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Abstract—The aim of this paper is to define a new distance
measure and apply it in three decision-making methods. First
of all, we use single-valued neutrosophic numbers to describe
the decision-making information, and proposes a new single-
valued neutrosophic distance based on Hamming distance
and Hausdorff distance. According to this new distance, a
new similarity measure is initiated. Then we introduce three
methods, which are TOPSIS, MABAC and similarity measure,
to solve multi-attribute decision-making problem. Among these
methods, the combined weight is obtained by both objective
weight and subjective weight. After that, a numerical example
is applied to figure out a ideal solution. Finally, we compare
this result with other papers and discuss the effectiveness and
reasonability.

Index Terms—Single-valued Neutrosophic Number; TOP-
SIS; MABAC; Similarity Measure ; Multi-Attribute Decision-
Making.

I. INTRODUCTION

DECISION-MAKING means selecting the best alterna-
tives from the feasible alternatives. With the develop-

ment of science, decision-making extends from the single
attribute to multiple attributes. In order to make a proper
decision-making and apply decision-making in the actual
situation, Wang et al. [1]proposed a single-valued neutro-
sophic set (SVNS) and also introduced the set-theoretic
operators of SVNSs. Sodenkamp et al. [2]developed a novel
approach that utilizes single-valued neutrosophic sets (NSs)
to process independent multi-source uncertainty measures
affecting the reliability of experts assessments in group multi-
criteria decision-making (GMCDM) problems. Abdelbasset
et al. [3]modeled the imperfections of various data in smart
cities and then proposed a general framework for processing
imperfect and incomplete information through using SVNS
and rough set theories. On the other hand, many multi-
attribute decision-making(MADM) methods based on SVNS
have been put forward for solving MADM problems.

In order to make a proper decision-making, Hwang and Y-
oon [4]originally introduced the Technique for Order Prefer-
ence by Similarity to an Ideal Solution(TOPSIS) method for
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selecting the appropriate machine. The idea of this method
is that the best alternative should have shortest distance from
the positive-ideal solution and the longest distance from the
negative-ideal solution. And ranking the closeness coefficient
value to choose the best alternative, that is bigger coefficient
value means better solution. Furthermore, Chen [5]proposed
a linguistic decision-making method to solve the multiple
criteria decision-making(MCDM) problem under fuzzy en-
vironment by measuring the distance between two triangular
fuzzy numbers. Tsaur et al. [6] set up a process to identify the
most important attributes of customer service quality and to
obtain customer evaluations of the three airlines on this basis.
Shih et al. [7]proposed a group TOPSIS model for decision-
making without involving the work of weight elicitation in
their study. The weights in their study were given by decision
makers. In addition, consensus and other group interactions
were not discussed interactions in their study. Opricovic and
Tzeng [8]did a comparative analysis of VIKOR and TOPSIS,
and the two methods use different normalizations and differ-
ent aggregating functions for ranking. However, the tradeoffs
involved in normalization were not considered when obtained
the aggregation function. Biswas et al. [9] devoted to present
a new TOPSIS-based approach for multiple attribute group
decision making(MAGDM) under single-valued neutrosoph-
ic environment. Xu et al. [10] used the standard Euclidean
distance and the expectation of neutrosophic number to mea-
sure the correlation between attributes, and defined a novel
TODIM method to choose the best for investment. Chen et
al. [11] presented an ordered weighted averaging distance
applied in TOPSIS method for green supplier selection under
a single-valued neutrosophic linguistic environment. Yang
et al. [12]proposed a novel operational rules of Interval
Neutrosophic Linguistic Sets based on Einstein operations
under interval neutrosophic linguistic environment,to sort
the alternatives in the MCDM problem. Garg et al. [13]
presented a new method to rank the alternatives evaluated
under possibility linguistic single-valued neutrosophic set
domain by the TOPSIS method. Aires et al. [14] conducted
an analysis to define the major cases of ranking inversion
in the literature and identify the main gaps associated with
the TOPSIS method. It seems that the classical TOPSIS is
a good method for solving the MADM problem, but there
are many emerging methods to be put forward in recent
years. Pamuca and Cirovic [15] initiated a Multi-Attributive
Border Approximation area Comparison (MABAC) method
to solve MCDM problem. Peng and Yang [16], [17]proposed
the Pythagorean fuzzy Choquet integral average operator
for solving MAGDM. Xue et al. [18]proposed a MABAC

