406e-3 0.275335310107e-13 6.661338147750940e-17
-0 S 5

o—O AR O6—6—6—5 o opf— OO0 —O— —o—= ©
—Oo— EOC 10F o —o—
15t —— Fwew i EOC
EOC CS-CS —O— FWCW
EOC Cs-CS
15
20
Tg: "5 -20
o 25 W
> FWCW S 25+
= = FwCw
30 - Jl
W 30 F W"—MJLM/@
CS-CS
35 CS-Cs
ﬂ 35 J\l
40 # . s . . s . . s ) 40 ‘ ‘ ‘ ‘ . \ . s ‘ '
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

Fig.5. Error comparison of EOC,FWCW,CS-CS at v =0.25,t = [0, 1] Fig.6. Error comparison of EOC,FWCW,CS-CS at v =0.75,t =[0, 1]

In addition, CS-CS not only has high accuracy at interval
t €[0,1] , but also maintains high accuracy and stability

when the range of T becomes larger. Fig. 2, 3, 4 are the
simulated diagram of numerical solutions obtained by
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CS-CS at intervals t<[0,2],t<[0,10] and t €[0,100],

respectively. These three cases take 15.068018 seconds,
17.216479 seconds and 20.749634 seconds, respectively.
Even for the case te<[0,100] , the accuracy of the

numerical solution can be as high as 10™ , which shows
that the algorithm still has high accuracy and stability when
the T value keeps increasing.

In order to show the superiority of CS-CS in further, the
value of the fractional order derivative v is taken as 0.25
and 0.75. The corresponding results are summarized in
Table Il, Table Il and Fig.5, Fig.6. It also contains
reported results with FWCM[29] and EOC[30]. It can be
inferred that our algorithm provides an approximate
solution  to the fractional differential equation more
effectively.

B. Example 2
Consider the fractional differential equation
dOBY(t) _ 14

di’® -y'(t)-@+t)-y(t)+ r(3_8)t : o0

f2p 0 (1+)t?8
2" "T(38)

The initial condition is

y(0)=0
The exact solution of this equation is

5 2.8
t)=——t*
YO=ras
According to (6), (24) can be transformed into the
following equations

9i (t)lt:tm = yi+1(t)|t:t“11 [ =1’21"'1m -1
mmam%dzymmamﬁﬂ,i:sz”m—l

520, =920, . i=12..m-1

d, =0
. . 14 s, 9.
O=—y (t)—(l‘f‘t)y(t)‘f'mt +§t
2 Q)22 G p
I'(3.8) @-v)ra-v)
B 2b, 2 6a, )
2-v)@-v)I'l-v) B-v)(2-v)A-VI'1-V)

i=12,...m-l

In the following, we will use cuckoo search algorithm to
calculate the above equations and discuss the influence of
the parameter | .

(1)Choose m=2,1=10,T =1,Tol =1.1227 . It takes
16.439011 seconds. The coefficient solutions are:

a, =0.925561212447776 a, =0.738891012901748

b, =0.179615628191602 and b, =0.459623589255583

¢, =—0.015345206321721 ¢, =—0.155256770376138

d, =0.000000008744638 d, =0.023283177842368,
We get the approximate solution of the equation:

