
Consecutive Detecting Arrays from m-Sequences
Ce Shi, Member, IAENG, and Aiyuan Tao

Abstract—Linear feedback shift register (LFSR) sequences
are sequences of elements of a finite field that satisfy some linear
recurrence relations. LFSR sequences that attain maximum
possible periods are called maximal (period) sequences, often
abbreviated as m-sequences. Arrays constructed from cyclic
shifts of m-sequences possess rich combinatorial properties and
have previously been used in the construction of (ordered)
orthogonal and covering arrays. We propose the notion of con-
secutive detecting arrays for generating test suites for locating
and detecting interaction faults between neighboring factors in
combinatorial interaction testing. In this paper, we explain the
construction of a class of consecutive detecting arrays from m-
sequences and illustrate their use through concrete examples.
Furthermore, we show some consecutive detecting arrays with
minimum size for practical use.

Index Terms—Neighbor combinatorial testing, consecutive
detecting arrays, LFSR sequences, m-sequence, construction.

I. INTRODUCTION

WE denote the set of the first n positive integers by In.
A covering array (CA) of size N , strength t, degree

k and order v, denoted by CA(N ; t, k, v), is an N × k array
with entries from a set V of v symbols such that in any t
columns of the array all t-tuples in V t occur as rows at least
once.

The study of CAs is primarily motivated by their applica-
tions in generating test suites for combinatorial interaction
testing (CIT) [1], [2]. Combinatorial interaction testing is a
testing strategy for achieving high fault detection capability
with a small number of tests. Specifically, a test suite repre-
sented as a t-way CA ensures every combination of values
of any t parameters is tested at least once. In recent years,
as noted in [3], [4], testing has played an important role
in component-based systems. Considering the complexity
of systems, the number of possible tests can be exponen-
tially large. Interactions among components are complex
and numerous. Thus, components are prone to unexpected
interaction faults. Ideally, one would test all possible inter-
actions (called exhaustive testing or complete testing), but
the testing burden would be extremely heavy, even when the
system is of moderate complexity. Thus, exhaustive testing
is often not feasible. Consequently, generating test suites that
provide coverage of the most prevalent interactions provides
a more feasible path. A primary combinatorial object that

Manuscript received June 18, 2019; revised September 26, 2019. This
work was supported in part by the National Natural Science Foun-
dation of China(11301342), the Natural Science Foundation of Shang-
hai(17ZR1419900) and Ministry of Education in China Project of Human-
ities and Social Sciences for Youth Scholars(19YJCZH031)

Ce Shi is with the School of Statistics and Mathematics, Shanghai Lixin
University of Accounting and Finance, Shanghai 201209, China. E-mail:
shice060@lixin.edu.cn.

Aiyuan Tao is with the School of International Economics and Trade,
Shanghai Lixin University of Accounting and Finance, Shanghai 201209,
China. E-mail: taoaiyuan@126.com.

Corresponding author: Aiyuan Tao. (taoaiyuan@126.com).

TABLE I
CONFIGURATION PARAMETERS FOR NGS

Parameter Values
F1 Browser Netscape IE Firefox
F2 OS Win Linux Mac
F3 Access ISDL Modem VPN
F4 Audio Creative Digital Maya

satisfies the coverage criteria is covering arrays. In fact,
problems faced in software interaction testing are not limited
to software; rather, they are present in similar forms in other
disciplines such as agriculture, manufacturing, and medicine.
For more details, readers are referred to [3], [5], [6] and the
references therein. CAs usually take an input of integer t
to ensure that all interactions on t parameter values (i.e.,
t-way interactions), instead of all combinations of system
parameter values, can be tested at least once. This property
of CAs significantly reduces the testing cost when compared
to exhaustive testing.

Table I shows an example of system under testing (SUT)
models from [1]. The Network Game Software (NGS) has
four components: Browser, OS, Access, and Audio, each of
which can take one of three different values. A complete test
would require 34 = 81 tests. Table II gives a 2-way CA for
the SUT. The CA represents a test suite comprising of ten
tests. Every combination of two components appears at least
once in the array. The advantage of CIT is that it can detect
failures triggered by the interactions among parameters in
SUT.

Covering arrays have been widely studied in recent
decades. The terminology “covering array” was proposed by
Sloane as a generalization of orthogonal arrays [8]. There are
also various equivalent formulations, for example, transversal
covers [9]. The main techniques for finding a covering
array include direct constructions employing mathematical
and information-theoretic structures, recursive constructions
for creating large covering arrays from smaller ones, prob-
abilistic methods and stochastic algorithms, and computa-
tional methods based on (heuristic) search algorithms. The
algorithms include stimulation annealing (SA), genetic algo-
rithms (GAs), and particle swarm optimization (PSO) [10],
[11], [12], [13]. GAs and PSO have many applications in
engineering and science, such as predicting product [14],
route optimization of non-holonomic leader–follower control
[15].

