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Abstract—Let G be a simple graph. A total coloring f of G
is called an E-total coloring if no two adjacent vertices of G
receive the same color, and no edge of G receives the same color
as one of its endpoints. For an E-total coloring f of a graph
G and any vertex x of G, let C(x) denote the set of colors of
vertex x and of the edges incident with x, we call C(x) the color
set of x. If C(u) ̸= C(v) for any two different vertices u and v
of V (G), then we say that f is a vertex-distinguishing E-total
coloring of G or a VDET coloring of G for short. The minimum
number of colors required for a VDET coloring of G is denoted
by χe

vt(G) and is called the VDET chromatic number of G. The
VDET coloring of complete bipartite graph K7,n (n ≥ 978) is
discussed in this paper and the VDET chromatic number of
K7,n (n ≥ 978) has been obtained.

Index Terms—graph; complete bipartite graph, E-total color-
ing, vertex-distinguishing E-total coloring, vertex-distinguishing
E-total chromatic number.

I. INTRODUCTION AND NOTATIONS

GRaph theory is the historical foundation of the science
of networks and the basis of information science. The

problem in which we are interested is a particular case
of the great variety of different ways of labeling a graph.
The original motivation of studying this problem came from
irregular networks. The idea was to weight the edges by
positive integers such that the sum of the weights of edges
incident with each vertex formed a set of distinct numbers.

For an edge coloring (proper or not) g of G and a vertex
x of G, let S(x) be the set (not multiset) of colors of the
edges incident with x under g.

For a proper edge coloring, if S(u) ̸= S(v) for any two
distinct vertices u and v, then the coloring is called a vertex-
distinguishing proper edge coloring. The minimum number
of colors required for a vertex-distinguishing proper edge
coloring of G is denoted by χ′

s(G). This coloring is proposed
in [5] and [4] independently. Many scholars have studied this
parameter in [2], [3], [4], [5], [20], [21], [22].

For an edge coloring which is not necessary proper, if
S(u) ̸= S(v) for any two distinct vertices u and v, then the
coloring is called a point distinguishing edge coloring. The
minimum number of colors required for a point distinguish-
ing edge coloring of G is denoted by χ0(G). This coloring
is proposed in [15] by Harary et al. This parameter has been
researched in many papers [6], [15], [16], [17], [18], [23],
[24].

For a total coloring (proper or not) f of G and a vertex x
of G, let C(x) be the set (not multiset) of colors of vertex
x and edges incident with x under f .
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For a proper total coloring, if C(u) ̸= C(v), for any two
distinct vertices u and v, then the coloring is called a vertex-
distinguishing (proper) total coloring, or a VDT coloring of
G for short. The minimum number of colors required for a
VDT coloring of G is denoted by χvt(G).

The vertex distinguishing proper total colorings of graphs
are introduced and studied by Zhongfu Zhang et al in [25].
After studying the vertex distinguishing proper total coloring
of complete graph, star, complete bipartite graph, wheel, fan,
path and cycle, a conjecture was proposed in [25]: let µ(G) =
min{k :≥ ni, δ ≤ i ≤ ∆}, then χvt(G) = µ(G) or µ(G) +
1. In [7], the vertex-distinguishing total coloring of n-cube
were discussed, respectively. In [11], the relations of vertex
distinguishing total chromatic numbers between a subgraph
and its supergraph had been studied.

We will consider a kind of not necessarily proper total
coloring which is vertex distinguishing. A total coloring f
of G is called an E-total coloring if no two adjacent vertices
of G receive the same color, and no edge of G receives
the same color as one of its endpoints. If f is an E-total
coloring of graph G and for any u, v ∈ V (G), u ̸= v, we
have C(u) ̸= C(v), then f is called a vertex-distinguishing
E-total coloring, or a VDET coloring briefly. The minimum
number of colors required for a VDET coloring of G is called
the vertex-distinguishing E-total chromatic number of G and
is denoted by χe

vt(G).
The VDET colorings of complete graph, complete bipartite

graph K2,n, star, wheel, fan, path and cycle were discussed
in [14].