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_11

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



method for material selection and used the extended group
decision method to sort the alternative materials. Sun et
al. [19]developed a project-based MABAC method with
fuzzy language item sets and extended this method into hesi-
tant fuzzy linguistic environment. Peng and Dai [20]proposed
a new definition of single-valued neutrosophic distance mea-
sure , which can reduce information loss and keep more
original information. In order to avoid the disadvantages of
impractical operations. Yang et al. [21] extended the Nor-
malized Weighted Bonferroni Mean operator to adapt to the
single-valued neutrosophic environment, and analyzed some
ideal properties of the new operator. Ji et al. [22]established
the fuzzy outsourcing supplier selection method. The method
of outsourcing supplier selection uses extended MABAC
to handle single-valued neutrosophic linguistic number-
s(SVNLNs). Jia et al. [23]proposed a new group information
aggregation tool and extended multi-criteria group decision
making(MCGDM) model based on intuitionistic fuzzy rough
number. Different from the above two, a new method for
solving the neutrosophic decision-making problem was pro-
posed by Ye in 2014. He [24]defined similarity measures
based on a new interval neutrosophic distance, which can
be used in practical scientific and engineering applications.
Meanwhile, Ye [25]proposed cross entropy measures of
SVNS for decision making. Liu [26]extened Archimedean
t-conorm and c-norm to SVNNs. Ye et al. [27]proposed
SVNSs similarity measures based on tangent function, and
developed a multi-cycle medical diagnosis method by us-
ing the similarity measure. Ye [28]introduced the concept
of simplified neutrosophic set and defined the operational
laws of SNS. But there was a mistake with the similarity
degree.In order to conquer these shortcomings, Wang et
al. [29] defined a improved similarity measure. Then, Peng
and Dai [20]proposed a new axiomatic distance measure
and similarity measure in the form of SVNN. Aghabozor-
gi et al. [30]proposed a new similarity measure between
two vertices of the network, which is relying on struc-
tural units of online networks named motifs. Redrickson
et al. [31]extended the similarity measure of medical event
sequences using user-defined event weights.

The rest of this article is as follows: In Section 2, single-
valued neutrosophic set are introduced. In Section 3, we
define a new distance and a new similarity measure. In
section 4, we introduce three methods to solve multi-attribute
decision-making problems. In Section 5, A numerical exam-
ple and a comparison analysis are shown to elaborate the
proposed methods. The conclusions are drawn in section 6.

II. PRELIMINARIES OF NEUTROSOPHIC

This section gives a brief overview of concepts and def-
initions of neutrosophic set (NS), and single-valued neutro-
sophic set (SVNS).

Definition 1: [32] Let X be a space of points (objects),
with a class of elements in X denoted by x. A neutrosophic
set A in X is summarized by a truth-membership function
TA(x), an indeterminacy-membership function IA(x), and
a falsity-membership function FA(x).The functions TA(x),
IA(x), FA(x) are real standard or non-standard subsets of
]0−, 1+[. That is TA(x) : X →]0−, 1+ [IA(x) : X →] 0−, 1+

and FA(x) : X →]0−, 1+[.

There is restriction on the sum of TA(x), IA(x) and FA(x),
so 0− ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+. As
mentioned above, it is hard to apply the neutrosophic set to
solve some real problems. Hence, Wang et al. [1]presented
, which is a subclass of the neutrosophic set and mentioned
the definition as follows:

Definition 2: [1] Let X be a space of points (objects),
with a class of elements in X denoted by x. A single-
valued neutrosophic set N in X is summarized by a truth-
membership function TN(x), an indeterminacy-membership
function IN(x), and a falsity-membership function FN(x).
Then a SVNS N can be denoted as follows:

N = {⟨x, TN (x), IN (x), FN (x)⟩x ∈ X} (1)

where TN (x), IN (x), FN (x) ∈ [0, 1] for ∀x ∈ X . Mean-
while, the sum of TN (x), IN (x), and FN (x) fulfills the
condition

0 ≤ TN (x) + IN (x) + FN (x) ≤ 3.

Definition 3: [1] Let x = (Tx, Ix, Fx) and y =
(Ty, Iy, Fy) be two SVNNs, then operations can be defined
as follows:

1. xc = (Fx, 1− Ix, Tx) ;
2. x⊕ y = (Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy) ;
3. x⊗ y = (Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy) ;

4. λx =
(
1− (1− Tx)

λ
, (Ix)

λ
, (Fx)

λ
)
, λ > 0;

5. xλ =
(
(Tx)

λ
, 1− (1− Ix)

λ
, 1− (1− Fx)

λ
)
, λ > 0.

Definition 4: [1] For two SVNNS x = (Tx, Ix, Fx) and
y = (Ty, Iy, Fy) , if x ≤ y then Tx ≤ Ty, Ix ≥ Iy, Fx ≥ Fy.

