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Abstract—In this work, we present an important
scheme for constructing one-point third order iter-
ative formulas for finding simple roots of nonlinear
equations. The scheme is powerful since it regener-
ates new, simple and fast methods. The convergence
analysis shows that all the methods of the proposed
family are cubically convergent for a simple root. The
originality of this family lies in the fact that these
methods are generated in a recurring way depending
on an natural integer parameter p. Furthermore, un-
der certain hypothesis, its methods become faster by
increasing p. Comparison theoretical and/or numeri-
cal with several other existing third order and higher
order methods shows that the proposed methods are
robust.
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1 Introduction

Solving non-linear equations is one of the most important
problems in mathematics, engineering and economy [1]-
[2]. In this research, we consider iterative methods to find
a simple root of a non-linear equation:

f(x) = 0 (1)

where f is a real analytic function. Since it is often im-
possible to obtain its exact solution by analytic methods,
the numerical iterative methods are generally used to ob-
tain an approximate solution of such problems.

The root α of f , supposed simple, can be find as a fixed
point of some iteration function (I.F.) by means of the
one-point iteration method [3]-[6], [36]-[40]:

xn+1 = F (xn) for n = 0, 1, 2, · · · (2)
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where x0 is the initial value. A point α is called a fixed
point of F if F (α) = α. By making a good choice of
iterative function F and respecting certain hypothesis, we
can ensure the convergence of the sequence (xn) towards
α.

Newton’s method for a single non-linear equation is writ-
ten as

xn+1 = xn −
f(xn)

f ′(xn)
n = 0, 1, 2, . . . (3)

This is the best known iterative method [7], which con-
verges quadratically for simple roots.

In order to increase the rate of convergence of Newton’s
method, the many new techniques with third order have
been proposed. Among the most used methods of order
3, we cite in particular Halley’s method [1], [4], [7]-[11],
given by:

xn+1 = xn −
f(xn)

f ′(xn)
W0(Ln) n = 0, 1, 2, 3, . . . (4)

where W0(Ln) =
2

2− Ln

and Ln = Lf (xn) =
f(xn)f

′′
(xn)

f ′(xn)2

a special case of (2) with the following (I.F) :

F0(x) = x− f(x)

f ′(x)

(
2

2− Lf (x)

)
(5)

We also quote methods of: Chebyshev [1], [7]-[8], [12]-
[13], [1], [7]-[8], [11], [13], Ostrowski [13], Hansen-Patrick
[18], Laguerre [13], Super-Halley [8], [14]-[17], Chun [15],
Jiang-Han [17], Sharma [16], [19], Amat [8], Traub [7],
Weerakon and Fernando [20], Nedzhibov and al. [21],
Kou and al. [22], Osban [23], Frontini and Sormany [24],
Chun and Neta [25], which are interesting and well-known
third-order methods.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_09

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



In recent years, several researches have been conducted
with the aim to create multi-step iterative methods with
the improved convergence order, see [12], [26]-[34]. Fang
L and al. have developed some higher-order convergent
iterative methods [29], [30]. Chun and Ham have sug-
gested a family of sixth-order methods by weight func-
tion methods in [28]. Thukral have proposed a new
family of two-step iterative methods of sixth-order in
[35]. Fernandez-Torres and al. in [12] have constructed
a method with sixth-order convergence. Noor and al.
in [33] have proposed a new predictor–corrector method
whit fifth-order convergence. Kou and al. in [32] have
constructed a family of variants of Ostrowski’s method
with seventh-order convergence. Wang and al. have pro-
posed two families of sixth-order methods in [34].

In this paper, based on Taylor polynomial and Halley’s
method, we will develop a new family for finding sim-
ple roots of nonlinear equations with cubical convergence.
The first important advantage of this family is that its
methods are generated in a recurring fashion via a nat-
ural integer parameter p and the second is that, under
certain conditions, its sequences converge more rapidly
when the value of parameter p increases. To illustrate
the power of new techniques, several numerical examples
will presented. A comparison with many third, five and
sixth order methods will be realized.

2 Development of a new family

The geometric construction of Newton’s method consists
in considering the tangent line

y(x) = f(xn) + f
′
(xn)(x− xn)

To the graph of f at (xn, f(xn)). The point of intersec-
tion (xn+1, 0) of this tangent line with x-axis, gives the
celebrated sequence (2).