A parameter was introduced in [14]: η(G) = min{l :
(
l
2

)
+(

l
3

)
+ · · ·+

(
l

i+1

)
≥ nδ + nδ+1 + · · ·+ ni, 1 ≤ δ ≤ i ≤ ∆},

ni denote the number of vertices with degree i, δ ≤ i ≤ ∆.
At the end of the paper [14], a Vizing-like conjecture was
proposed.

Conjecture 1 ([14]) For a graph G with no isolated
vertices and chromatic number at most 5, we have χe

vt(G) =
η(G) or η(G) + 1.

We have studied the vertex-distinguishing E-total colorings
of mC3 and mC4 in article [13] and confirmed Conjecture
1 for these two kinds of graphs.

The VDET chromatic numbers of complete bipartite
graphs K7,n (7 ≤ n ≤ 977) had been determined and
Conjecture 1 is confirmed for K7,n (7 ≤ n ≤ 977) in [8],
[9], [10]. In this paper, we will consider the VDET coloring
of complete bipartite graph K7,n (n ≥ 978) and confirm
Conjecture 1 for K7,n (n ≥ 978).

For a vertex distinguishing E-total coloring f of a graph
G and an element z ∈ V (G)∪E(G), we use f(z) to denote
the color of z under f .

Let X = {u1, u2, · · · , u7}, Y = {v1, v2, · · · , vn},
V (K7,n) = X ∪ Y and E(K7,n) = {uivj : 1 ≤ i ≤ 7, 1 ≤
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j ≤ n}.
Given a vertex distinguishing E-total coloring f of

K7,n, let C(X) = {C(u1), C(u2), · · · , C(u7)}, C(Y ) =
{C(v1), C(v2), · · · , C(vn)}.

For a positive integer l, we use [l] to denote the set
{1, 2, · · · , l}. If we mention an l-VDET coloring, then the
colors which we have used are 1, 2, · · · , l. And for c ∈
{1, 2, · · · , l}, we use {c} to denote {1, 2, · · · , l} \ {c}, i.e.,
{c} = [l] \ {c}. Generally for subset A of [l], we use A to
denote the complementary subset of A in [l], i.e., A = [l]\A.
A subset A of {1, 2, · · · , l} is called i-subset if A contain i
elements, i.e., |A| = i.

For adjacent vertex distinguishing proper edge colorings
of bicyclic graphs we may see [12]. For the hamiltonicity
and hamiltonian connectivity of L-shaped supergrid graphs
we may see [19]. For a particle swarm optimization (PSO)
approach: shortest path planning algorithm, we may see [1].

II. PRELIMINARIES

Lemma 1 ([8]) Let g be an l-VDET coloring of
K7,n. Suppose that there are two distinct colors among
g(u1), g(u2), · · · , and g(u7), and g(ui) ∈ {1, 2}, i =
1, 2, · · · , 7. If there exists a color a ∈ {3, 4, · · · , l} such
that {1, 2, a} ∈ C(Y ), i.e., {1, 2, a} is a color set of some
vertex in Y , then {1, 2} ⊆ C(ui), i = 1, 2, · · · , 7.

Lemma 2([8]) Let g be an l-VDET coloring of
K7,n. Suppose that there are two distinct colors among
g(u1), g(u2), · · · , and g(u7), and g(ui) ∈ {1, 2}, i =
1, 2, · · · , 7. Let a1, a2, · · · , ar be r(≥ 2) distinct colors in
{3, 4, · · · , l}. If each 2-subset of {a1, a2, · · · , ar} is a color
set of a vertex in Y , then there exist r − 1 distinct colors
in {a1, a2, · · · , ar} such that these r − 1 distinct colors are
contained in each set C(ui), i = 1, 2, · · · , 7.

