Mixed (p,q)-Affine Surface Areas and Related Inequalities

Xuefu Zhang and Shanhe Wu

Abstract—In this paper, the mixed (p,q)-affine surface area is introduced. Its related inequalities, such as affine isoperimetric inequality, Blaschke-Santal δ inequality, monotonous inequality, cyclic inequality, and Brunn-Minkowski inequality, are established.

Index Terms—mixed (p,q)-affine surface area, L_p affine surface area, affine surface area, Lutwak's inequalities.

I. INTRODUCTION

T HROUGHOUT let \mathbb{R}^n denote *n*-dimensional Euclidean space. A convex body is a compact convex subset of \mathbb{R}^n with nonempty interior. We denote by \mathcal{K}^n the set of convex bodies, by \mathcal{K}_c^n the set of convex bodies whose centroids lie at the origin, and by \mathcal{K}_o^n the set of convex bodies containing the origin in their interiors. Denote by V(K) the *n*-dimensional volume of a body K. For the standard unit ball B in \mathbb{R}^n , we write $\omega_n = V(B)$ to denote its volume. The unit sphere in \mathbb{R}^n will be denoted by S^{n-1} .

For all $x \in \mathbf{R}^n \setminus \{0\}$, the support function of $K \in \mathcal{K}^n$ is defined by

$$h(K, x) = h_K(x) = \max\left\{x \cdot y : y \in K\right\},\$$

where $x \cdot y$ denotes the standard inner product of x and y.

The radial function, $\rho_K = \rho(K, \cdot) : \mathbf{R}^n \setminus \{0\} \to [0, \infty)$, of a compact star-shaped (about the origin) set $K \subset \mathbf{R}^n$ is defined by

$$\rho(K, x) = \max\{\lambda \ge 0 : \lambda x \in K\}.$$

If ρ_K is positive and continuous, then K is called a star body (about the origin). The set of all star bodies about the origin in \mathbf{R}^n is denoted by \mathcal{S}^n_o . Two star bodies K and L are dilates (of one another) if $\rho_K(u)/\rho_L(u)$ is independent of $u \in S^{n-1}$.

If E is an arbitrary nonempty subset of \mathbf{R}^n , then the set

$$E^* = \{ x \in \mathbf{R}^n : x \cdot y \le 1 \text{ for all } y \in E \}$$

is called the polar set of E. The polar set is always closed and convex and contains the origin.

The mixed volume $V_1(K, L)$ of convex bodies K, L is defined by

$$V_1(K,L) := \frac{1}{n} \lim_{\varepsilon \to 0^+} \frac{V(K + \varepsilon L) - V(K)}{\varepsilon}$$
$$= \frac{1}{n} \int_{S^{n-1}} h_L(u) dS(K,u),$$

Manuscript received May 30, 2019; revised October 27, 2019. This work was supported by the Scientific Planning of Education of Gansu (GS[2017]GHBZ051) and Introduction and Use of Open Online Courses of Gansu (2016-47).

Xuefu Zhang is corresponding author with the School of Mathematics and Statistics, Hexi University, Zhangye, 734000, China. E-mail: zhangxuefu001@126.com.

Shanhe Wu is with the Department of Mathematics, Longyan University, Longyan, 364012, China. E-mail: shanhewu@163.com.

where $S(K, \cdot)$ is the surface area measure of K.

The classical affine surface area, first introduced by Blaschke [3], has received a lot of attention in the last forty years (see e.g. [15], [16], [17], [18], [21], [24], [25], [26], [27], [35], [37], [41], [31], [32], [6]). In particular, based on the mixed volume Leichtweiß [16] defined the affine surface area, $\Omega(K)$, of a convex body $K \in \mathcal{K}^n$ by

$$n^{-\frac{1}{n}}\Omega(K)^{\frac{n+1}{n}} = \inf\{nV_1(K,Q^*)V(Q)^{\frac{1}{n}} : Q \in \mathcal{S}_o^n\}.$$
 (1)

For $p \ge 1$, the L_p mixed volume $V_p(K, L)$ of $K, L \in \mathcal{K}_o^n$ was defined, in [28], by

$$V_p(K,L) := \frac{p}{n} \lim_{\varepsilon \to 0^+} \frac{V(K +_p \varepsilon \cdot L) - V(K)}{\varepsilon},$$

where $K +_p \varepsilon \cdot L$ is the L_p Minkowski-Firey combination, see [8], defined by

$$h(K +_p \varepsilon \cdot L, \cdot)^p = h(K, \cdot)^p + \varepsilon h(L, \cdot)^p.$$

It was shown in [28] that the L_p mixed volume has the following integral representation:

$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h_L^p(u) dS_p(K,u),$$
 (2)

where $S_p(K, \cdot)$ is the L_p surface area measure of K.

In 1996, Lutwak [29] extended the classical affine surface area to L_p affine surface area according to the L_p mixed volume. For $p \ge 1$ and $K \in \mathcal{K}_o^n$, the L_p affine surface area, denoted by $\Omega_p(K)$, is defined by

$$n^{-\frac{p}{n}}\Omega_p(K)^{\frac{n+p}{n}} = \inf\{nV_p(K,Q^*)V(Q)^{\frac{p}{n}} : Q \in \mathcal{S}_o^n\}.$$
 (3)

When p = 1, $\Omega_1(K)$ is just the classical affine surface area $\Omega(K)$.

