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Dynamic Behaviors a Single Species Stage
Structure Model with Density Dependent Birth
Rate and Non-selective Harvesting in a Partial

Closure

Qin Yue* Yigin Wang

Abstract—A single species stage structure model with density They obtained a set of sufficient conditions which ensure
dependent birth rate and non-selective harvesting in a partial the globally asymptotically stable of the positive equilibri-
closure is proposed and studied in this paper. By constructing ;3 “Chen et al[2] investigated the persistent and extinction

some suitable Lyapunove function, sufficient conditions which L
ensure the global stability of the boundary equilibrium and property of the above system, they showed that the extinction

positive equilibrium are obtained, respectively. Our results indi-  Of the prey species did not always follows the extinction of
cates that once the system admits a unique positive equilibrium, the predator species. For more works on stage structured

it is globally stable. Also, as a direct corollary of our result, model incorporating time delay, one could refer to [1]-[14],
we show that the condition which ensure the local stability of [42] and the references cited therein.

the boundary equilibrium of the system is enough to ensure .
its globally asymptotically stable. Our results supplement and Another way to constructing the stage structured ecosys-

complement some known results. Fem is to assume that there are prop(_)rtional n_umber of
immature species becomes mature species. In this case, the

Index Terms—Stage structure, density dependent birth rate, . - .
single species stage structured system takes the following

global stability.

form.
dx
I. INTRODUCTION d_tl = aza(t) — Bri(t) — Sra1(t),
URING the last decade, many scholars investigated the dr
dynamic behaviors of the ecosystem, see [1]-[42] and d—t2 Bx1(t) — awa(t) — ya3(t),

the references cited therein. Such topics as the extinction,
persistent and stability are extensively investigated. It ecently, based on this model, Xiao and Lei[17] proposed
well known that many species take several stage throughdig following single species stage structure system incorpo-
their life, and to modeling such kind of phenomenon, mar{@ting p_artial closure for the populations and non-selective
scholars ([1]-[21],[41]-[42]) proposed the stage structurddgrvesting:
population system, and some interesting results were ob- dxq
tained. dt

As far as the stage structured model is concerned, two da
different ideas were applied in establishing the corresponding 2
modelling. The first one is to assume that the species needs dt
time to grow up, and this leads to the delayed model. Fdhe authors showed that the birth rate of the immature
example, Chen, Wang, Lin et al[3] studied the persistefPecies and the fraction of the stocks for the harvesting
property of the following stage-structured predator-prey mo@lays crucial role on the dynamic behaviors of the system.

= awxy — Br1 — i1 — g Ema,

By — owy — Y13 — e Emirs.

el For more works on this direction, one could refer to [15]-
dz (t) » [17],[21]-[22],[41] and the references cited therein.
pranlie r1z2(t) — diixy(t) — rie” g (t — 1), It brings to our attention that to this day, though there are
das (1) many papers investigated the dynamic behaviors of the stage
= rie” Mgy (t — 1) — diowa(t) structured ecosystem, all of those papers ([1]-[18],[20]-[22])
dt assumed that the birth rate of the species is proportion to
—bia3(t) — crza(t)y2(1), the mature species, and only Liang and Zhou[19] considered
dy: (1) the stage structured syst_em with nonline_ar birth rate. Indeed,
p = roya(t) — dooyr (t) — rae™ 9222y (t — 1), they proposed the following single species model
. p
—dyjt(t) = roe 92Ty (t — 1) — do1ya(t) 8t = g+’ o — bz, (1.1)
~bay3(t) + eaa(t)a(t). §(t) = do—day =By,
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to mature speciesl, is the death rate of the mature species,
E is the harvesting effort.
The system may admits two non-negative equilibrium

0.8

A(0,0) and B(z*, y*). o7
By analysing the sign of the characteristic root of Jacobian o6
matrix, the authors obtained the following results. *o 05

0.4

Theorem A. If p < holds, then 0(0,0) 03
is locally asymptotically stable. 02

q(d2 + E)(d1 +0)

By constructing the suitable Dulac function, the authors
obtained the following result.

q(d2 + E)(d1 +0)
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Theorem B. If p > holds, then the
unique positive equilibrium B(z*, y*) is globally asymptot-
ically stable.

Fig. 1. Dynamic behaviors of the system (1.2),

the initial  condition  (x(0),y(0)) =

(1,0.3),(0.8,0.5), (0.6,1),(0.4,1.4) and (0.2,2),
From the expression of Theorem A and B, two interesting respectively.

issue is proposed:

(1) Is it possible for us to investigate the global stability 2.0
property of the boundary equilibrium? 1.8

1.6

(2) Itis well known that Dulac criterion could only be applied

to the two dimensional system, and could not be applied
to the system more then two dimension. However, if we
further consider the influence of the predator or competition
or mutualism, etc, and try to propose a stage structured
multispecies ecosystem, the system may become three or
four dimension, and it becomes impossible to investigate
the dynamic behaviors by using the technique of Liang and 0.2

Zhou[24]. Hence, it is necessary to give a new proof of by X 3 7 " 1
the Theorem B, and the method of the new proof could be
applied to higher dimensional system.