Lemma 3([8]) Let g be an l-VDET coloring of
K7,n. Suppose that there are two distinct colors among
g(u1), g(u2), · · · , and g(u7), and g(ui) ∈ {1, 2}, i =
1, 2, · · · , 7. Let a1, a2, · · · , ar be r distinct colors in
{3, 4, · · · , l}.

(i) If {1, a1, a2}, {2, a1, a2} ∈ C(Y ), then each color set
in C(X) contains a1 or a2, i.e., a1 ∈ C(ui) or a2 ∈ C(ui),
i = 1, 2, · · · , 7;

(ii) Given j ∈ {1, 2}, if every 3-subset of {j, a1, a2,
· · · , ar} which contains color j belongs to C(Y ), then there
exist r−1 distinct colors in {a1, a2, · · · , ar} such that these
r − 1 distinct colors are contained in each set C(ui) with
g(ui) = j;

(iii) If every 3-subset of {1, 2, a1, a2, · · · , ar} which con-
tains color 1 or 2 but not both belongs to C(Y ), then each
set C(ui) contains at least r − 1 colors in {a1, a2, · · · , ar},
i = 1, 2, · · · , 7.

Lemma 4([9]) K7,472 has a 9-VDET coloring h472 such
that (i) the color of ui is 1 (i = 1, 2, 3) and the color of uj

is 2 (j = 4, 5, 6, 7); (ii) the color sets of u1, u2, · · · , u7 are
[9] \ {3, 4}, [9] \ {3}, [9] \ {4}, [9], [9] \ {5, 6}, [9] \ {5} and
[9] \ {6} respectively; (iii) the color set of each vertex in Y
is one of the following sets:
{3, 7}, {3, 8}, {3, 9}, {4, 7}, {4, 8}, {4, 9}, {5, 7}, {5, 8},

{5, 9}, {6, 7}, {6, 8}, {6, 9}, {7, 8}, {7, 9}, {8, 9};
3-subsets of [9] except for {1, 3, 4}, {2, 5, 6};
i-subsets of [9], i = 4, 5, 6;
7-subsets of [9] except for [9] \ {3, 4}, [9] \ {5, 6};

TABLE I
THE COLORINGS OF vj AND ITS INCIDENT EDGES

u1 u2 u3 u4 u5 u6 u7

v473 3 10 (3) 10 10 10 10 10 10 10
v474 1256789(5) 6 6 2 7 8 9 1
v475 12456789(5) 6 9 2 7 8 1 4
v476 12356789(5) 6 9 2 7 8 1 3
v477 1234789(4) 2 9 2 7 8 1 3
v478 12346789(6) 2 4 9 7 8 1 3
v479 12345789(5) 2 4 9 7 8 1 3

8-subsets of [9] except for [9] \ {3}, [9] \ {4}, [9] \ {5},
[9] \ {6}.

Based on the 9-VDET coloring h472 stated in Lemma 4,
we may give a 10-VDET coloring h975 of K7,975 and a 11-
VDET coloring h977 of K7,977.

Let the subgraph of K7,975 induced by
X ∪ {v1, v2, · · · , v472} be colored using the above 9-
VDET coloring h472 . And then color other vertices and
their incident edges of K7,975. Let vi and its incident
edges (i = 473, 474, · · · , 479 ) be colored in the manner
listed in Table I. Let vertex vj receive color j − 476 and
its edges receive color 10, 480 ≤ j ≤ 485. Let vertices
v486, v487, · · · , v975 be corresponded to the following sets
respectively: 3-subsets of [10] which contain 10, 4-subsets
of [10] which contain 10, 5-subsets of [10] which contain
10, 6-subsets of [10] which contain 10, 7-subsets of [10]
which contain 10, 8-subsets of [10] which contain 10 and
are not {1, 2, 5, 6, 7, 8, 9, 10}, {1, 2, 3, 4, 7, 8, 9, 10}. We can
color the vertex vj (j = 486, 487, · · · , 975) and its incident
edges easily and omitted the process (or according to the
method given in Table 5 where let k = 10 in [9] ).