y(t) =
y, (t) = 0.925561212447776t% +0.179615628191602t
—0.015345206321721t +0.000000008744638------0 < t < 0.5
¥, (t) = 0.738891012901748t° + 0.459623589255583t
—0.155256770376138t +0.023283177842368------0.5 < t <1.
(2) Choose m=2,1=20,T =1,Tol =1.1714 . It takes
27.7729821 seconds. The coefficient solutions are:
a, =0.919498494305771 a, = 0.750548643123485
b, =0.183727300560656 an b, =0.437107118636707
¢, =—-0.015943443439072 ¢, =—0.142555742170239
d, =-0.000000014508539 d, = 0.021816521494590,
The approximate solution of the equation is:
y(®
y, (t) = 0.919498494305771t* + 0.183727300560656t
—0.015943443439072t — 0.000000014508539------0 <t < 0.5
y, (t) = 0.750548643123485t* + 0.437107118636707t>
—0.142555742170239t +0.021816521494590------0.5 < t <1.
(3) Choose m=2,1=30,T =1,Tol =1.2156 . It takes
27.7729821 seconds. The coefficient solutions are:
a, =0.925913752517327 a, = 0.754732405733558
b, =0.178866218377388 b, =0.427150121741720
¢, =—0.015223271257590 ¢, =—0.134842553318408
d, =-0.000000025245317 d, = 0.019562451330709,
This yields:
y(®
y, (t) = 0.925913752517327t° +0.178866218377388t>
~0.015223271257590t - 0.000000025245317 ------0 <t < 0.5
" |y, (t) = 0.754732405733558t° + 0.427150121741720t?
—0.134842553318408t + 0.019562451330709------0.5 <t <1.

Table 1V lists the error comparison between the
numerical solutions obtained by CS-CS and the analytical
solution whenl =10,1 =20, andl =30. The Mean square
error(MSE) of three cases are MSE_110=2.2772¢-5,
MSE_120=1.7102e-5, MSE_I30=2.1554e-5, respectively.
We can find that the error is relatively small at around 10°°
forl =20.

Fig.7 shows the numerical solutions obtained with
CS-CS (1 =20) and difference method(DM) in [31]. From
Fig.7, we can observe that the solution obtained by CS-CS
is closer to analytical solution than DM. In addition, Table
V lists the error comparison between the exact solutions
and numerical solutions by CS-CS and DM methods at
several points. It is shown that the numerical solution
accuracy of CS-CS is around10™* ~10°°, which is more
close to the real analytical solution than DM method. Table
VI lists the maximum error, the minimum error and the
mean error of CS-CS for 30 experiments.
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Exact
DM

03—ttt

0 01 0z 03 0& 05 06 07 08 08
Fig.7. Comparison of CS-CS,DM at t=[0,1],v=0.8

C. Example 3

Consider fractional differential equation

d'y(t) _ T(p+D) o
da* T(p-v+)
The initial condition is
y(0)=0 for O<v<1
y(0)=y'(0)=0 for 1<v<2
The exact solution of this equation is
y(t) =t°

In the following, we will discuss the solution of (25) in

different cases.

Y+yR () -t (25)

Casel. p=3,v=05

According to (7), (25) can be transformed into the
following equations

9,0y, =9a®],, i=12.,m-1
30O, =970, 1=12,,m-1
yi(Z) (t)|t:t,+1=yi+1(2) (t)|t:t,+l , 1=12,..,m-1
d,=0
__T@ t +y 2 (L) - t?P & g
r@a-v) @-vrae-v)
B 2b v 6a,
2-v)1-V)T(1-v) B-v)2-v)@-V)I'L-V)
i=12,...m-l

The parameter is chosen as
m=1T =1,1=10,Tol =0.4182 .Using cuckoo algorithm
to calculate the above equations, and it takes 4.8807

3-v

seconds. The simulation results are shown in Fig.8 and
Table VII. As we can see that the numerical solution agree
well with the analytical solution and the mean error of

CS-CScanreach 107.

2) Case2. p=3,v=15
According to (9), (25) can be transformed into the
following equations

9Ot =1 ®)] ey, i =12 m =1
yi(l) (t)|t:ti+1:yi+1(l) (t) t=ti,y :i :1,21"'ym -1
9.2 1)] iy, =902 Oy, 1 =120, m -1
d,=0
c,=0
LT 2
r@a-v) 2-vIr'2-v)
TN RUmSY
B-v)2-vV)T(1-v)
i=12,---,m-1.
Similarly, the parameter is chosen

asm=1T =1 1=10,Tol =107 It takes 10.7952 seconds
for cuckoo algorithm to calculate the above equations.
Fig.9 and Table VIII give the simulation results. We can
conclude that the numerical solution are found in well
agreement with the analytical solution and the mean error
of CS-CS can reach10™ .