Definition 5: [24] Let x and y be any two SVNNs, then
the Hamming distance between x and y can be defined as
follows:

dHa(x, y) =
1

3
(|Tx − Ty|+ |Ix − Iy|+ |Fx − Fy|) (2)

Definition 6: [24] Let x and y be any two SVNNs, then
the Euclidean distance between x and y can be defined as
follows:

dE(x, y) =

√
1

3

(
(Tx − Ty)

2
+ (Ix − Iy)

2
+ (Fx − Fy)

2
)

(3)
Definition 7: [10] Let x and y be any two SVNNs, we

can get normalized generalized distance between x and y is

Dg(x, y) =
1

3

(
|Tx − Ty|λ + |Ix − Iy|λ + |Fx − Fy|λ

) 1
λ

(4)
with the condition of λ > 0. When λ = 1, it is the Hamming
distance; whenλ = 2 , it is the Euclidean distance.

Definition 8: [17] Let x = (Tx, Ix, Fx) be a SVNN, then
the proposed score function Sα,β(x) is defined as follows:

Sα,β(x) =
2

3
+

Tx

3
− α

Ix
3

− β
Fx

3
(5)

Definition 9: Let x = (Tx, Ix, Fx) be a SVNN, then the
proposed accuracy function H(x) is defined as follows:

H(x) = Tx − Fx (6)

Definition 10: Let x, y be any two SVNNs, If Sα,β(x) <
Sα,β(y), x < y, when Sα,β(x) = Sα,β(y); If H(x) = H(y)
and then x = y, else if H(x) < H(y) and then x < y.
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III. A NEW SVNN DISTANCE AND SIMILARITY MEASURE

Definition 11: Let x and y be any two SVNNs, then the
normalized single-valued neutrosophic Hausdorff distance
between x and y is

DHd = max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|} (7)

Let x, y and z be any three SVNNs, the above defined
the weighted single-value neutrosophic Hausdorff distance
among x, y and z satisfies the following properties (1)−(4):

(1)DHd(x, y) ≥ 0;
(2)DHd(x, y) = 0 if and only if x = y;
(3)DHd(x, y) = DHd(y, x);
(4)If x ⊆ y ⊆ z, then DHd(x, z) ≥ DHd(x, y) and
DHd(x, z) ≥ DHd(y, z).

Proof : In order for DHd to be qualified as a reasonable
distance measure for SVNSs, it must meet the (1) − (4) of
axiomatic requirements.

For any three SVNNs x = (Tx, Ix, Fx) , y = (Ty, Iy, Fy)
and z = (Tz, Iz, Fz).

(1) |Tx − Ty| ≥ 0, |Ix − Iy| ≥ 0, |Fx − Fy| ≥ 0 was
established. So max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|} ≥ 0.

(2) When DHd(x, y) = 0. We can get that
max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|} = 0, then
|Tx − Ty| = 0, |Ix − Iy| = 0, |Fx − Fy| = 0, that is x = y.
On the other hand, if x = y, it is obvious that DHd(x, y) = 0.

(3) max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|} =
max {|Ty − Tx| , |Iy − Ix| , |Fy − Fx|} because of
|Tx − Ty| = |Ty − Tx| , |Ix − Iy| = |Iy − Ix| , |Fx − Fy| =
|Fy − Fx|, namely DHd(x, y) = DHd(y, x).

(4) If x ⊆ y ⊆ z, then Tx ≤ Ty ≤ Tz, Ix ≥ Iy ≥ Iz
and Fx ≥ Fy ≥ Fz , hence |Tx − Tz| ≥ |Tx − Ty| ,
|Ix − Iz| ≥ |Ix − Iy| and |Fx − Fz| ≥ |Fx − Fy|, so
max {|Tx − Tz| , |Ix − Iz| , |Fx − Fz|} ≥
max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|}, Consequently
DHd(x, z) ≥ DHd(x, y). Similarly, DHd(x, z) ≥
DHd(y, z). This completes the proof.

Definition 12: The normalized generalized single-valued
neutrosophic Hausdorff distance between x and y is

DgHd = max {|Tx − Ty|µ , |Ix − Iy|µ , |Fx − Fy|µ}
1
µ (8)

µ > 0, when µ = 1, 2, · · · , it is the Hausdorff distance. we
get DHd = DgHl with any two SVNNS.

Definition 13: The weighted parameter single-valued neu-
trosophic distance between x and y is

Dwp(x, y) = vDg(x, y) + (1− v)DHd(x, y)

= v
3

(
|Tx − Ty|λ + |Ix − Iy|λ + |Fx − Fy|λ

) 1
λ

+(1− v)max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|}
(9)

where λ > 0, and 0 ≤ v ≤ 1.
It is easy to prove that the definition is valid, and the proof
process is omitted. If we set λ = 1 , then we can get
the weighted parameter from the Hamming and Hausdorff
single-valued distance which is described as follows:

DwHH(x, y) = vDHa(x, y) + (1− v)DHd(x, y)
= v

3 (|Tx − Ty|+ |Ix − Iy|+ |Fx − Fy|)
+(1− v)max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|}

(10)

Definition 14: Let x, y and z be any three SVNNs,
S(x, y) is a similarity measure

S(x, y) = 1−DwHH(x, y)
= 1− v

3 (|Tx − Ty|+ |Ix − Iy|+ |Fx − Fy|)
−(1− v)max {|Tx − Ty| , |Ix − Iy| , |Fx − Fy|}

(11)

It possesses the following properties:

(1)0 ≤ S(x, y) ≤ 1;
(2)S(x, y) = 1 if and only if x = y
(3)S(x, y) = S(y, x);
(4)If x ⊆ y ⊆ z, then S(x, z) ≤ S(x, y) and

S(x, z) ≤ S(y, z).