Then we determine h977. Let the subgraph of K7,977

induced by X ∪ {v1, v2, · · · , v975} be colored using the 10-
VDET coloring h975. And let v976 receive color 3 and all
edges uiv976 receive color 11, let v977 receive color 4 and all
edges uiv977 receive color 11. The resulting coloring h977

is obviously an 11-VDET coloring of K7,977.

III. MAIN RESULT

Theorem 1 Suppose k ≥ 11, n ≥ 978. If∑8
i=2

(
k−1
i

)
− 2k − 3 < n ≤

∑8
i=2

(
k
i

)
− 2k − 5,

then χe
vt(K7,n) = k.

Proof Firstly, we prove that K4,n does not have a (k −
1)−VDET coloring. Assume that K4,n has a (k−1)−VDET
coloring g. There are three cases to consider.

Case 1 u1, u2, · · · , u7 receive the same color under g.
We may suppose that g(ui) = 1, i = 1, 2, · · · , 7. So none
of the C(vj) include color 1, and each C(vj) is one of the
subsets of {2, 3, · · · , k − 1}. Let A be the set composed by
the 8-, 7-, 6-, 5-, 4-, 3-, 2-subsets of {2, 3, · · · , k−1}. Then
A contains

∑8
i=2

(
k−2
i

)
members and C(Y ) ⊆ A. As

n >
∑8

i=2

(
k−1
i

)
− 2k − 3

=
∑8

i=2

(
k−2
i

)
+

∑8
i=2

(
k−2
i−1

)
− 2k − 3

≥
∑8

i=2

(
k−2
i

)
+ 4(k − 2)− 2k − 3

=
∑8

i=2

(
k−2
i

)
+ 2k − 11 >

∑8
i=2

(
k−2
i

)
= |A|.

This is a contradiction.
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Case 2 u1, u2, · · · , u7 receive two different colors under
g. We may suppose that g(ui) ∈ {1, 2}, i = 1, 2, · · · , 7. Each
C(vj) does not include color i when |C(vj)| = 2, i = 1, 2.
Let B = B1 ∪ B2 ∪ B3, where
B1 = {{a, b}|a, b ∈ {3, 4, · · · , k − 1}, a < b};
B2 = {{1, 2, c}|c = 3, 4, · · · , k − 1};

B3 is the set composed by the 8-, 7-, 6-, 5-, 4-subsets of
[k − 1] and 3-subsets of [k − 1] which are not in B2. Then
C(Y ) ⊆ B and

|B| =
∑8

i=3

(
k−1
i

)
+
(
k−3
2

)
.

By simple calculation we have that |B| − (
∑8

i=2

(
k−1
i

)
−

2k− 3) = 8. So we assume that |B|− 8 < n ≤ |B|. At most
seven subsets in B are not in C(Y ). Thus B2 ∩ C(Y ) ̸= ∅
and, by Lemma 1, 1, 2 ∈ C(ui), i = 1, 2, · · · , 7.

1) If C(u1) ∩ C(u2) ∩ · · · ∩ C(u7) ∩ {3, 4, 5, · · · , k − 1}
contains at most k − 8 colors, there exist five colors
a1, a2, a3, a4, a5 ∈ {3, 4, 5, · · · , k − 1}, such that
{3, 4, 5, · · · , k − 1} \ {a1, a2, a3, a4, a5} ⊆ C(u1) ∩

C(u2) ∩ · · · ∩ C(u7) ∩ {3, 4, 5, · · · , k − 1}.
By Lemma 2, any 2-subsets of {a1, a2, a3, a4, a5} is not

in C(Y ). Thus
C(Y ) ⊆ B \ {{ai, aj}|1 ≤ i < j ≤ 5}.