From the definition of the L_p affine surface area, Lutwak [29] established the following well-known inequalities.

Theorem A (affine isoperimetric inequality). If $K \in \mathcal{K}_c^n$ and $p \ge 1$, then

$$\Omega_p(K)^{n+p} \le n^{n+p} \omega_n^{2p} V(K)^{n-p}, \tag{4}$$

with equality if and only if K is an ellipsoid.

Theorem B (Blaschke-Santaló inequality). If $K \in \mathcal{K}_c^n$ and $p \ge 1$, then

$$\Omega_p(K)\Omega_p(K^*) \le (n\omega_n)^2,\tag{5}$$

with equality if and only if K is an ellipsoid.

Theorem C (monotonous inequality). If $K \in \mathcal{F}_o^n$ and $1 \le p \le q$, then

$$\left(\frac{\Omega_p(K)^{n+p}}{n^{n+p}V(K)^{n-p}}\right)^{\frac{1}{p}} \le \left(\frac{\Omega_q(K)^{n+q}}{n^{n+q}V(K)^{n-q}}\right)^{\frac{1}{q}},\tag{6}$$

with equality if and only if $K \in \{K \in \mathcal{F}_o^n : K^* \text{ and } \Lambda K \text{ are dilates}\}.$

Here, \mathcal{F}_o^n denotes the set of all bodies in \mathcal{K}_o^n that has a positive continuous curvature function and ΛK denotes the curvature image of K.

Theorem D (cyclic inequality). If $K \in \mathcal{K}_o^n$ and $1 \le p < q < r$, then

$$\Omega_q(K)^{(n+q)(r-p)} \le \Omega_p(K)^{(n+p)(r-q)} \Omega_r(K)^{(n+r)(q-p)}.$$
 (7)

The L_p affine surface area is closely related to the theory of valuations (see e.g. [1], [2], [14], [19], [21], [22], [48]) and the theory of information (see e.g. [13], [34], [43]). Recently, it was further extended to all $p \in \mathbf{R}$ via geometric interpretations (see [33], [38], [39], [42]), to the mixed L_p affine surface area (see [40], [44]), to the general affine surface area (see [22], [20]), to the general mixed affine surface area (see [45]) as well as to the Orlicz affine surface area (see [47], [46]). Important applications of the L_p affine surface area can be found in [11], [23].

Suppose $p, q \in \mathbf{R}$, $K \in \mathcal{K}_o^n$ and $L \in \mathcal{S}_o^n$. Lutwak, Yang and Zhang [30] defined the L_p dual curvature measures, $\widetilde{C}_{p,q}(K, L, \cdot)$, by

$$\int_{S^{n-1}} g(v) d\widetilde{C}_{p,q}(K,L,v)$$

= $\frac{1}{n} \int_{S^{n-1}} g(\alpha_K(u)) h_K(\alpha_K(u))^{-p} \rho_K(u)^q \rho_L(u)^{n-q} du$

for each continuous $g: S^{n-1} \to \mathbf{R}$, where α_K is the radial Gauss map (see Section 3 in [30]). Since they introduced the new concept of the L_p dual curvature measures, it quickly became the center of attention, see e.g., [7], [4], [5], [10], [12].

Using the L_p dual curvature measures, the (p,q)-mixed volume was given by Lutwak, Yang and Zhang in [30]. Suppose $p,q \in \mathbf{R}$. If $K,Q \in \mathcal{K}_o^n$, and $L \in \mathcal{S}_o^n$, then the (p,q)-mixed volume $\widetilde{V}_{p,q}(K,Q,L)$ is defined by

$$\widetilde{V}_{p,q}(K,Q,L) = \int_{S^{n-1}} h_Q^p(v) d\widetilde{C}_{p,q}(K,L,v).$$
(8)

The (p, q)-mixed volume can also be written as the following formula:

$$\tilde{V}_{p,q}(K,Q,L) = \frac{1}{n} \int_{S^{n-1}} \left(\frac{h_Q}{h_K}\right)^p \left(\alpha_K(u)\right) \left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) du. \quad (9)$$

In [30], Lutwak, Yang and Zhang extended formula (2) from $p \ge 1$ to all $p \in \mathbf{R}$. For $p \in \mathbf{R}$, the L_p mixed volume, $V_p(K, Q)$, of $K, Q \in \mathcal{K}_o^n$ is defined by

$$V_p(K,Q) = \frac{1}{n} \int_{S^{n-1}} h_Q^p(v) dS_p(K,v)$$

for $v \in S^{n-1}$. Moreover, for $q \in \mathbf{R}$ and $K, Q \in \mathcal{S}_o^n$ they also, in [30], defined the q-th dual mixed volume, $\tilde{V}_q(K, Q)$, by

$$\widetilde{V}_q(K,Q) = \frac{1}{n} \int_{S^{n-1}} \rho_K^q(u) \rho_Q^{n-q}(u) du \tag{10}$$

for $u \in S^{n-1}$, where the integration is with respect to spherical Lebesgue measure.