It can be proved that the properties are valid, and the proof
process is omitted.

Based on the above fundamental knowledge, we develop
three practical methods for sloving MADM problem with
SVN information.

IV. THREE METHODS FOR SLOVING MADM PROBLEM

In this section, we will introduce three methods to solve
MADM problems.

A. Problem description

There is a DADM problem: let A = {A1, A2, · · · , Am}
be a discrete set of alternatives, C = {C1, C2, · · · , Cn} be a
series of attributes, and W = {W1,W2, · · · ,Wn} be weight
vector assigned for the attributes by the decision makers with
wj ∈ [0, 1],

∑n
j=1 wj = 1. Assume that the evaluation of the

alternative Ai with respect to attribute Cj is represented by
SVN matrix.

R = (rij)m×n = (Tij , Iij , Fij)m×n (12)

B. Determination of weights

In this part, we obtain the attribute weights by the method
in [20]. We can get the score function S = (sij)mon (i =
1, 2, · · · ,m; j = 1, 2, · · ·n) of single-valued neutrosophic
matrix by eq. (5). Let si = 1

n

∑n
j=1 sij , then the objective

weights ωj are defined as follows:

ωj =
1− 1

m

(∑m
i=1

(
oqij
)) 1

q

n− 1
m

∑n
j=1

(∑m
i=1

(
oqij
)) 1

q

(13)

Let oij =
mini|sij−si|+ξmaxi|sij−si|

|sij−si|+ξmaxi|sij−si| is gray mean relational
degree, in general, we set ξ = 0.5. The objective weight
ω = {ω, ω2, · · · , ωn} , are obtained by Eq. (13) directly,
where

∑n
j=1 ωj = 1, 0 ≤ ωj ≤ 1. Meanwhile the subjective

weights w = {w1, w2, · · · , wn} , are given by the decision
makers directly, where

∑n
j=1 wj = 1, 0 ≤ wj ≤ 1.

Therefore, the final weights ϖ = {ϖ1, ϖ2, · · · , ϖn} can
be defined as follows:

ϖj =
wj ∗ ωj∑n
j=1 wj ∗ ωj

(14)

where
∑n

j=1 ϖj = 1, 0 ≤ ϖj ≤ 1.

C. The steps of three methods

We will briefly introduce the TOPSIS, MABAC, similarity
method based on new distance measure of SVNN.
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1) TOPSIS: Step 1. Identify the alternatives and attributes,
and obtain the single-valued neutrosophic matrix

R = (rij)m×n =
(
Tij , Iij , Fj̃

)
m×n

(i = 1, 2, · · · ,m; j = 1, 2, · · ·n).

Step 2. Normalize the single-valued neutrosophic decision
matrix R = (rij)m×n (i = 1, 2, · · · ,m; j = 1, 2, · · · , n) into
R = (rij)m×n =

(
Tij , Iij , Fij

)
m×n

.

rij =

{
(Tij , Iij , Fij) Cj is benefit attribute
(Fij , 1− Iij , Tij) Cj is cost attribute

Step 3. Compute relative weight ϖj of attribute Cj by Eq.
(14) .

Step 4. Determine the single-valued neutrosophic positive-
ideal solution (SVN-PIS) R+ and the single-valued neutro-
sophic negative-ideal solution(SVN-NIS) R− by Eqs. (15)
and (16).

R+ =
{
r+1 , r

+
2 , · · · , r+n

}
(15)

where r+j =
(
T+
j , I+j , F+

j

)
(j = 1, 2, · · · , n), and T+

j =

maxi {Tij} , I+j = mini {Iij} , F+
j = mini {Fij}

R− =
{
r−1 , r

−
2 , · · · , r−n

}
(16)

where r−j =
(
T−
j , I−j , F−

j

)
(j = 1, 2, · · · , n), and T−

j =

mini {Tij} , I−j = maxi {Iij} , F−
j = maxi {Fi}. R+ is

single-valued neutrosophic positive-ideal solution (SVN-PIS)
and R−is single-valued neutrosophic negative-ideal solution
(SVN-NIS). It can be obtained that the optimal solution
should have the shortest distance from the SVN-PIS and the
farthest distance from the SVN-NIS, simultaneously.