The linear approximation in Newton method is none
other than first-order Taylor polynomial of f at xn. By
using a second-order Taylor polynomial, we obtain

y(x) = f(xn) + f
′
(xn)(x− xn) +

f
′′
(xn)

2
(x− xn)2,

where xn is again an approximate value of the zero α of
the equation (1). The goal is to obtain a point (xn+1, 0),
where the curve of y will intersect the x-axis, which is the
solution of the following equation for xn+1:

0 = f(xn)+f
′
(xn)(xn+1−xn)+

f
′′
(xn)

2
(xn+1−xn)2 (6)

Replacing the quantity xn+1 − xn remaining in the last

term of the right-hand side of (6) by Halley’s approxima-
tion given in (4), we obtain

0 = f(xn)+f
′
(xn)(xn+1−xn)+

f
′′
(xn)

2
.

(
f(xn)

f ′(xn)
(

2

2− Ln
)

)2

(7)

From which it follows that

xn+1 = xn −
f(xn)

f ′(xn)
W1(Ln) (8)

where W1(Ln) = 1 + Ln

2 W
2
0 (Ln) =

L2
n − 2Ln + 4

L2
n − 4Ln + 4

By repeating several times the same scenario as before,
we derive the following iterative scheme which depends
on a natural integer parameter p:

xpn+1 = xpn −Wp(Ln)
f(xpn)

f ′(xpn)

To make writing easier, we note:

xn+1 = xn −Wp(Ln)
f(xn)

f ′(xn)
(9)

where W0(x) =
2

2− x

and Wp+1(x) = 1 + x
2W

2
p (x) p = 0, 1, 2, . . .

(9) is a special case of fixed point method with the fol-
lowing (I.F.) :

Fp(x) = x− f(x)

f ′(x)
.Wp(Lf (x)) p = 0, 1, 2, . . . (10)

The iterative formulas (9) represents a general Halley’s
family (Hp), to solve nonlinear equations that have sim-
ple roots.

3 Analysis of convergence

3.1 Order of convergence

We will prove that the proposed Halley’s family (Hp)
given by (9) is cubically convergent for any natural inte-
ger p.

Theorem 3.1. Let α ∈ D be a simple root of sufficiently
differentiable function f : D ⊂ R→ R for an open inter-
val D. If x0 is sufficiently close to α , then the methods
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(Hp) defined by (9) converges cubically to α, for any nat-
ural integer parameter p and it then satisfies the error
equation{

en+1 = (c22 − c3)e3 +O(e4n) for p = 0

en+1 = −c3e3 +O(e4n) for p 6= 0
(11)

where en = xn − α is the error at nth iteration and

ci = f(i)(α)

i!f ′ (α)
, i = 2, 3, . . .

Proof. Let α be a simple root of f (i.e. f(α) = 0 and
f

′
(α) 6= 0), and en = xn−α be the error in approximating

α by the nth iterate xn. We use the following Taylor
expansions about α :

f(xn) = f
′
(a)[en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)],

f
′
(xn) = f

′
(α)[1 + 2c2en + 3c3e

2
n+

4c4e
3
n +O(e4n)], (12)

f ′′(xn) = f
′
(α)[2c2 + 6c3en + 12c4e

2
n +O(e3n)],

Using (12) we get

[f
′
(xn)]2 = [f

′
(α)]2[1 + 4c2en + 2(2c22 + 3c3)e2n+

4(3c2c3 + 2c4)e3n +O(e4n)],

f(xn)

f ′(xn)
= en − c2e2n + 2(c22 − c3)e3n +O(e4n) (13)

and

Ln =
f(xn)f”(xn)

[f ′(xn)]2
= 2c2en − 6(c22 − c3)e2n+

4(4c32 − 7c2c3 + 3c4)e3n +O(e4n) (14)

Using the Taylor’s series expansion [19] of Wp(Ln) about
L(α) leads to

Wp(Ln) = Wp(L(α)) + (Ln − L(α))W
′

p(L(α)) +
1
2 (Ln − L(α))2W

′′

p (L(α)) +O
(
(Ln − L(α))3

)
,

Where p is a natural integer parameter.

Since L(α) = 0, we obtain:

Wp(Ln) = Wp(0)+LnW
′

p(0)+
1

2
L2
nW

”
p (0)+O

(
L3
n

)
(15)

where W0(t) = 2
2−t and Wp+1 = 1 + t

2W
2
p (t)

Taking into account that:

W
′

0(t) =
2

(2− t)2
,W ”

0 (t) =
4

(2− t)3
,

W
′

p+1(t) =
1

2
W 2
p (t) + t.Wp(t)W

′

p(t)

W ”
p+1(t) = 2Wp(t)W

′

p(t) + t
(
W

′2

p (t) +Wp(t)W
”
p (t)

)
(16)

It is easy to prove that, for all p ∈ N∗, the function Wp

checks the following conditions:

{
For all p∈ N Wp(0) = 1 and W

′

p(0) = 1
2

For all p∈ N∗ W ”
p (0) = 1 and W ”

0 (0) = 1
2

(17)

Thus, the Formula (15) becomes :

{
Wp(Ln) = 1 + 1

2Ln + 1
2L

2
n +O(e3n), for p∈ N∗

W0(Ln) = 1 + 1
2Ln + 1

4L
2
n +O(e3n)

(18)

Using (14), we get

{
Wp(Ln) = 1 + c2en + [−c22 + 3c3]e2n +O(e3n), for p∈ N
W0(Ln) = 1 + c2en + [−2c22 + 3c3]e2n +O(e3n)

(19)

Substituting (13) and (19) in formula (9), we obtain
the error equation{

en+1 = (c22 − c3)e3n +O(e4n), for p=0

en+1 = −c3e3n +O(e4n), for p6= 0

which confirms that the order of convergence of the meth-
ods (Hp) are three, whatever the natural integer p. This
terminates the demonstration of theorem.

3.2 Global convergence of new methods

The following two lemmas will be used to study of the
monotonic convergence of methods (Hp).

Lemma 3.2. Let us write the iterative functions of meth-
ods (Hp) :

Fp(x) = x− f(x)

f ′ (x)
.Wp(Lf (x)) for p=0,1,2, . . .

Then, the derivatives of Fp is given by:

F
′

p(x) = 1− Lf (x)[1 + Lf (x)(Lf ′ (x)− 2)]W
′

p(Lf (x))

−Wp(Lf (x))(1− Lf (x))
(20)
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Lemma 3.3. Let x a real number such as 0 6 x < 2 and
(Vp) the sequence defined by :

V0 = 2
2−x , and Vp+1 = 1 + x

2V
2
p , for p = 0, 1, 2 . . .

Then, we have:

Then, (Vp) is increasing sequence with strictly positive
terms.

Proof. For a given value of x chosen in the interval [0 , 2),
it easy to prove by induction that Vp > 1 for all p ∈ N.
Let us prove by induction that (Vp) is a increasing se-
quence. We have:

V1 − V0 =
x2

(2− x)2
, then V1 > V0. Let us suppose that

Vp+1 > Vp, since Vp > 0 for all p ∈ N, then V 2
p+1 > V 2

p ,
and since we also have x > 0, we deduce that Vp+2 > Vp+1

and the prove is terminated.

Theorem 3.4. Let f ∈ Cm[a , b], m > 4, f
′ 6= 0, f” 6= 0,

0 6 Lf < 1 and the iterative functions F
′

p of f , defined
by (10) for a natural integer p, be increasing function
on an interval [a , b] containing the root α of f . Then
sequence given by (9) is decreasing (resp. increasing)
and converges to α from any point x0 ∈ [a , b] checking
f(x0)f

′
(x0) > 0 (resp. f(x0)f

′
(x0) < 0)

Proof. Let’s choose an x0 such that f(x0)f
′
(x0) > 0, then

x0 > α. Applying the Mean Value Theorem to functions
Fp where p is a natural integer, we obtain:

x1 − α = Fp(x0)− Fp(α) = F
′

p(η)(x0 − α)

for some η ∈ (α , x0). As the derivative of iterative func-
tion given by (20) checks F

′

p(x) > 0 in [α , b] so x1 > α.
By induction, we obtain xn > α for all n ∈ N.

Furthermore, from (9), we have:

x1 − x0 = −Wp(L0)
f(x0)

f ′(x0)

As 0 6 L0 < 2 then from lemma 2 and by posing x =
L0 we have Vp = Wp(L0) > 0 for all p ∈ N, and since
f(x0)

f ′ (x0)
> 0, we deduce that x1 6 x0. Now it is easy to

prove by induction that xn+1 6 xn for all n ∈ N.

As a consequence, the sequences (9) are decreasing and
converges to a limit µ ∈ [a , b] where µ > α, by making
the limit of (9) we get:

µ = µ− f(µ)

f ′(µ)
Wp(Lf (µ))

We have Wp(Lf (µ) > 0) for all p ∈ N and for every
real Lf (µ) ∈ [0 , 2) so Wp(Lf (µ)) 6= 0 and consequently
f(µ) = 0. As α is unique zero of f in [a , b] therefore
µ = α. This completes proof of the theorem. Similarly,
we can prove that the sequence (9) is increasing and
converges to under the same hypotheses of theorem 3.4,
but for f(x0)f

′
(x0) < 0.

4 Advantage of new family

To show the peculiarity of present family (Hp), we make
an analytical comparison of the convergence speeds of its
methods between them.