Suppose $p, q \in \mathbf{R}$. In [30], the L_p mixed volume, the q-th dual mixed volume and the volume of a convex body were shown to be special cases of the (p, q)-mixed volumes:

$$\widetilde{V}_{p,q}(K,Q,K) = V_p(K,Q); \tag{11}$$

$$\widetilde{V}_{p,n}(K,Q,L) = V_p(K,Q);$$
(12)

$$\widetilde{V}_{p,q}(K,K,L) = \widetilde{V}_q(K,L);$$
(13)

$$\widetilde{V}_{p,q}(K,K,K) = V(K).$$
(14)

Motivated by the work of Lutwak, Yang and Zhang [30], in this paper we introduce the mixed (p,q)-affine surface area based on the (p,q)-mixed volume. The detailed descriptions are provided below.

Definition 1.1. For $p, q \in \mathbf{R}$, $K \in \mathcal{K}_o^n$ and $L \in \mathcal{S}_o^n$, the mixed (p,q)-affine surface area, $\widetilde{\Omega}_{p,q}(K,L)$, is defined by

$$n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L)^{\frac{n+p}{n}}$$

= $\inf\{n\widetilde{V}_{p,q}(K,Q^*,L)V(Q)^{\frac{p}{n}}: Q \in \mathcal{S}_o^n\}.$ (15)

If we take L = K or q = n in (15), then from (11) or (12) we see that the definition is just Lutwak's L_p affine surface area for p > 1 and Leichtweiß's affine surface area for p = 1.

For the mixed (p, q)-affine surface area, our first results are to establish some analogous inequalities of Theorems A-D. Then we prove a Brunn-Minkowski inequality.

Theorem 1.1. Let $p, q \in \mathbf{R}$ be such that p > 0 and $0 < q \le n$. If $K \in \mathcal{K}_c^n$ and $L \in \mathcal{S}_o^n$, then

$$\widetilde{\Omega}_{p,q}(K,L)^{n+p} \le n^{n+p} \omega_n^{2p} V(K)^{q-p} V(L)^{n-q}, \qquad (16)$$

with equality if and only if K and L are dilates, and K is an ellipsoid.

If L = K or q = n, then for $p \ge 1$, inequality (16) becomes inequality (4).

Theorem 1.2. Let $p, q \in \mathbf{R}$ be such that $0 . If <math>K, L \in \mathcal{K}_c^n$, then

$$\widetilde{\Omega}_{p,q}(K,L)\widetilde{\Omega}_{p,q}(K^*,L^*) \le (n\omega_n)^2,$$
(17)

with equality if and only if K and L are dilates, and an ellipsoid, respectively.

If L = K or q = n, then for $p \ge 1$, inequality (17) becomes inequality (5).

Theorem 1.3. Let $q \in \mathbf{R}$. If $K \in \mathcal{K}_o^n$ and $L \in \mathcal{S}_o^n$, then for 0 < r < s,

$$\left(\frac{\widetilde{\Omega}_{r,q}(K,L)^{n+r}}{n^{n+r}\widetilde{V}_q(K,L)^{n-r}}\right)^{\frac{1}{r}} \le \left(\frac{\widetilde{\Omega}_{s,q}(K,L)^{n+s}}{n^{n+s}\widetilde{V}_q(K,L)^{n-s}}\right)^{\frac{1}{s}}; \quad (18)$$

for 0 < s < r, the reverse inequality holds. In every inequality, equality holds if and only if K and L are dilates. If L = K or q = n, then for $1 \le r < s$, inequality (18) becomes inequality (6).

Theorem 1.4. Let $q \in \mathbf{R}$. If $K \in \mathcal{K}_o^n$ and $L \in \mathcal{S}_o^n$, then for 0 < r < s < t,

$$\widetilde{\Omega}_{s,q}(K,L)^{(n+s)(t-r)} \leq \widetilde{\Omega}_{r,q}(K,L)^{(n+r)(t-s)}\widetilde{\Omega}_{t,q}(K,L)^{(n+t)(s-r)},$$
(19)

with equality if and only if K and L are dilates.

If L = K or q = n, then for $1 \le r < s < t$, inequality (19) becomes inequality (7).

Next, we are to establish the Brunn-Minkowski inequality for the mixed (p, q)-affine surface area.

Theorem 1.5. Suppose $p, q \in \mathbf{R}$ are such that $0 < \frac{n-q}{q} < 1$ and $q \neq n$, and let $\lambda, \mu \in \mathbf{R}$. If $K \in \mathcal{K}_o^n$ and $L_1, L_2 \in \mathcal{S}_o^n$, then

$$\widetilde{\Omega}_{p,q}(K,\lambda\cdot L_1\widetilde{+}_q\mu\cdot L_2)^{\frac{q(n+p)}{n(n-q)}} \geq \lambda \widetilde{\Omega}_{p,q}(K,L_1)^{\frac{q(n+p)}{n(n-q)}} + \mu \widetilde{\Omega}_{p,q}(K,L_2)^{\frac{q(n+p)}{n(n-q)}}, (20)$$

with equality if and only if L_1 and L_2 are dilates.

Here, $\lambda \cdot L_1 +_q \mu \cdot L_2$ is the radial q-combination, see [30], defined by

$$\rho(\lambda \cdot L_1 \tilde{+}_q \mu \cdot L_2, \cdot)^q = \lambda \rho(L_1, \cdot)^q + \mu \rho(L_2, \cdot)^q, \quad (21)$$

for $q \neq 0$.

II. PRELIMINARIES

In the following we collect some basic facts about convex bodies. Good references are the books of Gardner [9] and Schneider [36].

