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Abstract—A single species stage structure model with density
dependent birth rate and non-selective harvesting in a partial
closure is proposed and studied in this paper. By constructing
some suitable Lyapunove function, sufficient conditions which
ensure the global stability of the boundary equilibrium and
positive equilibrium are obtained, respectively. Our results indi-
cates that once the system admits a unique positive equilibrium,
it is globally stable. Also, as a direct corollary of our result,
we show that the condition which ensure the local stability of
the boundary equilibrium of the system is enough to ensure
its globally asymptotically stable. Our results supplement and
complement some known results.

Index Terms—Stage structure, density dependent birth rate,
global stability.

I. I NTRODUCTION

DURING the last decade, many scholars investigated the
dynamic behaviors of the ecosystem, see [1]-[42] and

the references cited therein. Such topics as the extinction,
persistent and stability are extensively investigated. It is
well known that many species take several stage throughout
their life, and to modeling such kind of phenomenon, many
scholars ([1]-[21],[41]-[42]) proposed the stage structured
population system, and some interesting results were ob-
tained.

As far as the stage structured model is concerned, two
different ideas were applied in establishing the corresponding
modelling. The first one is to assume that the species needs
time to grow up, and this leads to the delayed model. For
example, Chen, Wang, Lin et al[3] studied the persistent
property of the following stage-structured predator-prey mod-
el
dx1(t)

dt
= r1x2(t)− d11x1(t)− r1e

−d11τ1x2(t− τ1),

dx2(t)

dt
= r1e

−d11τ1x2(t− τ1)− d12x2(t)

−b1x
2
2(t)− c1x2(t)y2(t),

dy1(t)

dt
= r2y2(t)− d22y1(t)− r2e

−d22τ2y2(t− τ2),

dy2(t)

dt
= r2e

−d22τ2y2(t− τ2)− d21y2(t)

−b2y
2
2(t) + c2y2(t)x2(t).
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They obtained a set of sufficient conditions which ensure
the globally asymptotically stable of the positive equilibri-
um. Chen et al[2] investigated the persistent and extinction
property of the above system, they showed that the extinction
of the prey species did not always follows the extinction of
the predator species. For more works on stage structured
model incorporating time delay, one could refer to [1]-[14],
[42] and the references cited therein.

Another way to constructing the stage structured ecosys-
tem is to assume that there are proportional number of
immature species becomes mature species. In this case, the
single species stage structured system takes the following
form.

dx1

dt
= αx2(t)− βx1(t)− δ1x1(t),

dx2

dt
= βx1(t)− δ2x2(t)− γx2

2(t),

Recently, based on this model, Xiao and Lei[17] proposed
the following single species stage structure system incorpo-
rating partial closure for the populations and non-selective
harvesting:

dx1

dt
= αx2 − βx1 − δ1x1 − q1Emx1,

dx2

dt
= βx1 − δ2x2 − γx2

2 − q2Emx2.

The authors showed that the birth rate of the immature
species and the fraction of the stocks for the harvesting
plays crucial role on the dynamic behaviors of the system.
For more works on this direction, one could refer to [15]-
[17],[21]-[22],[41] and the references cited therein.

It brings to our attention that to this day, though there are
many papers investigated the dynamic behaviors of the stage
structured ecosystem, all of those papers ([1]-[18],[20]-[22])
assumed that the birth rate of the species is proportion to
the mature species, and only Liang and Zhou[19] considered
the stage structured system with nonlinear birth rate. Indeed,
they proposed the following single species model

ẋ(t) =
p

q + x
y − d1x− δx,

ẏ(t) = δx− d2y − Ey,

(1.1)

where x, y are the density of the immature and mature
species at timet, respectively.

p

q + x
is the birth rate of

the immature species,d1 is the death rate of the immature
species, andδ is the transform rate of the immature species
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to mature species,d2 is the death rate of the mature species,
E is the harvesting effort.

The system may admits two non-negative equilibrium
A(0, 0) andB(x∗, y∗).

By analysing the sign of the characteristic root of Jacobian
matrix, the authors obtained the following results.

Theorem A. If p <
q(d2 + E)(d1 + δ)

δ
holds, then O(0, 0)

is locally asymptotically stable.

By constructing the suitable Dulac function, the authors
obtained the following result.

Theorem B. If p >
q(d2 + E)(d1 + δ)

δ
holds, then the

unique positive equilibrium B(x∗, y∗) is globally asymptot-
ically stable.

From the expression of Theorem A and B, two interesting
issue is proposed:

(1) Is it possible for us to investigate the global stability
property of the boundary equilibrium?