When using a CA(N ; t, k, v) to generate test suites, the
columns of the CA represent factors affecting response and
the entries within the columns denote settings or values of
the factor. The rows represent tests to be run for the values
of each factor specified. It is a valuable step in screening
a system for interaction faults prior to its release. However,
testing with a CA provides little information to assist in the
correction of interaction faults. For example, suppose that
all the tests in Table II were executed and that all tests

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

TABLE II
A CA(10; 2, 4, 3) FOR THE SUT IN TABLE I

Test Case F1 F2 F3 F4

1 Netscape Win ISDL Creative
2 Netscape Linux Modem Digital
3 Netscape Mac VPN Maya
4 IE Win Modem Maya
5 IE Linux VPN Creative
6 IE Mac ISDL Digital
7 Firefox Win VPN Digital
8 Firefox Linux ISDL Maya
9 Firefox Mac Modem Creative
10 IE Win Modem Creative

were passed except the fourth test. The failed test contains
six 2-way interactions, namely, (IE, Win), (IE, Modem),
(IE, Maya), (Win, Modem), (Win, Maya), and (Modem,
Maya). Three of the six interactions, namely, (IE, Win),
(IE, Modem), and (Win, Modem), can be safely excluded
from the candidates because they occur in the 10th passed
test. However, it is impossible to determine which of the
remaining three interactions triggered the failure.

Practically, tests to reveal the location of interaction faults
are of interest. Colbourn and McClary [7] formalized the
problem of a nonadaptive location of interaction faults under
the hypothesis that a system contains (maximum) some d
number of faults, each involving (maximum) some t number
of interacting factors. They proposed the notion of detecting
arrays (DAs) to solve this problem. A DA that has parameters
d and t is denoted by (d, t)-DA. Roughly speaking, when
a SUT model is given, if there exist d or fewer faulty t-
way interactions, testing with (d, t)-DA can determine their
existence and locate which interactions are faulty; if there
exist more than d faulty t-way interactions, (d, t)-DA can
return specific results to indicate that the number of faulty
interactions is more than d.

Table III presents a (1, 2)-DA for the SUT in Table I. From
the test outcome, one can determine any faulty interaction
when there is exactly one faulty interaction and t = 2. If
there is more than one faulty interaction and t = 2, these
interactions can be also detected. For example,

• If test cases #1 and #4 fail while the others pass, then
we can locate ((Browser, Netscape), (OS, Win)) as the
faulty interactions because they are the only 2-way
interactions that appear in both failed test cases.

• If test cases #1, #4, #7, and #17 fail while the oth-
ers pass, then we cannot locate ((Browser, Netscape),
(OS, Win)) as the faulty interactions because ((OS,
Win),(Access, ISDL)) may also give rise to faults. Thus,
we know that the faulty interaction is more than 1. In
fact, only the faulty interaction ((Browser, Netscape),
(Audio, Maya)) can be determined from the outcome
of the tests.

In real-world systems, there usually exist dependent re-
lations between system parameters and their values, i.e.,
system constraints. System constraints usually originate from
the requirements of the system, physical restrictions for
systems, etc. Godbole et al. [16] introduced the consecutive
covering array (CCA), where the columns capture some
linear progression data (for example, data across a series of
consecutive dates) or data organized by consecutive proxim-
ity (for example, consecutive switches in a circuit). CCAs can

TABLE III
A (1, 2)-DETECTING ARRAY FOR THE SUT IN TABLE I

Test Case Browser OS Access Audio
1 Netscape Win ISDL Creative
2 IE Linux Modem Digital
3 Firefox Mac VPN Maya
4 Netscape Win Modem Maya
5 IE Linux VPN Creative
6 Firefox Mac ISDL Digital
7 Netscape Linux VPN Maya
8 IE Mac ISDL Creative
9 Firefox Win Modem Digital
10 Netscape Linux ISDL Digital
11 IE Mac Modem Maya
12 Firefox Win VPN Creative
13 Netscape Mac Modem Creative
14 IE Win VPN Digital
15 Firefox Linux ISDL Maya
16 Netscape Mac VPN Digital
17 IE Win ISDL Maya
18 Firefox Linux Modem Creative

be regarded as a variant of CAs. For example, NGS may be
influenced by the neighbor configuration parameters, i.e., the
failures may be triggered by interactions among neighboring
parameters in SUT. This is a special case of software systems
with some combinations that need not be tested [17].

Analogous to CAs, CCAs can generate test suites for
combinatorial testing of neighboring factors to indicate the
presence or absence of faulty interactions. However, they
cannot identify or determine the faulty interactions from the
outcomes of the tests. Although DAs can be used to locate
and detect interaction faults between neighboring factors,
they are not well adapted for this kind of software testing.
For example, some DAs with minimum sizes do not exist for
fixed t, k, v [18], [19], but the optimum arrays for locating
and detecting interaction faults between neighboring factors
may exist. Moreover, combinatorial testing of neighboring
factors only considers consecutive interactions rather than
arbitrary interactions. To solve this problem, Shi et al.
[20] proposed a similar family of DAs, called consecutive
detecting arrays (CDAs), which consider the interactions
between factors as ordered. A general criterion for measuring
the optimality of CDAs in terms of their size was established.
Based on this optimality criterion, the equivalence between
optimum CDAs and consecutive orthogonal arrays with pre-
scribed properties was explored. Following this equivalence,
a large number of optimum CDAs was presented. In partic-
ular, the existence of optimum CDAs with a few factors was
almost completely determined.

In this paper, a class of CDAs constructed from m-
sequences is presented, and some optimum CDAs are ob-
tained. The optimum CDAs obtained from the m-sequences
have large numbers of factors, making them readily available
for real-world applications.