The support and radial functions of a convex body $K \in \mathcal{K}_o^n$ and its polar set are related by

$$\rho_K = 1/h_{K^*} \text{ and } h_K = 1/\rho_{K^*}.$$
(22)

From the definition of polar set, it is easily verified that for all $K \in \mathcal{K}_o^n$,

$$K^{**} = K. \tag{23}$$

The well-known Blaschke-Santaló inequality states that if $K \in \mathcal{K}^n_c$, then

$$V(K)V(K^*) \le \omega_n^2, \tag{24}$$

with equality if and only if K is an ellipsoid.

The polar coordinate formula for the volume of a compact set K is

$$V(K) = \frac{1}{n} \int_{S^{n-1}} \rho_K^n(u) du.$$
 (25)

From formula (10) and the Hölder inequality, it easily follows that if $K, L \in S_o^n$, then for $0 < q \le n$,

$$\widetilde{V}_q(K,L) \le V(K)^{\frac{q}{n}} V(L)^{\frac{n-q}{n}},$$
(26)

with equality if and only if K and L are dilates.

III. PROOFS OF THEOREMS 1.1-1.5

In this section, we will give the proofs of Theorems 1.1-1.5.

Proof of Theorem 1.1. It follows from (15) that for all $Q \in S_o^n$,

$$n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L)^{\frac{n+p}{n}} \le n\widetilde{V}_{p,q}(K,Q^*,L)V(Q)^{\frac{p}{n}}.$$
 (27)

For $K \in \mathcal{K}^n_c$, we let $Q = K^*$ in (27). Then from (23) and (13) we see

$$n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L)^{\frac{n+p}{n}} \le n\widetilde{V}_q(K,L)V(K^*)^{\frac{p}{n}}.$$

Together with inequality (26), we get that for $0 < q \le n$,

$$n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L)^{\frac{n+p}{n}} \leq nV(K)^{\frac{q}{n}}V(L)^{\frac{n-q}{n}}V(K^*)^{\frac{p}{n}},$$
 i.e.,

$$\widetilde{\Omega}_{p,q}(K,L)^{n+p} \le n^{n+p} V(K)^q V(L)^{n-q} V(K^*)^p.$$
 (28)

From (24), we obtain that for p > 0

$$V(K^*)^p \le \omega_n^{2p} V(K)^{-p}.$$
 (29)

Combining (28) and (29), it follows that

$$\widetilde{\Omega}_{p,q}(K,L)^{n+p} \le n^{n+p} \omega_n^{2p} V(K)^{q-p} V(L)^{n-q}.$$

From the equality conditions of inequalities (26) and (24), we see that equality holds in inequality (16) if and only if K and L are dilates, and K is an ellipsoid.

Proof of Theorem 1.2. For p > 0 and $0 < q \le n$, we know that for $K, L \in \mathcal{K}_c^n$,

$$\widetilde{\Omega}_{p,q}(K,L)^{n+p} \le n^{n+p} \omega_n^{2p} V(K)^{q-p} V(L)^{n-q}$$
(30)

and

$$\widetilde{\Omega}_{p,q}(K^*, L^*)^{n+p} \le n^{n+p} \omega_n^{2p} V(K^*)^{q-p} V(L^*)^{n-q}.$$
 (31)

Together with (30) and (31), it follows from (24) that for q > p,

$$\widetilde{\Omega}_{p,q}(K,L)\widetilde{\Omega}_{p,q}(K^*,L^*) \le (n\omega_n)^2.$$

From the equality condition of inequality (16), we know that equality holds in inequality (17) if and only if K and L are dilates, and an ellipsoid, respectively.

Proof of Theorem 1.3. By (9), the Hölder inequality, (9) again, and definition (10), it follows that for $\frac{s}{r} > 1$,

$$\begin{split} & V_{s,q}(K,Q^*,L) \\ = & \frac{1}{n} \int_{S^{n-1}} \left(\frac{h_{Q^*}}{h_K}\right)^s \left(\alpha_K(u)\right) \left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) du \\ = & \frac{1}{n} \int_{S^{n-1}} \left[\left(\frac{h_{Q^*}}{h_K}\right)^r \left(\alpha_K(u)\right) \left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) \right]^{\frac{s}{r}} \\ & \times \left[\left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) \right]^{1-\frac{s}{r}} du \\ \ge & \left[\frac{1}{n} \int_{S^{n-1}} \left(\frac{h_{Q^*}}{h_K}\right)^r \left(\alpha_K(u)\right) \left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) du \right]^{\frac{s}{r}} \\ & \times \left[\frac{1}{n} \int_{S^{n-1}} \left(\frac{\rho_K}{\rho_L}\right)^q (u) \rho_L^n(u) du \right]^{1-\frac{s}{r}} \\ = & \widetilde{V}_{r,q}(K,Q^*,L)^{\frac{s}{r}} \widetilde{V}_q(K,L)^{1-\frac{s}{r}}. \end{split}$$

For s > 0, this has

$$\left(\frac{\widetilde{V}_{s,q}(K,Q^*,L)}{\widetilde{V}_q(K,L)}\right)^{\frac{1}{s}} \ge \left(\frac{\widetilde{V}_{r,q}(K,Q^*,L)}{\widetilde{V}_q(K,L)}\right)^{\frac{1}{r}}.$$
 (32)

It follows from the equality condition of the Hölder inequality that equality in (32) holds if and only if K, Q^*, L are dilates.