So n ≤ |B| − 10, This is a contradiction.
2) If C(u1) ∩ C(u2) ∩ · · · ∩ C(u7) ∩ {3, 4, 5, · · · , k − 1}

contains k−7 colors, there there exist four colors a, b, c, d ∈
{3, 4, 5, · · · , k − 1}, such that
{3, 4, 5, · · · , k− 1} \ {a, b, c, d} ⊆ C(u1)∩C(u2)∩ · · · ∩

C(u7) ∩ {3, 4, 5, · · · , k − 1}.
By Lemma 2, any 2-subsets of {a, b, c, d} is not in C(Y ).

Thus
C(Y ) ⊆ B \ {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

So n ≤ |B| − 6, and n = |B| − 6 or n = |B| − 7. Consider
the following 12 subsets:
{1, a, b}, {1, a, c}, {1, a, d}, {1, b, c}, {1, b, d}, {1, c, d};
{2, a, b}, {2, a, c}, {2, a, d}, {2, b, c}, {2, b, d}, {2, c, d}.

Therefore at least 11 subsets (possibly except for one, say
{2, c, d}) are in ∈ C(Y ). From {1, a, b}, {1, a, c}, {1, a, d},
{1, b, c}, {1, b, d}, {1, c, d} ∈ C(Y ), by Lemma 3, we know
that there exist three colors in {a, b, c, d} which are contained
in each C(ui) for color 1 vertex ui, say a, b, c ∈ C(ui)
for color 1 vertex ui. So there are two choices for color 1
vertex ui: C(ui) = {d}, or [k− 1]. From {2, a, b}, {2, a, c},
{2, b, c} ∈ C(Y ), by Lemma 3, we know that there exist
two colors in {a, b, c} which are contained in each C(ui)
for color 2 vertex ui, say a, b ∈ C(ui) for color 2 vertex
ui. So there are four choices for color 2 vertex ui, C(ui) ∈
{[k − 1] \ {c, d}, {c}, {d}, [k − 1]}. This is a contradiction.

3) If C(u1) ∩ C(u2) ∩ · · · ∩ C(u7) ∩ {3, 4, 5, · · · , k − 1}
contains k − 6 colors, there there exist three colors a, b, c ∈
{3, 4, 5, · · · , k − 1}, such that
{3, 4, 5, · · · , k − 1} \ {a, b, c} ⊆ C(u1) ∩ C(u2) ∩ · · · ∩

C(u7) ∩ {3, 4, 5, · · · , k − 1}.
Then {3, 4, · · · , k − 1} \ {a, b, c} ⊆ C(ui), i = 1, 2, · · · , 7.

By Lemma 2, we have the following Claim 1.
Claim 1 any 2-subsets of {a, b, c} is not in C(Y ).
Claim 2 {a, b, c} ̸∈ C(Y );
Otherwise if {a, b, c} ∈ C(Y ), and C(vj0) =

{a, b, c}, g(vj0) = a, then each C(ui) contains b or c. So
C(X) ⊆ {[k−1]\{a, b}, [k−1]\{a, c}, {a}, {b}, {c}, [k−1]}.
This is a contradiction.

Claim 3 One of two sets {1, a, b} and {2, a, b} ,denoted
by B′

1, is not in C(Y ); one of two sets {1, a, c} and {2, a, c},
denoted by B′

2, is not in C(Y ); one of two sets {1, b, c} and
{2, b, c}, denoted by B′

3,is not in C(Y ).
Otherwise if {1, a, b}, {2, a, b} ∈ C(Y ), then each C(ui)

contains a or b. So C(X) ⊆ {[k − 1] \ {a, c}, [k − 1] \
{b, c}, {c}, {a}, {b}, [k − 1]}. This is a contradiction.

Thus exactly one subset among {1, a, b} and {2, a, b},
denoted by B1, is in C(Y ); exactly one subset among
{1, a, c} and {2, a, c}, denoted by B2, is in C(Y ); exactly
one subset among {1, b, c} and {2, b, c}, denoted by B3, is
in C(Y ); n = |B| − 7, and
C(Y ) = B \ {{a, b}, {a, c}, {b, c}, {a, b, c}, B′

1, B
′
2, B

′
3}.