The remainder of this paper is organized as follows. In the
next section, we review basic definitions of CCAs, COAs,
DAs, and CDAs. The equivalence between CDAs and COAs
is also discussed in this section. Section 3 presents some
basic notions and properties of the m-sequences used to
construct CDAs. In Section 4, we present a technique to
design optimal CDAs from m-sequences. Some examples are
given to illustrate this approach and consequently to deduce
some optimum CDAs. Finally, in Section 5, we provide some

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

conclusions.

II. PRELIMINARIES

In this section, preliminaries for the field of CIT are
discussed. First, some basic definitions of SUT, i.e., test
cases and interactions, etc., are introduced. By defining
the interactions, the definitions of CCAs, COAs, DAs, and
CDAs are given. Finally, the lower bound and combinatorial
characteristics for CDAs are presented.

A. SUT, test cases and (consecutive) t-way interactions

In the field of CIT, the objective system can be described
as a SUT model. A SUT with k parameters (variables) can be
represented by (F, V), where F = (F1, F2, · · · , Fk) is the set
of parameters in this system and V = (V1, V2, · · · , Vk) con-
sists of the set Vi of associated values for Fi(i = 1, 2, · · · , k).
A test case is a k-tuple (v1, v2, · · · , vk) such that vi ∈ Vi
for 1 ≤ i ≤ k. A collection of test cases is referred to as a
test suite.

Let A = (aij)(i ∈ IN , j ∈ Ik) be an N × k array with
entries from an alphabet V of size v. Each t-set of columns is
called a t-way interaction, denoted by T = {(jr, xr) : xr ∈
V, 1 ≤ r ≤ t}. The t-way testing strategy requires testing
every t-way interaction unless it is not testable. We write
ρ(A, T) for the set of indices of rows of A that cover T , i.e.,
ρ(A, T) = {i : aijr = xr, 1 ≤ r ≤ t}. For an arbitrary set T
of interactions, define ρ(A, T) = ∪T∈T ρ(A, T). Denote the
set of all t-way interactions of A by It.

The CA defined above can be described as follows. An
array A is a CA of strength t, written t-CA, if and only if
the following condition holds:

∀ T ∈ It : ρ(A, T) 6= ∅

A test, when executed, can pass or fail. Thus, a test on
k parameters contains (covers) Ctk interactions of strength t.
The outcomes are the corresponding set of pass/fail results.
A fault is evidenced by a failure outcome for a test. A
fault is rarely due to a complete k-way interaction; rather,
it is the result of one or more faulty interactions of strength
smaller than k covered in the test. Tests considered here are
executed concurrently, so that the testing is nonadaptive or
predetermined.

A consecutive t-way interaction is denoted as T =
{((i, xi), (i+ 1, xi+1), · · · , (i+ t− 1, xi+t−1))}, where 1 ≤
i ≤ k− t+1, xr ∈ V for r = i, i+1, · · · , i+ t− 1. Clearly,
there is a total of (k−t+1)vt consecutive t-way interactions
for k neighboring factors, each of which can take v values.
The set of all consecutive t-way interactions is denoted by
CIt.

B. CCAs and COAs

CCAs [resp. consecutive orthogonal arrays (COAs)], writ-
ten as CCA(N ; t, k, v) [resp. COAλ(t, k, v)], are N × k
arrays with entries from a set V of v symbols where each
set of t consecutive columns contains each t-tuple at least
once (resp. exactly λ times) within its rows. In other words,
an array A is a CCA (resp.COA) of strength t, denoted
by t-CCA (t-COA), if and only if the following respective
conditions hold:

∀ T ∈ CIt : ρ(A, T) 6= ∅,

TABLE IV
A COA(9; 2, 8, 3)

Test Case F1 F2 F3 F4 F5 F6 F7 F8

1 0 0 0 0 0 0 0 0
2 0 1 0 1 0 1 0 1
3 0 2 0 2 0 2 0 2
4 1 0 1 0 1 0 1 0
5 1 1 1 1 1 1 1 1
6 1 2 1 2 1 2 1 2
7 2 0 2 0 2 0 2 0
8 2 1 2 1 2 1 2 1
9 2 2 2 2 2 2 2 2

TABLE V
TEST OUTCOMES

Test Case F1 F2 F3 F4 F5 F6 F7 F8 Outcome
1 0 0 0 0 0 0 0 0 pass
2 0 1 0 1 0 1 0 1 pass
3 0 2 0 2 0 2 0 2 pass
4 1 0 1 0 1 0 1 0 fail
5 1 1 1 1 1 1 1 1 pass
6 1 2 1 2 1 2 1 2 fail
7 2 0 2 0 2 0 2 0 pass
8 2 1 2 1 2 1 2 1 pass
9 2 2 2 2 2 2 2 2 pass

∀ T ∈ CIt : |ρ(A, T)| = λ

Table IV is a COA(9; 2, 8, 3) over Z3. CCAs present
a family similar to CAs. The analogy between CAs and
CCAs is evident. Like CAs, CCAs can generate test suites
for combinatorial testing of neighboring factors to indicate
the presence or absence of faulty interactions. They cannot
identify or determine these interactions from the outcome
of the tests. For example, Table V depicts the outcome of
tests. Any consecutive 2-way interaction from the failed test
case may produce the faults. Thus, we do not determine
the faulty interaction. To locate and detect interaction faults
between neighboring factors, it is only necessary to identify
the consecutive interaction faults from the outcomes of the
tests.