From definition (15) and inequality (32) we see that for r > 0,

$$\left(\frac{\widetilde{\Omega}_{r,q}(K,L)^{n+r}}{n^{n+r}\widetilde{V}_q(K,L)^{n-r}}\right)^{\frac{1}{r}}$$

$$= \inf\left\{\left(\frac{\widetilde{V}_{r,q}(K,Q^*,L)}{\widetilde{V}_q(K,L)}\right)^{\frac{n}{r}}\widetilde{V}_q(K,L)V(Q): Q \in \mathcal{S}_o^n\right\}$$

$$\leq \inf\left\{\left(\frac{\widetilde{V}_{s,q}(K,Q^*,L)}{\widetilde{V}_q(K,L)}\right)^{\frac{n}{s}}\widetilde{V}_q(K,L)V(Q): Q \in \mathcal{K}_o^n\right\}$$

$$= \left(\frac{\widetilde{\Omega}_{s,q}(K,L)^{n+s}}{n^{n+s}\widetilde{V}_q(K,L)^{n-s}}\right)^{\frac{1}{s}}.$$

Volume 50, Issue 1: March 2020

This is, for 0 < r < s

$$\left(\frac{\widetilde{\Omega}_{r,q}(K,L)^{n+r}}{n^{n+r}\widetilde{V}_q(K,L)^{n-r}}\right)^{\frac{1}{r}} \le \left(\frac{\widetilde{\Omega}_{s,q}(K,L)^{n+s}}{n^{n+s}\widetilde{V}_q(K,L)^{n-s}}\right)^{\frac{1}{s}}.$$

The equality condition of inequality (32) implies that the equality of the inequality holds if and only if K, L are dilates. Similarly, for 0 < s < r the reverse inequality can be

obtained. **Proof of Theorem 1.4.** For any $Q_1, Q_2 \in S_a^n$, we define

Proof of Theorem 1.4. For any $Q_1, Q_2 \in \mathcal{S}_o^n$, we define $Q_3 \in \mathcal{S}_o^n$ by

$$\rho_{Q_3}^{s(t-r)} = \rho_{Q_1}^{r(t-s)} \rho_{Q_2}^{t(s-r)}.$$
(33)

This has

$$\rho_{Q_3}^n = \left(\rho_{Q_1}^n\right)^{\frac{r(t-s)}{s(t-r)}} \left(\rho_{Q_2}^n\right)^{\frac{t(s-r)}{s(t-r)}}.$$
(34)

It follows from (33) and (22) that

$$h_{Q_3^*}^{s(t-r)} = h_{Q_1^*}^{r(t-s)} h_{Q_2^*}^{t(s-r)}.$$
(35)

From (25), (34), the Hölder inequality, and (25) again, we have that for 0 < r < s < t or 0 < t < s < r or t < s < r < 0 or r < s < t < 0,

$$V(Q_3) = \frac{1}{n} \int_{S^{n-1}} \rho_{Q_3}^n(u) du$$

= $\frac{1}{n} \int_{S^{n-1}} \left(\rho_{Q_1}^n(u) \right)^{\frac{r(t-s)}{s(t-r)}} \left(\rho_{Q_2}^n(u) \right)^{\frac{t(s-r)}{s(t-r)}} du$
$$\leq \left(\frac{1}{n} \int_{S^{n-1}} \rho_{Q_1}^n(u) du \right)^{\frac{r(t-s)}{s(t-r)}}$$

$$\times \left(\frac{1}{n} \int_{S^{n-1}} \rho_{Q_2}^n(u) du \right)^{\frac{t(s-r)}{s(t-r)}}$$

= $V(Q_1)^{\frac{r(t-s)}{s(t-r)}} V(Q_2)^{\frac{t(s-r)}{s(t-r)}}.$

For s(t-r) > 0, this implies

$$V(Q_3)^{s(t-r)} \le V(Q_1)^{r(t-s)} V(Q_2)^{t(s-r)}.$$
(36)

In addition, by (9), the Hölder inequality and (9) again, we get that for r < s < t or t < s < r,

$$\begin{split} & V_{s,q}(K,Q_3^*,L) \\ = & \frac{1}{n} \int_{S^{n-1}} \left(\frac{h_{Q_3^*}}{h_K} \right)^s \left(\alpha_K(u) \right) \left(\frac{\rho_K}{\rho_L} \right)^q (u) \rho_L^n(u) du \\ = & \frac{1}{n} \int_{S^{n-1}} \left[\left(\frac{h_{Q_1^*}}{h_K} \right)^r \left(\alpha_K(u) \right) \left(\frac{\rho_K}{\rho_L} \right)^q (u) \rho_L^n(u) \right]^{\frac{t-s}{t-r}} \\ & \times \left[\left(\frac{h_{Q_2^*}}{h_K} \right)^t \left(\alpha_K(u) \right) \left(\frac{\rho_K}{\rho_L} \right)^q (u) \rho_L^n(u) \right]^{\frac{s-r}{t-r}} du \\ \leq & \left[\frac{1}{n} \int_{S^{n-1}} \left(\frac{h_{Q_1^*}}{h_K} \right)^r \left(\alpha_K(u) \right) \left(\frac{\rho_K}{\rho_L} \right)^q (u) \\ & \times \rho_L^n(u) du \right]^{\frac{t-s}{t-r}} \\ & \times \left[\frac{1}{n} \int_{S^{n-1}} \left(\frac{h_{Q_2^*}}{h_K} \right)^t \left(\alpha_K(u) \right) \left(\frac{\rho_K}{\rho_L} \right)^q (u) \\ & \times \rho_L^n(u) du \right]^{\frac{s-r}{t-r}} \\ = & \widetilde{V}_{r,q}(K,Q_1^*,L)^{\frac{t-s}{t-r}} \widetilde{V}_{t,q}(K,Q_2^*,L)^{\frac{s-r}{t-r}}. \end{split}$$