Claim 4 {1, a, b, c}, {2, a, b, c} ∈ C(Y ), each C(ui)
contains one of a, b, c, and C(X) = {[k − 1] \ {b, c},
[k − 1] \ {a, c}, {a, b}, {c}, {b}, {a}, [k − 1]}.

By Claim 4 we may suppose C(u1) = [k − 1] \ {b, c},
C(u2) = [k− 1] \ {a, c}, C(u3) = [k− 1] \ {a, b}, C(v1) =
{1, a, b, c}, C(v2) = {2, a, b, c}. When g(v1) = g(v2), say
g(v1) = g(v2) = a, from C(v1) = {1, a, b, c} and C(v2) =
{2, a, b, c} we can obtains that each C(ui) contains b or c,
a contradiction to C(u1) = [k − 1] \ {b, c}. When g(v1) ̸=
g(v2), say g(v1) = a, g(v2) = b, the color set of color 1
vertex in X contains b or c, the color set of color 2 vertex
in X contains a or c. Then g(u1) = 2, g(u2) = 1. Thus
{2, b, c}, {1, a, c} are not the color sets of any vertices in
Y . We may suppose that C(v3) = {1, b, c} = B3, C(v4) =
{2, a, c} = B2. Thus g(u1v3) = 1, g(u2v3) = b, g(v3) = c;
g(u1v4) = a, g(u2v4) = 2, g(v4) = c, and g(u3v3) = 1,
g(u3v4) = 2. This is a contradiction to g(u3) ∈ {1, 2}.

4) If C(u1) ∩ C(u2) ∩ · · · ∩ C(u7) ∩ {3, 4, 5, · · · , k − 1}
contains at least k − 5 colors, then there exist two colors
a, b ∈ {3, 4, 5, · · · , k − 1}, such that
{3, 4, 5, · · · , k − 1} \ {a, b} ⊆ C(u1) ∩ C(u2) ∩ · · · ∩

C(u7) ∩ {3, 4, 5, · · · , k − 1}.
Then {3, 4, · · · , k − 1} \ {a, b} ⊆ C(ui), i = 1, 2, · · · , 7.
So C(X) ⊆ {[k − 1] \ {a, b}, {b}, {a}, [k − 1]}. This is a
contradiction.

Case 3 u1, u2, · · · , u4 receive at least three different colors
under g. We may suppose that {1, 2, 3} ⊆ {g(ui)|i =
1, 2, · · · , 7}. Each C(vj) does not include color i when
|C(vj)| = 2, i = 1, 2, 3, and each C(vj) is not {1, 2, 3}. Let
C denote the set composed by the 8-, 7-, 6-, 5-, 4-subsets of
[k− 1], 3-subsets of [k− 1] which is not {1, 2, 3}, 2-subsets
of {4, 5, · · · , k − 1}. Then |C| =

∑8
i=3

(
k−1
i

)
+

(
k−4
2

)
− 1.

Thus
n ≥

∑8
i=2

(
k−1
i

)
−2k−2 >

∑8
i=3

(
k−1
i

)
+
(
k−4
2

)
−1 = |C|.

This is a contradiction to C(Y ) ⊆ C.
Hence K4,n does not have a (k − 1)-VDET coloring.
Secondly, we will give a k−VDET coloring of K4,n.
When k = 11, let the subgraph of K7,1942 induced