V. CONCLUSION

In this paper, we propose a new solution scheme for the
initial value problem of fractional differential equations,
which is solved by cuckoo search algorithm based on cubic
spline (CS-CS). A cubic spline function was introduced to
transform the fractional differential equations into
nonlinear equations and the Cuckoo search algorithm was
applied to solve the nonlinear equation system.
Furthermore, we derive the convergence order which
proves the theoretical feasibility of the proposed method.
By using CS-CS algorithm to solve specific examples, we
find that the new method has the characteristics of high
precision and fast convergence speed. Therefore, the
cuckoo algorithm based on cubic spline (CS-CS) presented
in this paper is feasible and effective in solving the initial
value problem of fractional differential equations.
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Fig. 8. Numerical results of CS-CS forp=3,v=0.5

Solution

— Exact
—+ — C5-CE

Fig. 9. Numerical results of CS-CS for p=3,v=1.5

TABLE IV

THE ERROR COMPARISON OF CS-CS (t=[0,1],v=0.8)

Exact Solution

Solution of CS-CS

Error by CS-CS

1=10 1=20 1=30 1=10 1=20 1=30
0 0 0.000000008744  -0.000000014508  -0.000000025245  0.0000000087446  0.0000000145085 0.0000000252453
638 539 317 38 39 17
0.1 0.001688149100 0.001187205606  0.0011624126474  0.0011922235652  0.0005009434935 0.0005257364528 0.0004959255351
350 829 66 15 20 84 34
0.2 0.011756953201 0.010694555759  0.0115163767805 0.0115172792583  0.0002368708943  0.0002405764213 0.0002396739434
898 719 19 99 59 80 99
0.3 0.036588981023 0.036552006121  0.0365788688564  0.0365306243493  0.0000369749016 0.0000101121666 0.0000583566737
069 455 54 39 14 15 30
0.4 0.081880177860 0.081836344323  0.0818668798411  0.0817877413531  0.0000438335372  0.0000132980193  0.0000924365073
470 263 06 380 07 64 32
0.5 0.152942017148 0.152926464187  0.1528974007003  0.1528441127849  0.0000155529610 0.0000446164483  0.0000979043637
660 650 10 01 10 49 58
0.6 0.254820464320 0.255375732989  0.2551874223999  0.2552552211597  0.0005552686687  0.0003669580793  0.0004347568392
514 301 00 32 87 86 18
0.7 0.392360531068 0.394737518002  0.3942539359057  0.3945765489927  0.0023769869343  0.0018934048371 0.0022160179241
552 905 11 34 53 59 81
0.8 0.570246679673 0.576565186503  0.5756139321835 0.5763635787990  0.0063185068293  0.0053672525098 0.0061168991252
755 147 78 11 93 23 57
0.9 0.793030385781 0.806412105764  0.8047844021993 0.8061717930936 0.0134730381732 0.0117540164181 0.0131414073124
202 715 34 68 07 33 67
TABLE V
THE ERROR COMPARISON OF CS-CS, DM (t=[0,1],v=0.8, |=20)
t Exact Solution Mean solution of CS-CS Solution of DM Mean error by CS-CS Error by DM
0 0 0.000000000140022 0.00000000 9.0130907196259706-09 0
0.1 0.001688149100350 0.001166142476867 0.00194987 5 2200662348317106.04 0.00026172
0.2 0.011756953201898 0.011516154287996 0.01284495 2 407989139025410e-04 0.00108709
0.3 0.036588981023069 0.036571078568839 0.03926037 1.7902454230849706-05 0.00267139
0.4 0.081880177860470 0.081851958314823 0.08701887 2 821954564697870e-05 0.00513869
0.5 0.152942017148660 0.152879836521379 0.16142110 6.218062728019690e-05 0.00847908
0.6 0.254820464320514 0.255175756183935 0.26732269 3.552918634213640e-04 0.01250222
0.7 0.392360531068552 0.394260760297919 0.40916953 1.900229229367280e-03 0.01680899
0.8 0.570246679673755 0.575655891858762 0.59101864 5.409212185006990e-03 0.02077195
0.9 0.793030385781202 0.804882193861890 0.81655453 1.185180808068810e-02 0.02395547
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TABLE VI