This implies that for t > r,

$$\widetilde{V}_{s,q}(K,Q_3^*,L)^{t-r} \leq \widetilde{V}_{r,q}(K,Q_1^*,L)^{t-s}\widetilde{V}_{t,q}(K,Q_2^*,L)^{s-r}.$$
 (37)

From (36) and (37), it follows that for 0 < r < s < t,

$$\left[\widetilde{V}_{s,q}(K,Q_{3}^{*},L)V(Q_{3})^{\frac{s}{n}} \right]^{t-r}$$

$$\leq \left[\widetilde{V}_{r,q}(K,Q_{1}^{*},L)V(Q_{1})^{\frac{r}{n}} \right]^{t-s}$$

$$\times \left[\widetilde{V}_{t,q}(K,Q_{2}^{*},L)V(Q_{2})^{\frac{t}{n}} \right]^{s-r}.$$
(38)

From (15) and (38), we have that for 0 < r < s < t,

$$\left[n^{-\frac{s}{n}} \widetilde{\Omega}_{s,q}(K,L)^{\frac{n+s}{n}} \right]^{t-r}$$

$$= \inf \left\{ \left[n \widetilde{V}_{s,q}(K,Q_3^*,L) V(Q_3)^{\frac{s}{n}} \right]^{t-r} : Q_3 \in \mathcal{S}_o^n \right\}$$

$$\leq \inf \left\{ \left[n \widetilde{V}_{r,q}(K,Q_1^*,L) V(Q_1)^{\frac{r}{n}} \right]^{t-s} : Q_1 \in \mathcal{S}_o^n \right\}$$

$$\times \inf \left\{ \left[n \widetilde{V}_{t,q}(K,Q_2^*,L) V(Q_2)^{\frac{t}{n}} \right]^{s-r} : Q_2 \in \mathcal{S}_o^n \right\}$$

$$= \left[n^{-\frac{r}{n}} \widetilde{\Omega}_{r,q}(K,L)^{\frac{n+r}{n}} \right]^{t-s}$$

$$\times \left[n^{-\frac{t}{n}} \widetilde{\Omega}_{t,q}(K,L)^{\frac{n+t}{n}} \right]^{s-r} ,$$

i.e.,

$$\widetilde{\Omega}_{s,q}(K,L)^{(n+s)(t-r)} \leq \widetilde{\Omega}_{r,q}(K,L)^{(n+r)(t-s)}\widetilde{\Omega}_{t,q}(K,L)^{(n+t)(s-r)}.$$

The equality condition of (19) directly follows from the equality condition of the Hölder inequality.

Proof of Theorem 1.5. By (9), (21), and the Minkowski's integral inequality, we get that for $0 < \frac{n-q}{q} < 1$, $q \neq n$ and any $Q \in S_o^n$,

$$\begin{split} \widetilde{V}_{p,q}(K,Q^*,\lambda\cdot L_1\tilde{+}_q\mu\cdot L_2)^{\frac{q}{n-q}} \\ &= \left[\frac{1}{n}\int_{S^{n-1}} \left(\frac{h_{Q^*}}{h_K}\right)^p (\alpha_K(u))\rho_K^q(u) \right. \\ &\times \rho_{\lambda\cdot L_1\tilde{+}_q\mu\cdot L_2}^{n-q}(u)du\right]^{\frac{q}{n-q}} \\ &= \left[\frac{1}{n}\int_{S^{n-1}} \left[\left(\frac{h_{Q^*}}{h_K}\right)^{\frac{pq}{n-q}} (\alpha_K(u))\rho_K^{\frac{q^2}{n-q}}(u) \right. \\ &\times \rho_{\lambda\cdot L_1\tilde{+}_q\mu\cdot L_2}^q(u)\right]^{\frac{n-q}{q}}du\right]^{\frac{q}{n-q}} \\ &= \left[\frac{1}{n}\int_{S^{n-1}} \left[\left(\frac{h_{Q^*}}{h_K}\right)^{\frac{pq}{n-q}} (\alpha_K(u))\rho_K^{\frac{q^2}{n-q}}(u) \right. \\ &\times \left(\lambda\rho_{L_1}^q(u) + \mu\rho_{L_2}^q(u)\right)\right]^{\frac{n-q}{q}}du\right]^{\frac{q}{n-q}} \\ &\geq \lambda \widetilde{V}_{p,q}(K,Q^*,L_1)^{\frac{q}{n-q}} + \mu \widetilde{V}_{p,q}(K,Q^*,L_2)^{\frac{q}{n-q}}, \end{split}$$

i.e.,

$$\widetilde{V}_{p,q}(K,Q^*,\lambda \cdot L_1 + _q \mu \cdot L_2)^{\frac{q}{n-q}} \\
\geq \lambda \widetilde{V}_{p,q}(K,Q^*,L_1)^{\frac{q}{n-q}} + \mu \widetilde{V}_{p,q}(K,Q^*,L_2)^{\frac{q}{n-q}}.$$
(39)

From the equality condition of the Minkowski's integral inequality, we see that equality holds in (39) if and only if L_1 and L_2 are dilates.

