
A Prior Error Estimate for Linear Finite Element
Approximation to Interface Optimal Control

Problems
Hongbo Guan, Chaoyang Hao, Yapeng Hong, and Pei Yin

Abstract—This paper considers a linear finite element method
for the constrained optimal control problems (OCPs) governed
by elliptic interface equations. The state and adjoint state are
approximated by the conforming P1 elements, while the control
is approximated with the orthogonal projection of the adjoint
state. Optimal order error estimates are proved in both L2-
norm and broken energy norm. Lastly, some numerical results
are presented to confirm the theoretical analysis.

Index Terms—finite element method, interface OCPs, optimal
order error estimates.

I. INTRODUCTION

OPtimal control problems (OCPs) governed partial dif-
ferential equations are playing an increasingly crucial

role in a lot of engineering applications, such as chemical
processes, fluid dynamics, medicine, economics, and so on
[3], [24]. Much attention has been paid to the numerical
solution of these problems since their analytical solutions
do not always exist. In the recent decades, finite element
methods (FEM) have been developed to be one of the
most popular and efficient methods not only for partial
differential equations [26], but also for many scientific com-
puting fields, i.e., the magnetic resonance elastography [18],
mechanism analysis [19], predicting the blasting effect [27],
etc. Recently, FEMs have been intensively investigated for
OCPs governed by partial differential equations. A priori
error estimate was firstly proposed in [6] for the OCPs
and obtained the error estimates in L2-norm. [14] derived
the error estimates of FEM for an elliptic OCPs with a
small parameter. Mixed FEM for OCPs governed by elliptic
equations and Stokes equations was presented in [4] and
[15]. On the other hand, some a posteriori error estimates
of conforming FEMs for the OCPs were reported in [12],
[13], [21] and the references cited therein. In addition, some
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discussions on nonconforming FEMs for OCPs can be found
from [7], [8], [10], [11].

We consider the following interface OCPs: find (y, u) ∈
Y × U , such that

min
u∈Uad⊂U

J(y, u) =
1

2
‖y − yd‖20,Ω +

α

2
‖u‖20,Ω (1)

subject to 
−∇ · (β∇y) = u, in Ω,

y = 0, on ∂Ω,

[y]Γ = 0, [β ∂y∂n ]Γ = 0,

(2)

where α is a positive constant parameter, Ω is a convex
polygon in R2. Let Ω− ⊂ Ω be an open domain with
a C2 curve boundary Γ ⊂ Ω, and let Ω+ = Ω \ Ω−

(see Fig.1). Throughout this paper, we use the standard

-

+

Fig. 1. Ω = Ω− ∪ Ω+

Sobolev spaces and norms (see [2]), and further denote
Y = H1

0 (Ω) ∩ H2(Ω−) ∩ H2(Ω+), and U = H1(Ω). The
target state yd ∈ C0(Ω) is a given function. The admissible
control set Uad is defined as

Uad = {v ∈ U : a(x) ≤ v ≤ b(x), a.e. in Ω}, (3)

in which a(x), b(x) ∈ L∞(Ω), and a(x) < b(x).
In (2), we denote by [v]Γ the jump of v across the interface

Γ and n the unit outward normal to Γ, respectively. The
coefficient β is a positive piecewise constant function defined
by

β(x) = βs, x ∈ Ωs, (4)

where s = − or +.
The interface OCP (1)-(2) has remarkable application

backgrounds, such as the optimization or optimal control of a
process in a domain which is composed of several materials
separated by interfaces. Coefficients in partial differential
equations may have a jump across the interface among
different materials. There are mainly two approaches for
numerically solving interface OCPs by using FEM. The
first one is to utilize conventional FEMs or its variations
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defined on a body-fitted mesh for the domain that contains a
interface [1]. Another approach that has drawn more attention
recently is the so-called immersed FEM [16], [17], [25].
This method constructs a finite element space that allows
piecewise continuous basis functions on each element in
order to approximate the interface jump conditions.