(2) It is well known that Dulac criterion could only be applied
to the two dimensional system, and could not be applied
to the system more then two dimension. However, if we
further consider the influence of the predator or competition
or mutualism, etc, and try to propose a stage structured
multispecies ecosystem, the system may become three or
four dimension, and it becomes impossible to investigate
the dynamic behaviors by using the technique of Liang and
Zhou[24]. Hence, it is necessary to give a new proof of
the Theorem B, and the method of the new proof could be
applied to higher dimensional system.

Now let’s consider the following example.

Example 1.1.Consider the following system

ẋ(t) =
1

1 + x
y − x− x,

ẏ(t) = x− y − y,

(1.2)

Here, we assume thatp = q = d1 = δ = E = d2 = 1. One

could easily check thatp = 1 < 4 =
q(d2 + E)(d1 + δ)

δ
holds, hence, from Theorem A, one could see thatO(0, 0) is
locally asymptotically stable. However, numeric simulation
(Fig. 1 and 2) shows thatO(0, 0) is globally asymptotically
stable.

From Example 1.1, we have the following conjecture.

Conjecture. If p <
q(d2 + E)(d1 + δ)

δ
holds, then O(0, 0)

is globally asymptotically stable.

On the other hand, as was pointed out by Chakraborty, Das
and Kar[36], the study of resource-management including
fisheries, forestry and wildlife management has great impor-
tance, it is necessary to harvest the population but harvesting
should be regulated, such that both the ecological sustain
ability and conservation of the species can be implemented
in a long run. Chakraborty, Das and Kar[36] proposed the
following predator-prey model incorporating partial closer

Fig. 1. Dynamic behaviors of the system (1.2),
the initial condition (x(0), y(0)) =
(1, 0.3), (0.8, 0.5), (0.6, 1), (0.4, 1.4) and (0.2, 2),
respectively.

Fig. 2. Dynamic behaviors of the system (1.2),
the initial condition (x(0), y(0)) =
(1, 0.3), (0.8, 0.5), (0.6, 1), (0.4, 1.4) and (0.2, 2),
respectively.

and non-selective harvesting

dx

dt
= rx

(

1−
x

K

)

−
αxy

a+ bx+ cy
− q1mEx,

dy

dt
= sy

(

1−
y

L

)

+
βxy

a+ bx+ cy
− q2mEx.

Since then, many scholars ([17], [36]-[37]) investigated
the dynamic behaviours of the nonselective harvesting
ecosystem incorporating partial closure. However, to
this day, only Xiao and Lei[17] proposed and studied the
stability property of the stage structured model incorporating
partial closure. Still no scholar propose and study the stage
structured model with nonlinear birth rate and non-selective
harvesting in a partial closure. This motivated us to propose
the following model:

ẋ(t) =
p

q + x
y − d1x− δx− q1Emx,

ẏ(t) = δx− d2y − q2Emy,

(1.3)

where p, q, d1, E,m, δ, d2, are all positive constants, and
q1, q2 are nonnegative constants,m is a nonnegative con-
stants which satisfies0 ≤ m ≤ 1. Obviously, if we take
m = 1, q1 = 0, q2 = 1, then system (1.3) will reduce
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to system (1.1). Hence our model can be seen as the
generalization of the model (1.1). However, there are some
essential differences between model (1.1) and (1.3):

(1) We assume that both immature and mature species could
be harvested, while in model (1.1), the author only assume
that the mature species could be harvested;

(2) We assume that there are some partial of closure where
species could not be harvested, which is described by pa-
rameterm.

By direct computation, one could easily see that the model
always admits boundary equilibriumO(0, 0), also, if

p >
q(d2 + Emq2)(d1 + δ + Emq1)

δ
(1.4)

holds, then system (1.3) admits the unique positive equilib-
rium E(x∗, y∗), where

x∗ =
H

(d2 + Emq2)(d1 + δ + Emq1)
,

y∗ =
δH

(d2 + Emq2)2(d1 + δ + Emq1)
.

(1.5)

whereH = δp− q(d2 + Emq2)(d1 + δ + Emq1).

The aim of this paper is to investigate the dynamic behav-
iors of the system (1.3). More precisely, we will investigate
the stability property of the boundary equilibrium in the
next section and the global stability property of the positive
equilibrium in Section 3, respectively. As a corollary, we will
prove the conjecture, and to give a new proof of the global
stability of the positive equilibrium of the system (1.1). We
end this paper by a briefly discussion.