Volume 50, Issue 1: March 2020

Moreover, based on (15) and (39) it follows that

$$\begin{split} & \left[n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,\lambda\cdot L_{1}\widetilde{+}_{q}\mu\cdot L_{2})^{\frac{n+p}{n}}\right]^{\frac{q}{n-q}} \\ &= \inf\left\{\left[n\widetilde{V}_{p,q}(K,Q^{*},\lambda\cdot L_{1}\widetilde{+}_{q}\mu\cdot L_{2})\right]^{\frac{q}{n-q}} \\ & \times \left[V(Q)^{\frac{p}{n}}\right]^{\frac{q}{n-q}}:Q\in\mathcal{S}_{o}^{n}\right\} \\ &\geq \lambda\inf\left\{\left[n\widetilde{V}_{p,q}(K,Q^{*},L_{1})\right]^{\frac{q}{n-q}}\left[V(Q)^{\frac{p}{n}}\right]^{\frac{q}{n-q}}: \\ & Q\in\mathcal{S}_{o}^{n}\right\} \\ & +\mu\inf\left\{\left[n\widetilde{V}_{p,q}(K,Q^{*},L_{2})\right]^{\frac{q}{n-q}}\left[V(Q)^{\frac{p}{n}}\right]^{\frac{q}{n-q}}: \\ & Q\in\mathcal{S}_{o}^{n}\right\} \\ &= \lambda\left[n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L_{1})^{\frac{n+p}{n}}\right]^{\frac{q}{n-q}} \\ & +\mu\left[n^{-\frac{p}{n}}\widetilde{\Omega}_{p,q}(K,L_{2})^{\frac{n+p}{n}}\right]^{\frac{q}{n-q}}, \end{split}$$

i.e.,

$$\widetilde{\Omega}_{p,q}(K,\lambda\cdot L_1\widetilde{+}_q\mu\cdot L_2)^{\frac{q(n+p)}{n(n-q)}} \geq \lambda\widetilde{\Omega}_{p,q}(K,L_1)^{\frac{q(n+p)}{n(n-q)}} + \mu\widetilde{\Omega}_{p,q}(K,L_2)^{\frac{q(n+p)}{n(n-q)}}.$$

The equality condition of the above inequality follows from the equality condition of inequality (39).

REFERENCES

- [1] S. Alesker, "Continuous rotation invariant valuations on convex sets," Annals of Mathematics, vol. 149, no. 3, pp. 977-1005, 1999.
- [2] S. Alesker, "Description of translation invariant valuations on convex sets with a solution of P. McMullen's conjecture," Geometric Functional Analysis, vol. 11, no. 2, pp. 244-272, 2001.
- [3] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923. [4] K. J. Böröczky and F. Fodor, "The L_p dual Minkowski problem for
- p > 1 and q > 0," Journal of Differential Equations, vol. 266, no. 12, pp. 7980-8033, 2019.
- [5] C. Chen, Y. Huang and Y. Zhao, "Smooth solutions to the L_p dual Minkowski problem," Mathematische Annalen, vol. 373, no. 3, pp. 953-976, 2019.
- Y. B. Feng, "Some inequalities for L_p -geominimal surface area," [6] IAENG International Journal of Applied Mathematics, vol. 47, no. 1, pp9-13, 2017
- [7] Y. B. Feng and B. He, "The (p, q)-mixed geominimal surface areas," Quaestiones Mathematicae, vol. 42, no. 8, pp. 1031-1043, 2019.
- [8] W. J. Firey, "p-Means of convex bodies," Mathematica Scandinavica, vol. 10, no. 1, pp. 17-24, 1962.
- [9] R. J. Gardner, Geometric Tomography, 2nd ed., Cambridge University Press, Cambridge, 2006.
- [10] R. J. Gardner, D. Hug, W. Weil, S. Xing and D. Ye, "General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I," Calculus of Variations and Partial Differential Equations, vol. 58, no. 1, pp. 1-35, 2019.
- [11] P. M. Gruber, "Aspects of approximation of convex bodies," in Handbook of Convex Geometry, vol. A, North Holland, 1993, pp. 321-345.
- [12] Y. Huang and Y. Zhao, "On the L_p dual Minkowski problem," Advances in Mathematics, vol. 332, no. 3, pp. 57-84, 2018.
- [13] J. Jenkinson and E. Werner, "Relative entropies for convex bodies," Transactions of the American Mathematical Society, vol. 366, no. 6, pp. 2889-2906, 2014.
- [14] D. Klain, "Invariant valuations on star shaped sets," Advances in Mathematics, vol. 125, no. 1, pp. 95-113, 1997.
- [15] K. Leichtweiß, "Zur Affinoberfläche konvexer Körper," Manuscripta Mathematica, vol. 56, no. 4, pp. 429-464, 1986.
- [16] K. Leichtweiß, "Über einige Eigenschaften der Affinoberfläche beliebiger Konvexer Körper," Results in Mathematics, vol. 13, no. 3-4, pp. 255-282, 1988.
- [17] K. Leichtweiß, "Bemerkungen zur Definition einer erweiterten Affinoberfläche von E. Lutwak," Manuscripta Mathematica, vol. 65, no. 2, pp. 181-197, 1989.