Step 5. Compute the difference of each alternative from
the SVN-PIS d+i and SVN-NIS d−i by Eqs. (17)and (18),
respectively.

d+i =

n∑
j=1

wj ∗DwHH

(
rij , R

+
)
, i = 1, 2, · · · ,m (17)

d−i =

n∑
j=1

wj ∗DwHH

(
rg⃗, R

−) , i = 1, 2, · · · ,m (18)

Step 6. Compute the closeness coefficient Ci of each
alternative by Eq. (19).

Ci =
d−i

d+i + d−i
, i = 1, 2, · · · ,m (19)

Step 7. Rank these alternatives according to the value of
Ci and choose the best one with the maximum of Ci .

2) MABAC: Steps 1 − 3. It is the same as the TOPSIS
method.

Step 4. Compute the weighted matrix T = (tij)m×n by
Eq .(20)

tij =
(
T ′
ij , I

′
ij , F

′
ij

)
= ϖjrij

=
(
1−

(
1− Tij

)ϖj
,
(
Iij
)ϖj

,
(
Fij

)ϖj
)

(20)

Step 5. Compute the border approximation area (BAA)
matrix G = (gj)1×n. The BAA for each attribute is obtained
by Eq. (21).

gj =

m∏
i=1

(tij)
1/m

=

(
m∏
i=1

(
T ′
ij

)1/m
, 1−

m∏
i=1

(
I ′ij
)1/m

, 1−
m∏
i=1

(
F ′
ij

)1/m) (21)

TABLE I
THE SINGLE-VALUED NEUTROSOPHIC MATRIX R = (rij)5×3

C1 C2 C3

A1 (0.0,0.0,0.0) (1.0,0.0,0.0) (0.0,0.0,1.0)
A2 (0.0,0.1,0.1) (0.9,0.1,0.2) (0.4,0.2,0.2)
A3 (0.1,0.1,0.1) (0.9,0.2,0.3) (0.5,0.3,0.2)
A4 (0.3,0.0,0.1) (1.0,0.1,0.2) (0.4,0.3,0.2)
A5 (0.0,0.1,0.0) (0.9,0.1,0.2) (0.4,0.3,0.2)

Step 6. Compute the distance matrix D = (dij)m×n by
Eq. (22).

dij =

 dwHH (tij , gj) , if tij > gj
0, if tij = gj
−dwHH (tij , gj) , if tij < gj

(22)

Step 7. Rank the alternatives by Qi, where

Qi =

n∑
j=1

dij , i = 1, 2, · · · ,m; j = 1, 2, · · · , n (23)

The most desired alternative is the one with the maximum
value of Qi .

3) similarity measure: Steps 1 − 3. It is the same as the
TOPSIS method.
Step 4. Calculate the ideal solution A∗

j =
(
T+
j , I+j , F+

j

)
(j =

1, 2, · · · , n) ,where T+
j = maxi {Tij} , I+j = mini {Iij} ,

F+
j = mini {Fij}. And then compute the similarity measure

S
(
Aij , A

∗
j

)
(i = 1, 2, · · · ,m, j = 1, 2, · · · , n) by Eq. (11).

Step 5. Compute the weight similarity measure S (Ai, A
∗)

by Eq.(24).

S (Ai, A
∗) =

n∑
j=1

ϖ∗
jS
(
Aij , A

∗
j

)
(i = 1, 2, · · · ,m) (24)

Step 6. Rank the alternatives by S (Ai, A
∗) (i = 1, 2, · · ·

,m). The most desired alternative is the one with the biggest
value of S (Ai, A

∗).

V. NUMERICAL EXAMPLE

In this section, a numerical example is given to illustrate
the feasibility of the three proposed methods. The decision-
making problem is a municipal library selection problem
with incomplete weight information. A city is going to build
a municipal library. The choice of air-conditioning system
in the library is one of the problem for the city develop-
ment commissioner. The contractor provides five feasible
alternatives Ai(i = 1, 2, 3, 4, 5) for library. Supposing that
three attributes C1( economic ), C2( functional ) , and C3

(operational), the subjective weight of the attribute Cj(j =
1, 2, 3) is w = (0.5, 0.2, 0.3)T . Meanwhile,the attributes are
all benefit attribute. Assume that the Ai(i = 1, 2, 3, 4, 5)
under Cj(j = 1, 2, 3) are represented by the single-valued
neutrosophic matrix R = (rij)5×3 = (Tij , Iij , Fij)5×3 , see
Table 1.