C. DAs and CDAs

Suppose A = (aij)(i ∈ IN , j ∈ Ik) is a CA(N ; t, k, v)
over V . For any T ⊆ It with |T | = d and any T ∈ It, if

ρ(A, T) ⊆ ρ(A, T)⇔ T ∈ T ,

then the array A is called a (d, t)-detecting array, denoted
by (d, t)-DA(N ; k, v).

Suppose A = (aij) (i ∈ IN , j ∈ Ik) is a CCA(N ; t, k, v)
over V . For any T ⊆ CIt with |T | = d and any T ∈ CIt,
if

ρ(A, T) ⊆ ρ(A, T)⇔ T ∈ T ,

then the array A is called a (d, t)-consecutive detecting array,
denoted by (d, t)-CDA(N ; k, v).

Clearly, a (d, t)-DA(N ; k, v) must be a (d, t)-
CDA(N ; k, v), but the converse is not always true. It
is straightforward that T ∈ T implies ρ(A, T) ⊆ ρ(A, T).
Hence, the condition ρ(A, T) ⊆ ρ(A, T) ⇔ T ∈ T is
satisfied if T 6∈ T ⇒ ρ(A, T) 6⊆ ρ(A, T). We will make
extensive use of this simple fact in the following sections.
As well as DAs, there are some admissible parameters for
the existence of CDAs. We give the following lists:

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

Lemma 1: (Shi et al. [20]) If a (d, t)-CDA(N ; k, v) exists,
then d < v.

Lemma 2: (Shi et al. [20]) Let A be a (d, t)-
CDA(N ; k, v). Then, A is also a (s, t)-CDA(N ; k, v), where
1 ≤ s ≤ d− 1.

D. Lower bound for CDAs and combinatorial characteristics

By definition, a (d, t)-CDA is a special CCA of strength t.
One significance of using the CDA to generate test suites is
that any set of d consecutive t-way interaction faults can be
determined from the outcomes. Further, it can detect if there
are more than d consecutive t-way interactions causing the
faults. Because the rows of a CDA correspond to the number
of tests, a CDA of minimum size when other parameters
are fixed is of considerable interest. The minimum N for
which a (d, t)-CDA(N ; k, v) exists is referred to as the
consecutive detecting arrays number (CDAN), denoted by
(d, t)-CDAN(k, v).

Theorem 1: (Shi et al. [20]) Let t, k, and v be positive
integers with t < k. Then, (d, t)-CDAN (k, v) ≥ (d+ 1)vt.

We call a (d, t)-CDA(N ; k, v) with N = (d + 1)vt

optimum. It is worth mentioning that optimum CDAs have
useful applications in software testing because they contain
minimum rows. To explore the combinatorial features of
optimum CDAs, we need to introduce the notion of simple
COAs. A COAλ(t, k, v) is simple if any N×(2t−i) subarray
consisting of two consecutive t columns with i columns in
common contains each (2t − i)-tuple at most once, where
0 ≤ i ≤ t − 1. From this definition, it is obvious that a
simple COAλ(t, k, v) can only exist if λ ≤ v.

Theorem 2: (Shi et al. [20]) Suppose t and k are two
positive integers and t < k. Then, a simple COAd+1(t, k, v)
is equivalent to an optimum (d, t)-CDA((d+ 1)vt; k, v).

III. LFSR SEQUENCE AND m-SEQUENCE

In this section, we review the definition of a linear feed-
back shift register (LFSR) sequence and an m-sequence and
recall some relevant properties for later use.

Let (si)i≥0 be a sequence of elements from a finite field
Fq . If there exist integers n such that sn+i = si for all i ≥ 0,
then the sequence is said to be periodic. The smallest n with
that property is the least period of the sequence. For example,
the period of the sequence (000121200000121200 · · ·) is 9.

Let f = c0 + c1x + c2x
2 + · · · + ct−1x

t−1 + xt ∈ Fq[x]
and I = (b0, b1, · · · , bt−1) ∈ F tq . A linear feedback shift
register (LFSR) sequence with characteristic polynomial f ,
denoted by S(f, I), is defined as S(f, I) = (a0, a1, · · · ,),
where ai = bi, 0 ≤ i < t; ai = −ct−1ai−1 − ct−2ai−2 −
· · · − c1ai−(t−1) − coai−t, and i ≥ t.

Lemma 3: (Lidl and Niederreter, Theorem 8.33 [21]) If
f is a primitive polynomial over Fq with degf = t and
initial values I = (b0, b1, · · · , bt−1) ∈ F tq \(0, 0, · · · , 0), then
S(f, I) has least period qt − 1.

Definition 1: (Maximal period sequence) An LFSR se-
quence over Fq generated by a primitive polynomial is a
maximal (period) sequence. A maximal sequence is often
referred to as an m-sequence.

If S = (a0, a1, · · · ,) is a sequence, for a positive integer n,
Cni (S) = (ai, ai+1, · · · , ai+n−1) is called the subinterval of
length n beginning in position i. Let δ ∈ Fq , the subinterval

Cni (S) is a run of δ values of length n if ai+j = δ for
0 ≤ j ≤ n− 1 and ai−1 6= δ, ai+n 6= δ.