- [18] K. Leichtweiß, "On the history of the affine surface area for convex bodies," Results in Mathematics, vol. 20, no. 3, pp. 650-656, 1991.
- [19] C. Li and W. D. Wang, "On the Shephard type problems for general L_p-projection bodies," IAENG International Journal of Applied Mathematics, vol. 49, no. 1, pp122-126, 2019
- [20] M. Ludwig, "General affine surface areas," Advances in Mathematics, vol. 224, no. 6, pp. 2346-2360, 2010.
- [21] M. Ludwig and M. Reitzner, "A characterization of affine surface area," Advances in Mathematics, vol. 147, no. 1, pp. 138-172, 1999
- [22] M. Ludwig and M. Reitzner, "A classification of SL(n) invariant valuations," Annals of Mathematics, vol. 172, no. 2, pp. 1223-1271, 2010.
- [23] M. Ludwig, C. Schütt and E. Werner, "Approximation of the Euclidean ball by polytopes," Studia Mathematica, vol. 173, no. 1, pp. 1-18, 2006.
- [24] E. Lutwak, "On the Blaschke-Santaló inequality," Annals of the New York Academy of Sciences, vol. 440, no. 1, pp. 106-112, 1985. [25] E. Lutwak, "On some affine isoperimetric inequalities," Journal of
- Differential Geometry, vol. 56, no. 1, pp. 1-13, 1986.
- [26] E. Lutwak, "Mixed affine surface area," Journal of Mathematical Analysis and Applications, vol. 125, no. 2, pp. 351-360, 1987.
- [27] E. Lutwak, "Extended affine surface area," Advances in Mathematics, vol. 85, no. 1, pp. 39-68, 1991. [28] E. Lutwak, "The Brunn-Minkowski-Firey theory. I. Mixed volumes
- and the Minkowski problem," Journal of Differential Geometry, vol. 38, no. 1, pp. 131-150, 1993.
- [29] E. Lutwak, "The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas," Advances in Mathematics, vol. 118, no. 2, pp. 244-294, 1996.
- [30] E. Lutwak, D. Yang and G. Zhang, " L_p dual curvature measures," Advances in Mathematics, vol. 329, no. 3, pp. 85-132, 2018.
- [31] T. Y. Ma and Y. B. Feng, "Some inequalities for p-geominimal surface area and related results," *IAENG International Journal of Applied* Mathematics, vol. 46, no. 1, pp92-96, 2016
- [32] T. Y. Ma and W. D. Wang, "Some inequalities for generalized L_p mixed affine surface areas," IAENG International Journal of Applied Mathematics, vol. 45, no. 4, pp321-326, 2015 [33] M. Meyer and E. Werner, "On the *p*-affine surface area," Advances in
- Mathematics, vol. 152, no. 2, pp. 288-313, 2000.
- [34] G. Paouris and E. Werner, "Relative entropy of cone measures and Lp centroid bodies," Proceedings of the London Mathematical Society, vol. 104, no. 2, pp. 253-286, 2012.
- [35] C. M. Petty, "Geominimal surface area," Geometriae Dedicata, vol. 3, no. 1, pp. 77-97, 1974.
- [36] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 2nd ed., Cambridge University Press, Cambridge, 2014.
- [37] C. Schütt, "On the affine surface area," Proceedings of the American Mathematical Society, vol. 118, no. 4, pp. 1213-1218, 1973.
- [38] C. Schütt and E. Werner, "Random polytopes of points chosen from the boundary of a convex body," in Geometric Aspects of Functional Analysis Seminar Notes, in Lecture Notes in Mathematics, vol. 1807, Springer-Verlag, 2002, pp. 241-422.
- [39] C. Schütt and E. Werner, "Surface bodies and p-affine surface area," Advances in Mathematics, vol. 187, no. 1, pp. 98-145, 2004.
- [40] W. D. Wang and G. S. Leng, " L_p mixed affine surface area," Journal of Mathematical Analysis and Applications, vol. 335, no. 1, pp. 341-354, 2007.
- [41] E. Werner, "Illumination bodies and affine surface area," Studia Mathematica, vol. 110, no. 3, pp. 257-269, 1994. [42] E. Werner, "On L_p affine surface areas," Indiana University Mathe-
- matics Journal, vol. 56, no. 5, pp. 2305-2323, 2007.
- [43] E. Werner, "Renyi Divergence and L_p affine surface area for convex bodies," Advances in Mathematics, vol. 230, no. 3, pp. 1040-1059, 2012.
- [44] E. Werner and D. Ye, "Inequalities for mixed p-affine surface area," Mathematische Annalen, vol. 347, no. 3, pp. 703-737, 2010.
- [45] D. Ye, "Inequalities for general mixed affine surface areas," Journal of the London Mathematical Society, vol. 85, no. 1, pp. 101-120, 2012.
- [46] D. Ye, "On the monotone properties of general affine surfaces under the Steiner symmetrization," Indiana University Mathematics Journal, vol. 63, no. 1, pp. 1-19, 2014.
- [47] D. Ye, "New Orlicz affine isoperimetric inequalities," Journal of Mathematical Analysis and Applications, vol. 427, no. 2, pp. 905-929, 2015
- [48] P. Zhang, X. Zhang and W. D. Wang, "Dual quermassintegral quotient functions inequalities of radial Blaschke-Minkowski homomorphisms," IAENG International Journal of Applied Mathematics, vol. 49, no. 2, pp175-180, 2019