II. GLOBAL STABILITY OF THE BOUNDARY EQUILIBRIUM

Concerned with the global stability of the boundary equi-
librium O(0, 0), we have the following result:

Theorem 2.1. Assume that

p <
q(d2 + Emq2)(d1 + δ + Emq1)

δ
(2.1)

holds, then the boundary equilibrium O(0, 0) of system (1.3)
is globally stable.

Proof. Let’s consider the Lyapunov function

V1(x, y) = x+
d1 + δ + q1Em

δ
y. (2.2)

One could easily see that the functionV is zero at the
boundary equilibriumO(0, 0) and is positive for all other
positive values ofx, y. The time derivative ofV (x, y) along

the trajectories of (1.3) is

D+V1(t)

=
p

q + x
y − d1x− δx− q1Emx

+
d1 + δ + q1Em

δ

(

δx− d2y − q2Emy
)

=
p

q + x
y −

d1 + δ + q1Em

δ

(

d2 + q2Em
)

y

≤
p

q
y −

d1 + δ + q1Em

δ

(

d2 + q2Em
)

y

=
(p

q
−

d1 + δ + q1Em

δ

(

d2 + q2Em
))

y.

(2.3)

It then follows from

p <
q(d2 + Emq2)(d1 + δ + Emq1)

δ

that D+V1(t) < 0 strictly for all x, y > 0 except the
boundary equilibriumA(0, 0), whereD+V1(t) = 0. Thus,
V1(x, y) satisfies Lyapunov’s asymptotic stability theorem
([21]), and the boundary equilibriumA(0, 0) of system (1.1)
is globally asymptotically stable.

This ends the proof of Theorem 2.1.

As a direct corollary of Theorem 2.1, now let’s consider
the stability property ofA(0, 0) of the system (1.1), we have

Corollary 2.1. Assume that p <
q(d2 + E)(d1 + δ)

δ
holds,

then O(0, 0) of system (1.1) is globally stable.

Remark 2.1. Corollary 2.1 gives the positive answer to the
Conjecture.

III. G LOBAL STABILITY OF THE POSITIVE EQUILIBRIUM

Concerned with the stability property of the positive
equilibriumE(x∗, y∗), we have the following result.

Theorem 3.1. Assume that

p >
q(d2 + Emq2)(d1 + δ + Emq1)

δ
(3.1)

holds, then system (1.3) admits the unique positive equilib-
rium E(x∗, y∗), which is globally stable.

Proof. Let E(x∗, y∗) be the positive equilibrium of the
system (1.3), obviously,B(x∗, y∗) satisfies

p

q + x∗
y∗ − d1x

∗

− δx∗

− q1Emx∗ = 0,

δx∗ − d2y
∗ − q2Emy∗ = 0,

(3.2)

Let’s consider the Lyapunov function

V2(x, y) = K1

(

x− x∗ − x∗ ln
x

x∗

)

+K2

(

y − y∗ − y∗ ln
y

y∗

)

.

One could easily see that the functionV2 is zero at the
positive equilibriumE(x∗, y∗) and is positive for all other
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positive values ofx, y. The time derivative ofV2(x, y) along
the trajectories of (1.3) is

D+V2(t)

= K1

x− x∗

x

( p

q + x
y − d1x− δx− q1Emx

)

+K2

y − y∗

y

(

δx− d2y − q2Emy
)

= K1

x− x∗

x

( p

q + x
y −

p

q + x∗
y

+
p

q + x∗
y − d1x− δx− q1Emx

)

+K2

y − y∗

y

(

δx− d2y − q2Emy
)

= −K1

yp

x(q + x)(q + x∗)
(x− x∗)2

+K1

x− x∗

x

( p

(q + x∗)x∗
yx∗

−d1x− δx− q1Emx
)

+K2

y − y∗

y

(

δx− d2y − q2Emy
)

= −K1

yp

x(q + x)(q + x∗)
(x− x∗)2

+K1

x− x∗

x

( p

(q + x∗)x∗
(yx∗

− y∗x)

+
p

(q + x∗)x∗
y∗x− d1x

−δx− q1Emx
)

+K2

y − y∗

y

( δ

y∗
(xy∗ − yx∗)

+δ
yx∗

y∗
− d2y − q2Emy

)

(3.3)

From the first equation of (2.1), we have

p

q + x∗
y∗ = (d1 + δ + q1Em)x∗,

δx∗ = (d2 + q2Em)y∗.