In this paper, we present a P1-conforming triangular body-
fitted FEM approximation to the elliptic interface OCP (1)-
(2), which could also be extended to parabolic and hyperbolic
OCPs. This method was studied in [5] for solving interface
problems and obtained the suboptimal order error estimates
in H1 and L2 norms when the interface is of C2 smooth. The
authors of this paper also pointed out that the error estimate
in H1 norm can be optimal if the exact solution belongs to
W 1,∞ near the interface (cf. Remark 2.4 in [5]). Later on,
[23] provided the detailed proof of the above statement, and
[9] extended this method to P1-nonconforming element.

The remainder of this paper is organized as follows: in
Section II, we present the discrete formulations and some
useful lemmas. Then, in Section III, we derive the optimal
order error estimates for both the state variable and the
control variable. In the last section, some numerical results
are given to verify the validity of the proposed method.

II. THE DISCRETE FORMULATION AND SOME LEMMAS

We know from [20] that (1)-(2) has a unique solution
(y, u) if and only if there is an adjoint state p ∈ Y , such
that (y, p, u) satisfies the following optimality conditions:

a(y, v) = (u, v), ∀v ∈ Y,
a(p, v) = (y − yd, v), ∀v ∈ Y,
(αu+ p, v − u) ≥ 0, ∀v ∈ Uad,

(5)

where a(y, v) =

∫
Ω

β∇y∇vdx; (u, v) =

∫
Ω

uvdx; p ∈ Y is

the adjoint state variables. Specifically, the second equation
of (5) is the weak form of

−∇ · (β∇p) = y − yd, in Ω,

p = 0, on ∂Ω,

[p]Γ = 0, [β ∂p∂n ]Γ = 0,

(6)

where p also satisfies the jump condition as same as y for it
in (1).

In addition, with the admissible control set (3), we can get
the explicit representation of the optimal control u through
the adjoint state p,

u(x) = PUad

{
− 1

α
p(x)

}
= min

{
b(x),max

(
a(x),− 1

α
p(x)

)}
,

(7)

in which PUad
denotes the orthogonal projection operator

onto Uad.
Next, we introduce a quasi-uniform triangulation Th =

{K} of the domain Ω as in [5], [9]. We denote the diameter
of K by hK , and let h = max

K∈Th

hK .

To decompose the interface Γ, we first approximate the
domain Ω− by a region Ω−h with a polygonal boundary Γh
whose vertices all lie on the interface Γ. Let Ω+

h = Ω−Ω−h .
Then, we require each K ∈ Th to satisfy the following two
conditions (see Fig. 2):

(i) K is either in Ω−h or in Ω+
h ;

(ii) For any edge F , F has either vertices or the whole
edge lying on Γ if F ∩ Γ 6= ∅.

We call K an interface element if it intersects Γ and denote
the set of interface elements by T ∗h . For each K ∈ T ∗h , let
K− = K∩Ω− and K+ = K∩Ω+. Because Γ is C2 smooth,
it implies either meas(K−) ≤ ch3

K or meas(K+) ≤ ch3
K .

Throughout this paper, we will use K̃ to denote one of the
two subregions K− and K+ which satisfies meas(Ks) ≤
ch3
K . Here and later, c denotes a generic positive constant

independent of h but may take different values at different
occasions.

Fig. 2. An example of the triangulation

On triangulation Th we construct the piecewise P1 linear
conforming finite element space Vh such that Vh ⊂ H1

0 (Ω)∩
C(Ω), and define Πh : H1(Ω) → Vh to be the associated
interpolation operator.

The corresponding discrete form of (1)-(2) reads as: find
(yh, uh) ∈ Vh × Uad, such that

min
uh∈Uad

Jh(yh, uh) =
1

2
‖yh − yd‖20,Ω +

α

2
‖uh‖20,Ω, (8)

subject to

ah(yh, vh) = (uh, vh), ∀vh ∈ Vh, (9)

where ah(yh, vh) =
∑
K∈Th

∫
K

βh∇yh∇vhdx, βh = βs if

K ⊂ Ωsh.
Similar to (5), we seek a unique solution (yh, ph, uh)

satisfying the following discrete optimality conditions:
ah(yh, vh) = (uh, vh), ∀vh ∈ Vh,
ah(ph, vh) = (yh − yd, vh), ∀vh ∈ Vh,
(αuh + ph, vh − uh) ≥ 0, ∀vh ∈ Uad,

(10)

where the optimal control uh will be solved from the adjoint
state ph,

uh = PUad

{
− 1

α
ph

}
= min

{
b(x),max

(
a(x),− 1

α
ph

)}
.