by X ∪ {v1, v2, · · · , v977} be colored using the 11-VDET
coloring h977 given in Section 2. Let v978 and its in-
cident edges u1v978, u2v978, · · · , u7v978 receive col-
ors 5; 6, 10, 2, 7, 8, 9, 1, respectively. Let v979 and its in-
cident edges u1v979, u2v979, · · · , u7v979 receive colors
4; 2, 9, 10, 7, 8, 1, 3, respectively. Let the vertices v980, v981,
· · · , v1942 be corresponded to the following subsets respec-
tively: the 8-subsets of [11] which contains 11, the 7-subsets
of [11] which contains 11, the 6-subsets of [11] which
contains 11, the 5-subsets of [11] which contains 11, the
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4-subsets of [11] which contains 11, the 3-subsets of [11]
which contains 11, and {5, 11}, {6, 11}, {7, 11}, {8, 11},
{9, 11}, {10, 11}. And then color vertex vj (980 ≤ j ≤
1942) and its incident edges according to the manner listed
in Table 2 where let k = 11. In such a way we have obtained
an 11-VDET coloring h1942 of K7,1942. The restriction of 11-
VDET coloring h1942 of K7,1942 on its subgraph induced by
{u1, u2, · · · , u7, v1, v2, · · · , vi} is obviously an 11-VDET
coloring hi when 978 ≤ i ≤ 1941.

For k = 12, 13, 14, · · · , we will execute the following
algorithm recursively and then give a k−VDET coloring of
K4,n when k ≥ 12.

Let s =
∑8

i=2

(
k−1
i

)
− 2k − 3, t =

∑8
i=2

(
k
i

)
− 2k −

5. Note that s and t depend on k. Assume that (k − 1)-
VDET coloring hs of K4,s has been constructed according
to the method given in this proof. We arrange all 2-subsets,
3-subsets, 4-subsets, 5-subsets, 6-subsets, 7-subsets and 8-
subsets of {1, 2, · · · , k} which contain k, except for {1, k}
and {2, k}, into a sequence Sk. Then Sk has

∑7
i=1

(
k−1
i

)
−

2 terms. Let the terms in Sk be corresponded to vertices
vs+1, vs+2, · · · , vt. Then the subgraph of K7,s induced by
X ∪ {v1, v2, · · · , vs} be colored using the (k − 1)-VDET
coloring hs given in this proof, and then color each vertex
vj (s+1 ≤ j ≤ t) and its incident edges in the manner listed
in Table 5 of reference [9]. The k-VDET coloring ht of K4,t

has been constructed. The restriction of k-VDET coloring
ht of K7,t on its subgraph induced by {u1, u2, · · · , u7, v1,
v2, · · · , vj} is obviously an k-VDET coloring hj , where s+
1 ≤ j < t.

The proof of Theorem 1 is completed.

IV. CONCLUSION

By simple computation, we may give the value of η(K7,n)
(see Table II)

From the results in [8], [9] and Theorem 1, we know that
1. If n = 7, 8, or 20 ≤ n ≤ 35, or 51 ≤ n ≤ 95, or

114 ≤ n ≤ 219, or 241 ≤ n ≤ 472, or 496 ≤ n ≤ 975
or

∑8
i=2

(
l−1
i

)
+ 1 ≤ n ≤

∑8
i=2

(
l
i

)
− 2l − 5, l ≥ 11, then

χe
vt(K7,n) = η(K7,n).
2. If 9 ≤ n ≤ 19, or 36 ≤ n ≤ 50, or 96 ≤ n ≤ 113,

or 220 ≤ n ≤ 240, or 473 ≤ n ≤ 495, or n = 976, 977 or
978 ≤ n ≤ 1002, or

∑8
i=2

(
l
i

)
− 2l− 4 ≤ n ≤

∑8
i=2

(
l
i

)
, l ≥

11, then χe
vt(K4,n) = η(K4,n) + 1.

Thus Conjecture 1 is right for K7,n (n ≥ 7).
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TABLE II
THE VALUE OF η(K7,n)

n η(K7,n)

[7, 19] 5

[20, 50] 6

[51, 113] 7

[114, 240] 8

[241, 495] 9

[496, 1002] 10

[
∑8

i=2

(l−1
i

)
+ 1,

∑8
i=2

(l
i

)
], l ≥ 11 l
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