(3.4)

Substituting (3.4) into (3.3), leads to

D+V2(t)

= −K1

yp

x(q + x)(q + x∗)
(x− x∗)2

+K1

x− x∗

x

( p

(q + x∗)x∗
×

(

y(x∗ − x) + x(y − y∗)
))

+K2

y − y∗

y

δ

y∗

(

x(y∗ − y) + y(x− x∗)
)

= −K1

yp

x(q + x)(q + x∗)
(x − x∗)2

−K1

py

x(q + x∗)x∗
(x− x∗)2

−K2

δx

y∗y
(y − y∗)2

+
[ K1p

x∗(q + x∗)
+

K2δ

y∗

]

(x− x∗)(y − y∗).

(3.5)

Now let’s takeK2 = 1, K1 =
δ

y∗
x∗(q + x∗)

p
, then

D+V2(t)

= −
δ

y∗
x∗(q + x∗)

p

yp

x(q + x)(q + x∗)
(x− x∗)2

−
δ

y∗
x∗(q + x∗)

p

py

x(q + x∗)x∗
(x− x∗)2

−
δx

y∗y
(y − y∗)2

+
[ δ

y∗
x∗(q + x∗)

p

p

x∗(q + x∗)
+

δ

y∗

]

×

(x− x∗)(y − y∗)

= −
δx∗y

y∗x(q + x)
(x − x∗)2 −

δy

y∗x
(x − x∗)2

+
2δ

y∗
(x − x∗)(y − y∗)−

δx

y∗y
(y − y∗)2

= −
δx∗y

y∗x(q + x)
(x − x∗)2

−
δ

y∗

[

√

y

x
(x− x∗)−

√

x

y
(x− x∗)

]2

.

(3.6)

Therefore,D+V2(t) < 0 strictly for all x, y > 0 except the
positive equilibriumB(x∗, y∗), whereD+V2(t) = 0. Thus,
V2(x, y) satisfies Lyapunov’s asymptotic stability theorem,
and the positive equilibriumB(x∗, y∗) of system (1.1) is
globally asymptotically stable.

This ends the proof of Theorem 3.1.

As a direct corollary of Theorem 3.1, concerned with
the global stability of the positive equilibriumB(x∗, y∗) of
system (1.1), we have the following result.

Corollary 3.1.Assume that

p >
q(d2 + E)(d1 + δ)

δ

holds, then the unique positive equilibrium B(x∗, y∗) is
globally asymptotically stable.

Remark 3.1. As was pointed out in section 1, Liang and
Zhou[19] had proved Theorem B by using the Dulac crite-
rion, here, we prove the Theorem 3.1 by constructing some
suitable Lyapunov function. Noting that system (1.1) is the
special case of system (1.3), hence we can say that we have
proved the Theorem B by using the differential method, and
this method maybe applied to higher dimension ecological
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modelling, we will attempt to do more in-depth research in
the future.

IV. CONCLUSION

Liang and Zhou[19] proposed the system (1.1). By using
the Dulac criterion, they could obtained the sufficient condi-
tions, which ensure the global asymptotical stability of the
positive equilibrium, however, they could only investigated
the local stability property of the boundary equilibrium.
In this paper, we first propose a conjecture, that is, the
conditions which ensure the local stability of the boundary
equilibrium is enough to ensure its globally stability. Next,
stimulated by the works of Chakraborty, Das and Kar[20] and
Xiao and Lei[17], we argued that to this day, still no scholars
consider the stage structured system with nonlinear birth rate
and non-selective harvesting in partial closure. We propose
the system (1.3), which can be seen as the generalization of
the system (1.1).

By constructing some suitable Lyapunov functions, we
investigate the stability property of the boundary equilibrium
and positive equilibrium of the system (1.3).

Theorem 2.1 gives condition which ensure the global
stability of the boundary equilibrium. As a corollary of
Theorem 2.1, we could obtain the corollary 2.1. Compared
with the corollary 2.1 and Theorem A, we have the following
result.

Conclusion A.The condition which ensure the local stability
of the positive and boundary equilibria of the system (1.1)
is enough to ensure its’ global stability.

On the other hand, by constructing some suitable Lya-
punov function, also, by some technical analysis, we give the
sufficient conditions which ensure the global stability of the
positive equilibrium of the system (1.3). From the expression
of the positive equilibrium (see (1.4)), we could see that
the conditions which ensure the existence of the positive
equilibrium is the same as that the conditions which ensure
the global stability of the positive equilibrium. Therefore, we
can draw the conclusion.

Conclusion B. Once the system (1.3) admits a unique
positive equilibrium, it is globally asymptotically stable.
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