Theorem 4.1. Let f ∈ Cm[a , b], m ≥ 4, f
′ 6= 0, f

′′ 6= 0,
0 ≤ Lf (x) < 2, and the iterative functions Fp and Fp+1 of
f , defined by (10) for a natural integer p, be increasing
functions on an interval [a , b] containing the root α of
f . Starting from the same initial point x0 ∈ [a , b] , the
rate of convergence of method (Hp+1)is higher than one
of method (Hp).

Proof. Assume that initial value x0 satisfies
f(x0)f

′
(x0) > 0, so x0 > α. The theorem 3.4 announces

that the case where f
′ 6= 0, f

′′ 6= 0, 0 ≤ Lf (x) < 2, and
Fp and Fp+1 are increasing functions an interval [a , b],
then the sequences (xpn) and (xp+1

n ) given by (9), are
decreasing and converges to α from any point x0 ∈ [a , b]

Let (an) and (bn) be two sequences defined by (xp+1
n )

and (xpn) respectively. Since a0 = b0 = x0 and the two
sequences are decreasing, we expect that an 6 bn for all
n ∈ N. This can be proved by induction. Let n = 1 ,
then:

a1 − b1 = − f(x0)

f ′(x0)
(Wp+1(L0)−Wp(L0))

We have 0 ≤ L0 = Lf (x0) < 2, so from lemma 3.3:

Wp+1(L0) > Wp(L0) and as f(x0)

f ′ (x0)
> 0, we derive that :

a1 ≤ b1

Let’s suppose that an ≤ bn. Since, under the above hy-
potheses, Fp+1 is increasing function in [a , b], we obtain
Fp+1(an) ≤ Fp+1(bn)

Furthermore, we have :

Fp+1(bn)−Fp(bn) = − f(bn)

f ′(bn)
(Wp+1(Ln)−Wp(Ln)) ≤ 0

so Fp+1(an) ≤ Fp(bn). Finally an+1 ≤ bn+1 and th in-
duction is completed.
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The present theorem is of great importance because it
clearly illustrates the power of proposed family. Indeed,
we have analytically justified that, under certain condi-
tions, the convergence speed of its methods increases with
the parameter p. As, in addition, the integer p can take
very large values, then the convergence speed can always
be improved with p. Conversely, Halley’s method, which
is a particular case of this family obtained for p = 0, will
have a lower convergence rate than other new methods
in the same family, having higher parameters.

5 Numerical results

In this section, we exhibit numerical results which show
the behavior of methods in the proposed family for some
arbitrary chosen test functions.

Computations have been performed using MATLAB
R2015b and the stopping criterion has been taken as
|xn+1 − xn| ≤ 10−15 and |f(xn)| ≤ 10−15.

We give the number of iterations (N) and/or the number
of function evaluations (NOFE) necessary to check the
stopping criterion, CU designates that method converge
to undesired root.

The tests functions, used in Table II, III and IV, and
their roots α, are displayed in Table I.

5.1 Comparison between some methods of
Halley’s family (Hp)

We consider the function f11 defined in table I on interval
I = [2 , 10]. By taking x0 = 9, we have f(x0)f

′
(x0) > 0.

The table II presents a numerical comparison between
some methods from the proposed family (Hp) obtained
for p = 1, 4, 11, 20 and 21.

The table II shows that :

• All the selected sequences (H1, H4, H11, H20 and
H21) defined by (9) are decreasing and converges to
the root α = 2 of the function f11 on interval I;

• The increase of parameter (p), leads to a great im-
provement of the convergence speed of methods (Hp)
and to a clear decrease of their number of iterations.

• The convergence rate of Halley’s method (H1) is
lower than that of the other new methods which have
higher values of parameter p (H4,H11,H20 and H21).

5.2 Comparison with some third order
methods

In table III, we present some numerical tests for New-
ton’s method and various cubically convergent iterative

methods. Compared are Newton’s method (NM) de-
fined by formula (3), Chebyshev’s method (CB) defined
by (13) in [15], Sharma’s method (SR) defined by (17)
with α = 0.5 in [19], Chun’s method (CH) defined by
(23) with an = 1 in [15], Sharma’s method (SM) de-
fined by (20) with an = 1 in [16], Jiang-Han’s method
(JH) [17] defined by (19) with parameter α = 1 in [19],
Ostrowski’s method (OT) defined by (26) in [19], Hal-
ley’s method (HL) defined by (4) given before and Super-
Halley’s method (SH) of Gutiérrez and Hernández [15].
To represent new scheme (9), we choose four methods
designated as (H2), (H8), (H10) and (H20).