Next, we present some properties of m-sequences. Prop-
erties (1)–(4) below characterize the run property, also
known as Golomb’s second randomness postulate. Property
(5) below is Golomb’s fourth randomness postulate

Lemma 4: (Golomb and Gong, Section 5.2 [22]) If f is
a primitive polynomial over Fq with degf = t and nonzero
initial values, I = (b0, b1, · · · , bt−1) ∈ F tq . In a period of
m-sequence S(f, T), the following properties hold:

1) For 1 ≤ l ≤ t−2, the runs of δ ∈ Fq of length l occur
(q − 1)2qt−l−2 times.

2) The runs of δ ∈ F ∗q of length t− 1 occur q− 2 times.
3) The runs of 0 of length t− 1 occur q − 1 times.
4) The runs of δ ∈ F ∗q of length t occur once, and there

is no run of zeros of length t.
5) Each nonzero-tuple in F tq appears exactly once as a

consecutive element.
Arrays constructed from cyclic shifts of maximal se-

quences possess strong combinatorial properties and have
been previously used to construct (ordered) orthogonal and
covering arrays [23], [24]. The following lemma presents
the positions of zeros in any two subintervals of k = qt−1

q−1 ,
beginning in positions that differ by a multiple of k.

Lemma 5: ([23]) Let k = qt−1
q−1 . If f is a primitive

polynomial over Fq with degf = t and nonzero initial values
I = (b0, b1, · · · , bt−1) ∈ F tq , then S(f, I) has the following
properties:

1. For any i ≥ 0, Cki (S) contains exactly qt−1−1
q−1 zeros.

2. For any i ≥ 0, j ≥ 0, the positions of zeros in Cki (S)
and Cki+jk(S) are identical.

IV. A CLASS OF CDAS FROM m-SEQUENCE

In this section, we will construct a class of CDAs with
minimum size from m-sequences. By Theorem 2, we only
need to construct simple COAs. First, let f = c0 + c1x +
c2x

2+· · ·+ct−1xt−1+xt ∈ Fq[x] be a primitive polynomial
and I = (a0, a1, · · · , at−1) 6= (0, 0, · · · , 0). S(f, I) is an m-
sequence. Let k = qt−1

q−1 . Consider the following qt × k:

M =M(f, I) =

Ck0 (S(f, I))
Ck1 (S(f, I))

...
Ckqt−2(S(f, I))

0, 0, · · · , 0

=

a0 a1 · · · ak−1
a1 a2 · · · ak
...

...
...

aqt−2 aqt−1 · · · aqt−2+k−1
0 0 · · · 0

If A is an N × k array over a set V , then for a set of

columns B = {b1, b2, · · · , bt}, B is called covered if the
N × t subarray over the columns of B contains each t-tuple
over V as a row at least once. A characterization of which
sets of columns of M are covered was presented in [23].

Lemma 6: (Raaphorst et. al [23]) Let f be a primitive
polynomial over Fq with degf = t and nonzero initial values

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

I = (b0, b1, · · · , bt−1) ∈ F tq . Let k = qt−1
q−1 and M be the

qt× k subinterval arrays of f . The following are equivalent:
(1) A set of t columns i1, i2, · · · , it is covered in M .
(2) There is no row r other than the all-zero row of M such

that Mri1 = · · · =Mrit = 0, where 0 ≤ r ≤ qt − 2.
Lemma 7: Let k = qt−1

q−1 and Cki (S) be defined as above.
Then, the run of zeros of length t − 1 occurs at most once
in Cki (S), where 0 ≤ i ≤ qt − 2.
Proof. This conclusion follows from (3) and (4) of Lemma
4 and (2) of Lemma 5.

Lemma 8: Any subarray of M formed by t consecutive
columns of M is covered.
Proof. It is an immediate consequence of Lemma 4 item (5)
and the definition of M .

Now, we are ready to construct simple COAs from the
subinterval subarray generated by the given primitive poly-
nomial and nonzero initial value.

Theorem 3: If f is a primitive polynomial over Fq
with degf = t ≥ 3 and nonzero initial values I =
(b0, b1, · · · , bt−1) ∈ F tq , then M(f, I) is a simple COAq(t−
1, q

t−1
q−1 , q) over Fq .

Proof. The proof is given in the Appendix.

Example 1: Let f = x4 + 0x2 + 2x + 2 be a primitive
polynomial over F3 and initial values I = (1, 0, 0, 0). A
period of S(f, T) is

1000100110121100210201221010111122201121
2000200220212200120102112020222211102212

Then,

C40
0 (S) = 1000100110121100210201221010111122201121

and

C40
40 (S) = 2000200220212200120102112020222211102212.

Clearly, the runs of zeros of length 3 occur exactly once
and there is no run of zeros of length 4. The positions of
zeros in C40

40 (S) and C40
0 (S) are identical. M formed as

above is a simple COA3(3, 40, 3).
For t = 3 in Theorem 3, we have another proof from

combinatorial theory. For this, we introduce the notion of
balanced incomplete block design (BIBD). Given a finite set
X of elements, called points and a family B of k-element
subsets of X , called blocks. (X,B) is a (v, k, λ)-BIBD, if
|X| = v and any pair of distinct points x and y in X is
contained in exacltly λ blocks. A (v, k, λ)-difference set over
an abelian group G is a set di, i = 1, 2, · · · , k of G such
that each element in G \ {0} occurs exactly λ times in the
difference list {di − dj (mod v)}, where 1 ≤ i 6= j ≤ k.