1.4

»(z) 1.0
0.8
0.6

0.4

Fig. 2. Dynamic behaviors of the system (1.2),

Now let's consider the following example. the initial condition  ((0), (0)) _
Example 1.1.Consider the following system (1,0.3),(0.8,0.5),(0.6,1),(0.4,1.4) and (0.2,2),
respectively.
1
z(t) = YT
T (1.2) " and non-selective harvesting
y(t) = T=Y-Y, dx T azy
— = 1- —) - —gmE
dt rx( K a —|—Bbac +cy DI,
dy Y Ty
Here, we assume that=q¢=dy =d=FE =d; = 1. One = = gy(1-ZL)+ —""2  omEx.
q(dy + E)(dy + 9) dt y( L) a+br+cy ©

could easily check thap = 1 < 4 = 5 si th hol (17], [36(37]) i tinated
. ince then, many scholars , - investigate

haids, hence, frqm Theorem A, one could see tlﬁéﬂ).,o) 'S the dynamic behaviours of the nonselective harvesting

locally asymptotically stable. However, numeric simulation

. X : ecosystem incorporating partial closure. However, to
S‘lei%lel and 2) shows thab (0, 0) is globally asymptotically this day, only Xiao and Lei[17] proposed and studied the

_ _ stability property of the stage structured model incorporating
From Example 1.1, we have the following conjecture. partial closure. Still no scholar propose and study the stage

) q(dy + E)(dy + 6) structured model with nonlinear birth rate and non-selective
Qonjecture. Ifp < _ g holds, then O(0,0)  harvesting in a partial closure. This motivated us to propose
is globally asymptotically stable. the following model:

On the other hand, as was pointed out by Chakraborty, Das . D

and Kar[36], the study of resource-management including % t) = atz’ diz —0x — i Ema,
fisheries, forestry and wildlife management has great impor-
tance, it is necessary to harvest the population but harvesting
should be regulated, such that both the ecological sustaihere p,q,d;, E,m,d,ds, are all positive constants, and
ability and conservation of the species can be implemented ¢» are nonnegative constants, is a honnegative con-
in a long run. Chakraborty, Das and Kar[36] proposed ttstants which satisfie8 < m < 1. Obviously, if we take

following predator-prey model incorporating partial closem = 1,¢1 = 0,92 = 1, then system (1.3) will reduce

(1.3)
y(t) = o0z —day — q2Emy,
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to system (1.1). Hence our model can be seen as tie trajectories of (1.3) is
generalization of the model (1.1). However, there are some

essential differences between model (1.1) and (1.3): DTV (t)
(1) We assume that both immature and mature species could _ P dir— 61— o Ema
be harvested, while in model (1.1), the author only assume q+ N @
that the mature species could be harvested; di +6+qEm
. (5$ —doy — ngmy)
(2) We assume that there are some partial of closure where )
species could not be harvested, which is described by pa- p di+ 6+ ¢ Em (2.3)
rameterm = Y- (dz + Q2Em)y
' q+z é
By direct computation, one could easily see that the model P di+6+qFEm
always admits boundary equilibriu@(0, 0), also, if < 7 5 (d2 + QQEm)y
_(p di+d+@Em
- q(da + Emge)(d1 + 6 + Emaq1) (1.4) = (q - 5 (dg + QQEm))?J.
5 .
It then follows from
holds, then system (1.3) admits the unique positive equilib- < q(da + Emge)(d1 + 6 + Emaq1)
rium E(z*,y*), where p 5
that DTVi(t) < 0 strictly for all z,4 > 0 except the
= H boundary equilibriumA(0,0), where D*V;(t) = 0. Thus,
(da + Emqa)(dy + 6 + Emqy)’ (1.5) Vi(z,y) satisfies Lyapunov's asymptotic stability theorem
. SH : ([21]), and the boundary equilibrium(0, 0) of system (1.1)
Y (d2 + Emgz)?(di + 6 + Emqq) is globally asymptotically stable.
This ends the proof of Theorem 2.1.
where H = 6p — q(dz + Emqa)(dy + § + Emaqy). As a direct corollary of Theorem 2.1, now let's consider

the stabilit ty ofd f th t 1.1), h
The aim of this paper is to investigate the dynamic behav-e stability property of4(0, 0) of the system (1.1), we have

iors of the system (1.3). More precisely, we will investigate.oroliary 2.1. Assume that p < q(dz + E)(d1 +0) holds,
the stability property of the boundary equilibrium in th :

next section and the global stability property of the positi\(;Tehen 0(0,0) of system (1.1) is globally stable.
equilibrium in Section 3, respectively. As a corollary, we wilRemark 2.1. Corollary 2.1 gives the positive answer to the
prove the conjecture, and to give a new proof of the glob&onjecture.

stability of the positive equilibrium of the system (1.1). We

end this paper by a briefly discussion.