(11)

The following lemma has been presented in [5], which plays
an important role in our theoretical analysis.

Lemma 2.1 Let f ∈ L2(Ω), and Ω0 ∈ Ω be a neighborhood
of the interface Γ. Suppose that ϕ ∈ Y ∩W 1,∞(Ω− ∩Ω0)∩
W 1,∞(Ω+ ∩ Ω0) and ϕh ∈ Vh are solutions of

a(ϕ, v) = (f, v), ∀v ∈ H1
0 (Ω), (12)

and
ah(ϕh, vh) = (f, vh), ∀vh ∈ Vh, (13)
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respectively. Then, there hold the following error estimate
results:

|a(ϕ, vh)− ah(ϕh, vh)| ≤ ch‖ϕ‖Y,Ω (14)

and

‖ϕ−Πhϕ‖0,Ω + h|ϕ−Πhϕ|1,Ω ≤ ch2‖ϕ‖Y,Ω,
‖ϕ− ϕh‖0,Ω + h|ϕ− ϕh|1,Ω ≤ ch2‖ϕ‖Y,Ω,

(15)

where ‖ϕ‖Y,Ω :=
√
‖ϕ‖21,Ω + |ϕ|22,Ω+ + |ϕ|22,Ω− .

III. OPTIMAL ORDER ERROR ESTIMATES

This section proceeds in two steps. First, we present
optimal order error estimates and detailed proof of the state
y and adjoint state p in L2-norm. Second, the optimal order
error estimate of the state y and adjoint state p in the broken-
energy norm will be proved in Theorem 3.2.

Theorem 3.1. Let (u, y, p) ∈ Uad×Y ×Y and (uh, yh, ph) ∈
Uad × Vh × Vh be the solutions of (1) and (8), respectively.
Then, there holds the following error estimate:

‖u− uh‖0,Ω + ‖y − yh‖0,Ω + ‖p− ph‖0,Ω ≤ ch2. (16)

Proof. Replacing v and vh with uh and u in the inequalities
of (5) and (10) yields

(αu+ p, u− uh) ≤ 0, (17)

and
(αuh + ph, uh − u) ≤ 0. (18)

Then, it follows from summing up the above two inequalities
and Lemma 2.1 that

α‖u− uh‖20,Ω
≤ (uh − u, p− ph)

= (uh − u, p− ph(y)) + (uh − u, ph(y)− ph)

= (uh − u, p− ph(y)) + ah(yh − yh(u), ph(y)− ph).

(19)
The first term on the right hand side of the above inequality
can be estimated as follows:

(uh − u, p− ph(y))

≤ α
2 ‖uh − u‖

2
0,Ω + 1

2α‖p− ph(y)‖20,Ω.
(20)

Then, we are going to estimate the second term on the
right hand side of (19). Actually, we have

ah(yh − yh(u), ph(y)− ph)

= ah(yh − yh(u), ph(y))− ah(yh − yh(u), ph)

= (yh − yh(u), y − yd)− (yh − yh(u), yh − yd)
= (yh − yh(u), y − yh)

= (yh − y, y − yh) + (y − yh(u), y − yh)

≤ 1
2‖y − yh(u)‖20,Ω − 1

2‖y − yh‖
2
0,Ω,

(21)

where yh(u) ∈ Vh and ph(y) ∈ Vh are the solutions of

ah(yh(u), vh) = (u, vh), ∀vh ∈ Vh, (22)

and
ah(ph(y), vh) = (y − yd, vh), ∀vh ∈ Vh, (23)

respectively.

Summarizing the above two inequalities and substituting
it into (19) lead to

α‖u− uh‖20,Ω + ‖y − yh‖20,Ω
≤ ‖p− ph(y)‖20,Ω + α‖y − yh(u)‖20,Ω.