A. Application of TOPSIS

Step 1. The single-valued neutrosophic decision matrix
R = (rij)5×3 = (Tij , Iij , Fij)5×3 which is shown in Table
1.
Step 2. Because all of the attributes are benefit attributes, so
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TABLE II
THE SCORE FUNCTION MATRIX OF S0.2,0.4 = (sij)5×3

C1 C2 C3

A1 0.6667 1.0000 0.5333
A2 0.6467 0.9333 0.7600
A3 0.6800 0.9133 0.7867
A4 0.7533 0.9677 0.7533
A5 0.6600 0.9333 0.7533

TABLE III
(oij)5×3

C1 C2 C3

A1 1.0000 0.6333 0.3556
A2 0.6667 0.8837 0.8889
A3 0.7407 1.0000 1.0000
A4 0.9677 0.9048 0.6400
A5 0.7059 0.8906 0.8276

TABLE IV
THE d+i OF DIFFERENT VALUE OF v

V d+1 d+2 d+3 d+4 d+5
0.1 0.4307 0.2356 0.2274 0.1815 0.2707
0.3 0.5134 0.2949 0.2939 0.2085 0.3202
0.5 0.5526 0.3271 0.3210 0.2192 0.3430
0.7 0.5919 0.3592 0.3481 0.2298 0.3658
0.9 0.6312 0.3914 0.3752 0.2405 0.3886

TABLE V
THE d−i OF DIFFERENT v

V d−1 d−2 d−3 d−4 d−5
0.1 0.1957 0.4052 0.3435 0.4449 0.3421
0.3 0.2332 0.3913 0.4199 0.5380 0.4263
0.5 0.2509 0.4334 0.4592 0.5843 0.4605
0.7 0.2686 0.4755 0.4985 0.6307 0.4947
0.9 0.2864 0.5176 0.5378 0.6771 0.5290

it is no need to normalize.
Step 3. compute the score function matrix S0.2,0.4 =
(sij)5×3, ,see Table 2. And get S1 = 0.73333, S2 =

0.7800, S3 = 0.7933, S4 = 0.8244, S5 = 0.7822. Then we
calculate (oij)5×3, see Table 3. Next, the objective weights
are obtained by eq.(13):

ω1 = 0.3175, ω2 = 0.2376, ω3 = 0.4449.

Finally, we can get the final weight by combining the
objective weights and subjective weights:

ϖ1 = 0.4673, ϖ2 = 0.1399, ϖ3 = 0.3928.

Step 4 Determine the SVN-PIS R+ and SVN-NIS R−by
Eqs. (15) and (16), get

R+ = {⟨0.3, 0.0, 0.0⟩, ⟨1.0, 0.0, 0.0⟩, ⟨0.5, 0.0, 0.2⟩}
R− = {⟨0.0, 0.1, 0.1⟩, ⟨0.9, 0.2, 0.3⟩, ⟨0.0, 0.3, 1.0⟩}

Step 5 Compute the difference of each alternative from the
SVN-PIS d+i shows in Table 4 and SVN-NIS d−i shows in
Table 5 by Eqs. (17) and (18), the results are shown as
follows:

Step 6. Calculate the closeness coefficient Ci of each
alternative by Eq. (19), see Table 6.

TABLE VI
THE C+

i OF DIFFERENT VALUE OF v

V C1 C2 C3 C4 C5

0.1 0.3125 0.6323 0.6017 0.7103 0.5582
0.3 0.3123 0.5702 0.5883 0.7207 0.5711
0.5 0.3122 0.5699 0.5885 0.7272 0.5731
0.7 0.3122 0.5696 0.5888 0.7329 0.5749
0.9 0.3121 0.5694 0.5890 0.7379 0.5765

TABLE VII
RANKING ORDER AND THE FINAL CHOICE

v Ranking Order FC

0.1 A4 > A2 > A3 > A5 > A1 A4

0.3 A4 > A3 > A5 > A2 > A1 A4

0.5 A4 > A3 > A5 > A2 > A1 A4

0.7 A4 > A3 > A5 > A2 > A1 A4

0.9 A4 > A3 > A5 > A2 > A1 A4

TABLE VIII
THE WEIGHED SVN MATRIX T = (tij)5×3

C1 C2 C3

A1 (0.0000,0.0000,0.0000) (1.0000,0.0000,0.0000) (0.0000,0.0000,1.0000)

A2 (0.0000,0.7246,0.4048) (0.6590,0.7246,0.5314) (0.2124,0.7984,0.5314)

A3 (0.0480,0.7246,0.4048) (0.6590,0.7984,0.6231) (0.2767,0.8450,0.5314)

A4 (0.1535,0.0000,0.4048) (1.0000,0.7246,0.5314) (0.2124,0.8450,0.5314)

A5 (0.0000,0.7246,0.0000) (0.6590,0.7246,0.5314) (0.2124,0.8450,0.5314)

TABLE IX
THE SVN MATRIX D = (dij)5×3 BY v = 0.1,

C1 C2 C3

A1 0.5117 0.6441 0.7119
A2 -0.1781 -0.1154 0.4456
A3 -0.1797 -0.1440 0.4493
A4 0.5125 0.2104 0.4472
A5 0.2559 -0.1154 0.4472

Step 7. The final ranking: FC denotes the final choice
which is shown in Table 7. Clearly, the best alternative is
A4. We can find the different ranking order with different
value of v. And with the increasing of v, the gap between
alternatives can be bigger and bigger. If the difference of
alternatives are not obvious, it can be easy to choose the
best choice when we increase the value of v. Meanwhile, it
shows that the final choice is fixed.