Theorem 4: If f is a primitive polynomial over Fq with
degf = 3 and nonzero initial values I = (b0, b1, b2) ∈ F 3

q ,
then M(f, I) is a simple COAq(2, q2 + q + 1, q).
Proof. By the proof of Theorem 3, M is a COAq(2, q2 +
q + 1, q). We only need to prove that M is simple. When
any two consecutive columns i1, i2 and j1, j2 have one
column in common, without loss of generality, we suppose
the columns are {i1, i2, j2}. Clearly, each 3-tuple occurs
exactly once. If any two consecutive columns i1, i2 and j1, j2
are disjoint, then we only need to consider that there is a
row r other than the all-zero row of M such that Mri1 =

Mri2 = Mrj1 = Mrj2 = 0. By Lemma 5, each Cki (S)
contains exactly q + 1 zeros, where 0 ≤ i ≤ q3 − 2. Write
B = {{a1, a2, · · · , aq+1} :Mia1 =Mia2 = · · · =Miaq+1

=
0 for some 0 ≤ i ≤ q2+q}. Then, B is a (q2+q+1, q+1, 1)-
BIBD by Theorem 3 in [23]. The block set can be obtained
by the translation of a (q2 + q + 1, q + 1, 1)-difference set,
which is the set H = {0 ≤ i < q2 + q + 1 : ai = 0}. If
there is a row r other than the all-zero row of M such that
Mri1 =Mri2 =Mrj1 =Mrj2 = 0, then the block set must
contain the block {i, i + 1, j, j + 1}, where i 6= j. Because
the difference 1 in the set {i, i+ 1, j, j + 1} occurs at least
twice, this contradicts the fact that it can be obtained by the
translation of a (q2 + q + 1, q + 1, 1)-difference set.

Example 2: Let f = x3 + 0x2 + 2x + 1 be a primitive
polynomial over F3 and initial values I = (0, 1, 2). Let
(012112011100202122102220010121120111002021221022
2001 · · ·) be an m-sequence generated by f and T . Form an
27× 13 array as follows: M =M(f, I) =

0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 1 1 2 0 1 1 1 0 0 2
1 2 1 1 2 0 1 1 1 0 0 2 0
· · · · · · · · · · · · ·
0 2 0 2 1 2 2 1 0 2 2 2 0
2 0 2 1 2 2 1 0 2 2 2 0 0
0 2 1 2 2 1 0 2 2 2 0 0 1
2 1 2 2 1 0 2 2 2 0 0 1 0
· · · · · · · · · · · · ·
0 1 0 1 2 1 1 2 0 1 1 1 0
1 0 1 2 1 1 2 0 1 1 1 0 0

For any two consecutive columns, each 2-tuple occurs

exactly q = 3 times. Thus, M is a COA3(2, 13, 3). For
any three consecutive columns, each 3-tuple occurs exactly
once by the property of the m-sequence. It remains to
check that each 4-tuple occurs at most once for any two
disjoint consecutive columns. The set B = {{a1, a2, a3, a4} :
Mia1 = · · · = Mia4 for some 0 ≤ i ≤ 12} forms the set of
blocks of a (13, 4, 1)-BIBD as follows:

{0, 6, 10, 11} {1, 7, 11, 12} {0, 2, 8, 12} {0, 1, 3, 9}
{1, 2, 4, 10} {2, 3, 5, 11} {3, 4, 6, 12} {0, 4, 5, 7}
{1, 5, 6, 8} {2, 6, 7, 9} {3, 7, 8, 10} {4, 8, 9, 11}
{5, 9, 10, 12}

The block set can be obtained by the translation of the
(13, 4, 1)-difference set {0, 6, 10, 11}. It can be concluded
that there is no row r other than the all-zero row of M such
that Mri1 =Mri2 =Mrj1 =Mrj2 = 0.

Theorem 5: If f is a primitive polynomial over Fq
with degf = t ≥ 3 and nonzero initial values I =
(b0, b1, · · · , bt−1) ∈ F tq , then M(f, I) is a (q − 1, t − 1)-
CDA(q

t−1
q−1 , q).

Proof. The conclusion follows from Theorem 2 and 3.

Table VI presents some optimal CDAs over Fp from
Theorem 5 with p = 2, 3, 5, 7. The first column lists the
finite field Fp. The second and third columns present degree
and primitive polynomial, respectively. The strength t and
the number of factors k of optimal CDAs are given in the
last two columns.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

TABLE VI
OPTIMAL CDAS OVER Fp WITH p = 2, 3, 5, 7

Fp degree n f(x) t k
3 x3 + x+ 1 2 7
4 x4 + x+ 1 3 15
5 x5 + x2 + 1 4 31

p = 2 6 x6 + x+ 1 5 63
7 x7 + x+ 1 6 127
8 x8 + x4 + x3 + x2 + 1 7 255
9 x9 + x4 + 1 8 511
3 x3 + 2x+ 1 2 13
4 x4 + x+ 2 3 40
5 x5 + 2x+ 1 4 121

p = 3 6 x6 + x+ 2 5 364
7 x7 + 2x2 + 1 6 1093
8 x8 + x3 + 2 7 3280
9 x9 + 2x4 + 1 8 9841
3 x3 + 3x+ 2 2 31
4 x4 + x2 + 2x+ 2 3 156
5 x5 + 4x+ 2 4 781

p = 5 6 x6 + x+ 2 5 3906
7 x7 + 3x+ 2 6 19531
8 x8 + x2 + 2x+ 3 7 97656
9 x9 + 2x4 + 3 8 488281
3 x3 + 3x+ 2 2 57
4 x4 + x2 + 3x+ 5 3 400
5 x5 + x+ 4 4 2801

p = 7 6 x6 + 3x2 + x+ 5 5 19608
7 x7 + 6x+ 2 6 137257
8 x8 + x+ 3 7 960800
9 x9 + 3x2 + 4 8 6725601