Table III shows that in the majority of selected examples,
the results obtained with the four proposed methods of
new family are better or similar to the other third order
methods used, because they converge more quickly and
with lesser number of iterations.

5.3 Comparison with higher order methods

In Table IV, we give the number of iterations (N) and
the number of function evaluations (NOFE) sufficient to
meet the stopping criterion. We compare Four meth-
ods of proposed family (H2, H4, H7 and H21), with some
higher order methods. (FG) denotes fifth order method of
Fang for Fang and al. (formula (2) in [30]), (NR) denotes
fifth order method of Noor and al. method (algorithm
2.4. in [33]). (CC) represents Chun and Ham’s method
(formula (10), (11), (12) in [28]), (TK) denotes Thukral’s
method (formula (27) in [35]), (TR) designates Fernan-
dez’s method (formula (14) and (15) in [12]), Three sixth-
order methods.

Comparison with several fifth and sixth order methods il-
lustrates the performance and efficiency of the proposed
new family. Indeed, the table IV illustrate that new pro-
posed methods behaves either similarly or even better on
the most of examples considered, as require an equal or
smaller number of function evaluations.

6 Conclusion

In this paper, we have introduced a new family of itera-
tive methods for solving nonlinear equations with simple
roots. The family is generated by using, in the beginning,
the Halley’s approximation in second-order Taylor poly-
nomial and then repeating the same scenario by apply-
ing, each time, the new correction. We have proven that,
under some conditions, all methods of proposed family
has third-order convergence. The main characteristics of
this family reside, on the one hand, in the fact that these
sequences are derived from each other via a recurring for-
mula dependent on a natural integer p and, on the other
hand, under certain conditions, the convergence speed
of its methods improves when the value of p increase.
To illustrate new techniques, several numerical examples
are presented. The performances of ours methods are
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TABLE I
Test Functions and their Roots

Test functions Root (α)
f1(x) = ex − 3x2 -0.4589622675369485
f2(x) = x3 − 10 2.154434690031884

f3(x) = (x− 2)2 − lnx 3.057103549994738
f4(x) = x2 − 5x+ 6 3.000000000000000

2.000000000000000
f5(x) = x exp(x2)− (sinx)2 + 3 cosx+ 5 -1.207647827130919

f6(x) = (x− 1)3 − 1 2.000000000000000
f7(x) = x12 − 2x3 − x+ 1 0,5903344367965851
f8(x) = (sinx)2 − x2 + 1 1.404491648215341

f9(x) = 2 sinx− 1 0,5235987755982989
f10(x) = x2 + x− 12 3.00000000000000
f11(x) = 2x2 − 6x+ 4 2.00000000000000

TABLE II
Comparison between some Methods of Halley’s Family (Hp)

H1 H4 H11 H20 H21
9.0000000000000 9.0000000000000 9.0000000000000 9.0000000000000 9.0000000000000

3.619665511244937 2.968400627720842 2.421183688334962 2.186540486312487 2.171784630356075
2.213887974995401 2.021767459559896 2.000004603595781 2.0 2.0
2.001626826786968 2.000000000029282 2.0
2.000000000013896 2.0

2.0

TABLE III
Comparison with some Third Order Methods

N: Number of iterations
Test function x0 NM CB SR CH SM JH OT HL SH H2 H8 H10 H20

f1 -1,5 6 4 4 4 4 5 4 4 3 3 3 3 3
f2 1,5 6 4 4 4 4 4 3 4 3 3 3 3 3
f3 5 6 4 4 4 4 5 4 4 4 3 3 3 3
f4 4,5 6 4 4 4 4 5 4 4 3 3 2 2 2
f4 0 7 5 4 5 5 5 4 4 4 3 3 2 2
f5 -0,8 7 5 5 5 5 5 4 3 4 3 4 4 4
f9 1,05 5 4 4 4 4 4 3 4 3 4 3 3 3
f7 0,8 5 5 3 4 4 4 4 4 3 3 4 3 3
f8 1,05 6 4 4 4 4 4 3 4 3 3 3 3 3

compared with some known methods of similar or higher
order. The computational results have confirmed the ro-
bust and efficient nature of the techniques of new family
constructed in this paper.
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TABLE IV
Comparison with Some Higher Order Methods

N: Number of iterations NOFE: Number of functions evaluations
Function x0 FG CC TK TR NR H2 H4 H7 H21 FG CC TK TR NR H2 H4 H7 H21

f9 1.05 3 3 3 3 3 4 3 3 3 12 12 12 12 12 12 9 9 9
f8 1 3 3 4 5 3 3 3 3 3 12 12 16 20 12 9 9 9 9
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