THE ERROR OF CS-CS (t=[0,1],v=0.8,1=20)

Min error by CS-CS

Max error by CS-CS

Mean error by CS-CS

9.013090719625970e-09
5.220066234831710e-04
2.407989139025410e-04
1.790245423084970e-05
2.821954564697870e-05
6.218062728019690e-05
3.552918634213640e-04
1.900229229367280e-03
5.409212185006990e-03
1.185180808068810e-02

Max error by CS-CS

Mean error by CS-CS

7.543891859534880e-10
2.181228103091940e-07
3.178512749980880e-07
3.339483128535210e-07
3.004224534697290e-07
2.512822264294500e-07
2.205361613605290e-07
2.421927878248910e-07
3.502606354954810e-07
5.787482337815680e-07

6.147292989429410e-09
7.953910263397570e-08
1.153399363086850e-07
1.241476972414320e-07
1.177731709646930e-07
1.062012284040270e-07
1.076849300165240e-07
1.310367756746090e-07
1.755128204328220e-07
2.677919390126070e-07

Max error by CS-CS

Mean error by CS-CS

6.505213034913030e-19
3.469446951953610e-18
6.938893903907230e-18
1.387778780781450e-17
1.387778780781450e-17
2.775557561562890e-17
5.551115123125780e-17
0
1.110223024625160e-16
1.110223024625160e-16

5.348730717595160e-19
1.272130549049660e-18
2.775557561562890e-18
4.625929269271490e-18
6.476300976980080e-18
1.110223024625160e-17
5.551115123125780e-18
0
7.401486830834380e-18
1.110223024625160e-17

(1]
[2]

[3]
(4]
(5]
(6]

(71

G. C. Wu, E. W. M. Lee, “Fractional variational iteration method and

0 1.702279956823930e-09 3.888834435686740e-10
0.1 5.265364140468620e-04 5.191041327268500e-04
0.2 2.437314167992880e-04 2.409312625101370e-04
0.3 1.818830810562670e-05 2.247311334883930e-05
0.4 2.988866827845220e-05 3.409837630968800e-05
0.5 7.434221558075270e-05 6.170388040974140e-05
0.6 3.184493334056350e-04 3.743215470149440e-04
0.7 1.819438002456540e-03 1.954542818986270e-03
0.8 5.260125226887680e-03 5.520074260065730e-03
0.9 1.160499907791320e-02 1.204501683071290e-02

TABLE VII
THE ERROROF CS-CSFOR p=3, v=0.5
t Exa_ct Mean solution of CS-CS Min error by CS-CS
Solution
0.00000000 0.000000002488263 3.575699808794530e-10
0.00100000 0.001000004272664 1.726569095941020e-08
0.00800000 0.008000007493398 1.878053475928840e-08
0.02700000 0.027000008015559 9.453083996135980e-09
0.06400000 0.064000006680766 6.165678703706770e-09
0.12500000 0.125000004330639 2.352477077027790e-08
0.21600000 0.216000001806796 3.807320952953220e-08
0.34300000 0.342999999950857 4.526001246007990e-08
0.51200000 0.511999999604442 4.053419666583120e-08
0.72900000 0.729000001609168 1.934478000009680e-08
TABLE VIII
THEERROROF CS-CSFOR p=3,v=15
t Exact Solution Mean solution of CS- CS Min error by CS-CS
.0 0.00000000 0.001000000000000 2.168404344971009e-19
1 0.00100000 0.008000000000000 0
2 0.00800000 0.027000000000000 0
3 0.02700000 0.064000000000000 0
4 0.06400000 0.125000000000000 0
5 0.12500000 0.216000000000000 0
.6 0.21600000 0.343000000000000 0
7 0.34300000 0.512000000000000 0
.8 0.51200000 0.729000000000000 0
.9 0.72900000 1.000000000000000 0
[8]
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