V. CONCLUSION

Combinatorial testing can detect failures triggered by in-
teractions of parameters in the Software Under Test. The test
suite used for combinatorial testing can often be represented
as a mathematical object called covering arrays. Testing with
a CA can indicate the presence or absence of interaction
faults. However, testing with a CA provides little information
to assist in the correction of interaction faults. Following
practical situations, tests to reveal the location of interaction
faults are of interest. Colbourn and McClary formalized the
problem of the nonadaptive location of interaction faults
under the hypothesis that a system contains some number
d of faults, each involving some number t of interacting
factors. They proposed the notion of detecting arrays to
solve this problem. Using a (d, t)-DA as a test suite allows
us to determine and identify them if the number of faulty
interactions is d or less. If there exist more than d interaction
faults, a (d, t)-DA can return specific results to indicate
whether the number of faulty interactions is more than d.

Similar to CAs, CCAs can be used to generate test suites
for combinatorial testing of neighboring factors to indicate
the presence or absence of faulty interactions. However,
even when a failure occurs, it is not always possible to
locate which interaction causes the failure. Hence, the notion
of consecutive detecting arrays was proposed. Consecutive
detecting arrays have properties similar to those of detecting
arrays, but they can be used to generate test suites for neigh-
bor combinatorial testing. In this study, we demonstrated
the construction of a class of consecutive detecting arrays
from m-sequences, LFSR sequences that attain a maximum
possible period. Consequently, a number of optimum CDAs
were then obtained based on the existence of an m-sequence.
Finding the primitive trinomial for constructing m-sequences
is more complicated, but it is worth further research.

APPENDIX A
PROOF OF THEOREM 3

Proof. Clearly, M is a qt × k array with entries from a
finite field Fq . First, we prove that M is a COAq(t−1, k, q),
where k = qt−1

q−1 , i.e., for any consecutive t−1 column, each
(t− 1)-tuple occurs exactly q times as rows in the subarray
consisting of (t−1) columns. By Lemma 8, any consecutive
t columns are covered. Each t-tuple occurs exactly once as
a row in the subarray consisting of t columns because M
has qt rows. Thus, each (t− 1)-tuple occurs exactly q times
and M is a COAq(t− 1, k, q). It remains to prove that M is
simple. This task is divided into two cases.

Case 1 : Two consecutive t − 1 columns {i1, i2, · · · , it−1}
and {j1, j2, · · · , jt−1} have no common column.

In this case, we only need to consider that there is a row r
other than the all-zero row of M such that Mri1 =Mri2 =
· · · = Mrit−1 = Mrj1 = Mrj2 = · · · = Mrjt−1 = 0, where
0 ≤ r ≤ qt − 2. Otherwise, there is no row r other than the
all-zero row of M such that Mrl1 =Mrl2 = · · · =Mrlt = 0,
where {l1, l2, · · · , lt} ⊂ {i1, i2, · · · , it−1, j1, j2, · · · , jt−1}.
By Lemma 6, {l1, l2, · · · , lt} is covered in M . Each t-tuple
from the t columns occurs exactly once because M has qt

rows. Thus, each (2t − 2)-tuple occurs at most once. By
Lemma 7, the runs of zeros of length t − 1 occur at most
once in Cki (S), where 0 ≤ i ≤ qt − 2. Consequently, there
is no row r other than the all-zero row of M such that
Mri1 = Mri2 = · · · = Mrit−1

= Mrj1 = Mrj2 = · · · =
Mrjt−1 = 0, where 0 ≤ r ≤ qt − 2.

Case 2 : Two consecutive t − 1 columns {i1, i2, · · · , it−1}
and {j1, j2, · · · , jt−1} have i common columns, where 1 ≤
i ≤ t− 2

In this case, there is no run of zeros of length t by
Lemma 4. Consequently, there is no row r other than the
all-zero row of M such that Mr,l = Mr,l+1 = · · · =
Mr,l+t−1 = 0, where {l, l+1, l+t−1} ⊂ {i1, i2, · · · , it−1}∪
({j1, j2, · · · , jt−1}\({i1, i2, · · · , it−1}∩{j1, j2, · · · , jt−1})).
By Lemma 6, {l, l+1, · · · , l+t−1} is covered in M . Similar
to the proof of Case 1, we can prove that M is a simple
COAq(t− 1, k, q).

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 1-29, 2011.

[2] D. R. Kuhn, R. N. Kacker and Y. Lei, Introduction to combinatorial
testing, Boca Raton, FL: CRC Press, 2013.

[3] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. E. Shasha, G. B.
Sherwood and J. L. Yucas, “Products of mixed covering arrays of
strength two,” Journal of Combinatorial Designs, vol. 14, pp. 124-138,
2006.