IIl. GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM

Concerned with the stability property of the positive

equilibrium E(z*, y*), we have the following result.

Il. GLOBAL STABILITY OF THE BOUNDARY EQUILIBRIUM
Theorem 3.1. Assume that

N q(d2 + Emgs)(d1 + 6 + Emaqy)
)

holds, then system (1.3) admits the unique positive equilib-
rium E(z*,y*), which is globally stable.

Concerned with the global stability of the boundary equi-
librium O(0,0), we have the following result:

Theorem 2.1. Assume that

(3.1)

do + Emas)(dy + 6 + Em Proof. Let E(xz*,y*) be the positive equilibrium of the
ald QZ)((; 0) (2.1)  system (1.3), obvioushyB(z*, y*) satisfies
o y* —dix* —éx" —quEmax* = 0,
holds, then the boundary equilibrium O(0, 0) of system (1.3) q+ax* (3.2)
is globally stable. 5z — doy* — guEmy* = 0,

Proof. Let's consider the Lyapunov function ) )
yap Let’'s consider the Lyapunov function

di+0+qFE — I
Vi(z,y) = o + 1+ :;(h my. (2.2) Va(z,y) = Kl(:z: ¥ —z*Iln x*)
+Kz(y*y**y*1n%)-
One could easily see that the functidn is zero at the Y
boundary equilibriumO(0,0) and is positive for all other One could easily see that the functidrs is zero at the

positive values of:, y. The time derivative o/ (x, y) along positive equilibriumE(z*,y*) and is positive for all other
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positive values oft, y. The time derivative o¥(z, y) along

the trajectories of (1.3) is
DT Va(t)

= Klw 7 (Ly —dix — ox —qlEmac)

T q+x
—l—Kgy_y (5x—d2y—q2Emy)
r—zx* p P
! T q+:ry q+:r*y
+ yfdlx—&z:fqlme)
q+az*
+K2y;y (5$—d2yfq2Emy)
= Ki—L  (z— )2

Y2(q + 2)(g + )

r—z* p
AR (q+a )"

—dixz — 0z — qlEmz)
y—y
Yy

_— _ yp 71,*2
o @)

T — " '4 * *
K ( -

+K> (5$ —day — ngmy)

p *
+———y*x —dix
(q +a )z’ !

f5x—q1me)
y—y
Y

—day — qQEmy)

+ Ko

O o
—(xy* —yx
(¢ )
Y

+6 22
y

From the first equation of (2.1), we have

'4
= (di+46 E *
q+x*y (d1+6 + g Em)z”,

dx* = (d2+ q@Em)y*.

Substituting (3.4) into (3.3), leads to

D5 (t)
yp T — *\ 2
e )

r—x* P
K ( X
T T e

(v@* =)+ 2ty - )

y—y J * L
+Ko ” E(ﬂc(y y) +y(x w))

(3.4)

%) *\2
"SR I
Ya(g+a)ar @ ~a’)
ox . (3.5)
—Ko—(y —y*)?
vy

Klp K25
(g +a*) oy

6 * *
Now let's take Ky = 1, K1 = —*M, then
Yy
DT Va(t)
0 xv(gt ) yp

X
y* p z(q+x)(q +z*)

(3.6)

Therefore,D™V,(t) < 0 strictly for all =,y > 0 except the
positive equilibriumB(a*, y*), where Dt V5 (t) = 0. Thus,
Va(z,y) satisfies Lyapunov's asymptotic stability theorem,
and the positive equilibriunB(z*,y*) of system (1.1) is
globally asymptotically stable.

This ends the proof of Theorem 3.1.

As a direct corollary of Theorem 3.1, concerned with
the global stability of the positive equilibriu®(z*, y*) of
system (1.1), we have the following result.

Corollary 3.1.Assume that

q(d2 + E)(d1 + )
>
)
holds, then the unique positive equilibrium B(z*,y*) is
globally asymptotically stable.

Remark 3.1. As was pointed out in section 1, Liang and
Zhou[19] had proved Theorem B by using the Dulac crite-
rion, here, we prove the Theorem 3.1 by constructing some
suitable Lyapunov function. Noting that system (1.1) is the
special case of system (1.3), hence we can say that we have
proved the Theorem B by using the differential method, and
this method maybe applied to higher dimension ecological
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