B. Application of MABAC

Step 1− 3. It is the same as the TOPSIS section.
Step 4. Calculate the weighted matrix T = (tij)5×3 by

Eq. (20), which is shown in Table 8.
Step 5. The BAA G = (gj)1×3 is determined according

to the Eq. (21), we can get

g1 = (0.0000, 0.5387, 0.2675)
g2 = (0.7786, 0.6651, 0.4479)
g3 = (0.0000, 0.7628, 1.0000).

Step 6. Calculate the distance matrix D = (dij)5×3 by Eq.
(22) with different value of v, when v = 0.1, D = (dij)5×3
is shown in Table 9.

when v = 0.3, D = (dij)5×3 is shown in Table 10.
when v = 0.5, D = (dij)5×3 is shown in Table 11.
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TABLE X
THE SVN MATRIX D = (dij)5×3 BY v = 0.3,

C1 C2 C3

A1 0.6190 0.8749 0.7628
A2 -0.2271 -0.1535 0.5230
A3 -0.2415 -0.2211 0.5762
A4 0.6259 0.2553 0.5569
A5 0.3232 -0.1535 0.5569

TABLE XI
THE SVN MATRIX D = (dij)5×3 BY v = 0.5,

C1 C2 C3

A1 0.6725 1.0148 0.7628
A2 -0.2545 -0.1761 0.5925
A3 -0.2786 -0.2717 0.6480
A4 0.6841 0.2779 0.6158
A5 0.3605 -0.1761 0.6158

TABLE XII
THE SVN MATRIX D = (dij)5×3 BY v = 0.7,

C1 C2 C3

A1 0.7260 1.1546 0.7628
A2 -0.2820 -0.1987 0.6421
A3 -0.3156 -0.3223 0.7198
A4 0.7422 0.3005 0.6748
A5 0.3976 -0.1987 0.6748

TABLE XIII
THE SVN MATRIX D = (dij)5×3 BY v = 0.9,

C1 C2 C3

A1 0.7795 1.2944 0.7628
A2 -0.3094 -0.2213 0.6917
A3 -0.3527 -0.3728 0.7916
A4 0.8004 0.3231 0.7337
A5 0.4348 -0.2213 0.7337

TABLE XIV
THE VALUE OF Qi

v Q1 Q2 Q3 Q4 Q5

0.1 1.8677 0.1522 0.1256 0.8184 0.5877
0.3 1.6700 0.1303 0.1020 0.7439 0.5300
0.5 1.4722 0.1083 0.0784 0.6693 0.4722
0.7 1.2744 0.0864 0.0548 0.5948 0.4145
0.9 1.0769 0.0645 0.0312 0.5203 0.3568

when v = 0.7, D = (dij)5×3 is shown in Table 12.
when v = 0.9, D = (dij)5×3 is shown in Table 13.
Step 7. Compute the value of Qi(i = 1, 2, · · · ,m), which

is shown in Table 14. Then rank the alternatives by Qi(i =
1, 2, · · · ,m) and obtain the final choice, which is shown in
Table 15.

The best alternative is A1, which is different from TOPSIS
method. We can also find that the ranking order and final
choice are not changed with different value of v .

C. Application of similarity measure

Step 1− 3. It is the same as the TOPSIS section.

TABLE XV
THE RANKING ORDER AND FC

v Ranking Order FC

0.1 A1 > A4 > A5 > A2 > A3 A1

0.3 A1 > A4 > A5 > A2 > A3 A1

0.5 A1 > A4 > A5 > A2 > A3 A1

0.7 A1 > A4 > A5 > A2 > A3 A1

0.9 A1 > A4 > A5 > A2 > A3 A1

TABLE XVI
THE WEIGHT SIMILARITY MEASURE S∆ (Ai, A

∗) (i = 1, 2, · · · ,m)

v S
(
A1, A∗)

S
(
A2, A∗)

S
(
A3, A∗)

S
(
A4, A∗)

S
(
A5, A∗)