[4] L. J. Lun, X. Chi and H. Xu “Testing Approach of Component
Interaction for Software Architecture,” IAENG International Journal
of Computer Science, vol. 45, no. 2, pp. 353-363, 2018.

[5] C. J. Colbourn, “Combinatorial aspects of covering arrays,” Le Matem-
atiche (Catania), vol. 58, pp. 121-167, 2004.

[6] C. J. Colbourn, “Strength two covering arrays: Existence tables and
projection,” Discrete Mathematics, vol. 308, pp. 772-786, 2008.

[7] C. J. Colbourn and D. W. McClary, “Locating and detecting arrays for
interaction faults,” Journal of Combinatorial Optimization, vol. 15, pp.
17-48, 2008.

[8] N. J. Sloane, “Covering arrays and intersecting codes,” Journal of
Combinatorial Designs, vol. 1, pp. 51-63, 1993.

[9] B. Stevens, L. Moura and E. Mendelsohn, “Lower bounds for transver-
sal covers,” Designs, Codes and Cryptography, vol. 15, no. 3, 279-299,
1998.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

[10] J. Torres-Jimenez and E. Rodriguez-Tello, “New bounds for binary
covering arrays using simulated annealing,” Information Sciences, vol.
185, PP. 137-152, 2012.

[11] S. Sabharwal, P. Bansal and N. Mittal, “Construction of t-way covering
arrays using genetic algorithm,” International Journal of System Assur-
ance Engineering & Management, vol. 8, no. 2, pp. 264-274, 2017.

[12] H. Y. Wu, C. H. Nie, F. C. Kuo, H. Leung and C. J. Colbourn, “A
discrete Particle Swarm Optimization for covering array generation,”
IEEE Transaction on Evolutionary Computation, vol. 19, no. 4, pp.
575-591, 2015.

[13] B S. Ahmeda, K. Z. Zamli and C. P. Lim, “Application of Particle
Swarm Optimization to uniform and variable strength covering array
construction,” Applied Soft Computing, vol. 12, pp. 1330-1347, 2012.

[14] S. J. Saputra, B. Subartini, J. H. F. Purba, S. Supian and Y. Hi-
dayat, “ An Application of Genetic Algorithm Approach and Cobb-
Douglas Model for Predicting the Gross Regional Domestic Product by
Expenditure-Based in Indonesia ,” Engineering Letters, vol. 27, no. 3,
pp. 411-420, 2019.

[15] B. Tutuko, S. Nurmaini, Saparudin and P. Sahayu “Route Optimization
of Non-holonomic Leader-follower Control Using Dynamic Particle
Swarm Optimization,” IAENG International Journal of Computer Sci-
ence, vol. 46, no. 1, pp. 1-11, 2019.

[16] A. P. Godbole, M. V. Koutras and F. S. Milienos, “Binary consecutive
covering arrays,” Annals of the Institute of Statistical Mathematics, vol.
63, no. 3, pp. 559-584, 2011.

[17] K. Meagher and B. Stevens, “Covering arrays on graphs,” Journal of
Combinatorial Theory, Series B, vol. 95, pp. 134-151, 2005.

[18] C. Shi, Y. Tang and J. X. Yin, “The equivalence between optimal
detecting arrays and super-simple OAs,” Designs, Codes and Cryptog-
raphy, vol, 62, pp. 131-142, 2012.

[19] C. Shi and J. X. Yin, “Existence of super-simple OAλ(3, 5, v)′s,”
Designs, Codes and Cryptography, vol, 72, pp. 369-380, 2014.

[20] C. Shi, L. Jiang and A. Y. Tao, “Consecutive Detecting Arrays for
Interaction Faults,” arXiv:1905.10914 [math.CO], 2019.

[21] R. Lidl and H. Niederreiter, Finite fields, Cambridge, England: Cam-
bridge University Press, 1997.

[22] S. W. Golomb and G. Gong, Signal Design for Good Correlation
for Wireless Communication, Cryptography, Radar, Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[23] S. Raaphorst, L. Moura and B. Stevens, “A construction for strength-3
covering arrays from linear feedback shift register sequences,” Designs,
Codes and Cryptography, vol. 73, no. 3, pp. 949-968, 2014.

[24] A. G. Castoldi, L. Moura, D. Panario and B. Stevens, “Ordered Orthog-
onal Array Construction Using LFSR Sequences,” IEEE Transaction on
Information Theory, vol. 63, no. 2, pp. 1336-1346, 2017.

Ce Shi was born in Bengbu, Anhui, China in 1983. He received a
BSc in Mathematics a nd Applied Mathematics from Anhui Polytechnic
University (2006), M.S. (2009) and Ph.D. (2012) in Applied Mathematics
from Soochow University. He has worked in the School of Statistics and
Mathematics at Shanghai Lixin University of Accounting and Finance since
2012. He became a reviewer of Mathematical Reviews in 2013. His research
interests include combinatorics, software testing and coding theory.

Aiyuan Tao was born in Wuwei, Anhui, China in 1970. He received a
BSc in Mathematics from Anqing Normal University (1992), M.S. (2004)
and Ph.D. (2010) in Economics from Shanghai University of Finance and
Economics. He has worked in the School of International Economics and
Trade at Shanghai Lixin University of Accounting and Finance since 2005.
He was a reviewer of Journal of Applied Mathematics in 2013. His research
interests include game theory, model simulation and data analysis.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_12

Volume 50, Issue 1: March 2020

__