0.1 0.5721 0.7647 0.7623 0.8232 0.7340

0.3 0.6168 0.7865 0.7838 0.8406 0.7598

0.5 0.6643 0.8087 0.8086 0.8628 0.7903

0.7 0.7118 0.8309 0.8333 0.8849 0.8209

0.9 0.7593 0.8531 0.8581 0.9070 0.8514

TABLE XVII
THE RANKING ORDER AND FC

v Ranking Order FC

0.1 A4 > A2 > A3 > A5 > A1 A4

0.3 A4 > A2 > A3 > A5 > A1 A4

0.5 A4 > A2 > A3 > A5 > A1 A4

0.7 A4 > A3 > A2 > A5 > A1 A4

0.9 A4 > A3 > A2 > A5 > A1 A4

Step 4. It is easy to get A∗
1 = (0.0, 0.0, 0.0), A∗

2 =
(1.0, 0.1, 0.0), A∗

3 = (0.5, 0.0, 0.2). When v = 0.1 we can
get that

S (A11, A
∗
1) = 0.72, S (A12, A

∗
2) = 1.00, S (A13, A

∗
3) = 0.24,

S (A21, A
∗
1) = 0.71, S (A22, A

∗
2) = 0.81, S (A23, A

∗
3) = 0.81,

S (A31, A
∗
1) = 0.81, S (A32, A

∗
2) = 0.71, S (A33, A

∗
3) = 0.72,

S (A41, A
∗
1) = 0.91, S (A42, A

∗
2) = 0.81, S (A43, A

∗
3) = 0.72,

S (A51, A
∗
1) = 0.72, S (A52, A

∗
2) = 0.81, S (A53, A

∗
3) = 0.72.

We can use the same way to calculate the similarity measure
when v = 0.3, 0.5, 0.7, 0.9.

Step 5. Calculate the weight similarity measure
S∆ (Ai, A

∗) (i = 1, 2, · · · ,m) by Eq.(24), which is
shown in Table16.

Step 6. Rank the alternatives by S∆ (Ai, A
∗) (i =

1, 2, · · · ,m), which is shown in Table 17.
So the best choice is A4. We can find that the ranking

order is variational with different value of v, but the final
choice is fixed, which is the same with TOPSIS method.

D. A comparison analysis

In order to better verify the practicability of the multi-
attribute decision making methods based on TOPSIS,
MABAC and similarity measure of SVNNs and compared
with the existing methods.The decision data adopts [33].
If the existing methods in Ye [24], [25], Biswas et al. [9],
Liu [26], Li et al. [34], Peng et al. [20], and the proposed
three methods are utilized to solve the MADM problem in
this example, then the results can be obtained and shown
in Table 18. From the results shown in Table 17, we can
easy to find some interesting things. We can get various
answers when we use different methods to solve the same
question. Meanwhile, even the same author can get different
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TABLE XVIII
A COMPARISON ANALYSIS

Method The Ranking Order FC

Ye [24] A4 > A2 > A5 > A1 > A3 A4

Ye [25] A4 > A3 > A5 > A1 > A2 A4

Biswas et al. [9] A4 > A3 > A2 > A5 > A1 A4

Liu [26] A1 > A4 > A5 > A3 > A2 A1

Li et al. [34] A4 > A3 > A5 > A1 > A2 A4

Peng et al. [20] A4 > A3 > A5 > A2 > A1 A4

Peng et al. [20] A4 > A1 > A5 > A2 > A3 A4

Method 1(v=0.1) A4 > A2 > A3 > A5 > A1 A4

Method 1(v=0.1) A4 > A3 > A5 > A2 > A1 A4

Method 2 A1 > A4 > A5 > A2 > A3 A1

Method 1(v=0.1) A4 > A2 > A3 > A5 > A1 A4

Method 1(v=0.9) A4 > A3 > A2 > A5 > A1 A4

results. From the results we can find that different parameter
maybe get various final ranking, but we can get the same
optimal alternative. All of the methods get the same optimal
alternative except method 2 and Liu [26]. Coincidentally,
their results were very similar to each other.

VI. CONCLUSION

We consider a new distance in SVNNs distance, which
includes weight parameter. Firstly we define some ba-
sic knowledge of the SVN, which is involving TOPSIS,
MABAC, and similarity measure. Secondly, we introduce
these three methods, which can efficaciously solve decision-
making problems with the inconsistent information. Then we
give a numerical example and use these three methods to
solve this question and get the final choice from these three
methods. We can find that the ranking order maybe have
a little change, but the final choice is fixed. It shows that
when we change the value of v, which means changing the
weight of the two distances in the combined distance, we can
get the same result. We can further deduce whether all the
distance formulas will get the same result when calculating
the distance, so when we encounter the distance calculation
in the future, we can use the simplest distance calculation
method to calculate the distance between the two SVNNs.
This hypothesis deserves further examination. Finally, we do
a comparison analysis with others who solved this example
before. We can inspection the hypothesis by more parameters
for combined distance and use this distance to solve other
questions in the interval neutrosophic sets in the future.
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