(24)

Noticing that ph(y) and yh(u) are standard finite element
approximations of p and y. As a consequence, by Lemma
2.1, we have

‖p− ph(y)‖0,Ω ≤ ch2‖p‖Y,Ω (25)

and
‖y − yh(u)‖0,Ω ≤ ch2‖y‖Y,Ω. (26)

Combining (24), (25)and (26) gives that

‖u− uh‖0,Ω + ‖y − yh‖0,Ω ≤ ch2. (27)

In the following, we consider the estimate of ‖p−ph‖0,Ω. By
the definition of bilinear form ah(·, ·) and (10), there exists
a positive number c0 such that

c0‖ph(y)− ph‖20,Ω ≤ ah(ph(y)− ph, ph(y)− ph)

= (ph(y)− ph, y − yh)

≤ c‖ph(y)− ph‖0,Ω‖y − yh‖0
≤ ch2‖ph(y)− ph‖0,Ω,

(28)
which implies that

‖ph(y)− ph‖0,Ω ≤ ch2. (29)

Combining (25) and (29) yields

‖p− ph‖0,Ω ≤ ch2. (30)

The proof is completed. �
Now we are ready to derive the optimal order error

estimates for the state y and adjoint state p in the broken
energy norm.

Theorem 3.2. Under the assumption of Theorem 3.1, there
hold the following optimal order error estimates for state y
and adjoint state p:

|y − yh|1,Ω ≤ ch (31)

and
|p− ph|1,Ω ≤ ch, (32)

respectively.
Proof. First of all, let β∗ = min{β−, β+}. We have

β∗|y − yh|21,Ω ≤ ah(y − yh, y − yh)

= ah(y − yh, y −Πhy) + ah(y − yh,Πhy − yh).
(33)

The bound of the first term of (33) can be found directly
from Schwarz inequality and the standard approximation
theory, i.e.,

ah(y − yh, y −Πhy) ≤ c|y − yh|1,Ω|y −Πhy|1,Ω
≤ β∗

4 |y − yh|
2
1,Ω + c|y −Πhy|21,Ω

≤ ch2 + β∗
4 |y − yh|

2
1,Ω.

(34)
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The estimation of the second term of (33) follows from
the results of Lemma 2.1, Theorem 3.1, and the standard
approximation theory

ah(y − yh,Πhy − yh)

≤ (u− uh,Πhy − yh) + ch‖y‖Y,Ω|Πhy − yh|1,Ω
≤ ‖u− uh‖0,Ω‖Πhy − yh‖0,Ω + ch‖y‖Y,Ω|Πhy − yh|1,Ω
≤ c

(
h4 + h2‖y‖2Y,Ω + ‖Πhy − y‖21,Ω

)
+ β∗

4 |y − yh|
2
1,Ω

≤ ch2 + β∗
4 |y − yh|

2
1,Ω.

(35)
Summarize the above two inequalities into (33) yields (31).

Similarly, for the adjoint state p, using again Lemma 2.1
and Theorem 3.1, we have

β∗|p− ph|21,Ω
≤ ah(p− ph, p− ph)

= ah(p− ph, p−Πhp) + ah(p− ph,Πhp− ph)

≤ ah(p− ph, p−Πhp) + (y − yh,Πhp− ph)

+ch|Πhp− ph|1,Ω
≤ c|p− ph|1,Ω|p−Πhp|1,Ω + ‖y − yh‖0,Ω|Πhp− ph|1,Ω
+ch|Πhp− ph|1,Ω
≤ ch|p− ph|1,Ω + ch(|Πhp− p|1,Ω + |p− ph|1,Ω)

≤ ch|p− ph|1,Ω + ch2‖p‖Y,Ω
≤ ch2 + β∗

2 |p− ph|
2
1,Ω,

(36)
which gives (32). The proof is thus completed. �

IV. NUMERICAL EXPERIMENT

This section will provide some numerical results for the
elliptic interface control problem to verify the correctness of
the theorems given in the previous section.

In this example we choose α = 1 and the computation
domain as Ω=[−1, 1] × [−1, 1], the interface Γ is a circle
centered at the origin with radius being r0 = 0.5. Ω− =
{(x1, x2)|x2

1 + x2
2 ≤ 0.5}, Ω+=Ω− Ω−.

The admissible control set Uad is given as

Uad = {v ∈ U : −1 ≤ v ≤ 1, a.e. in Ω}. (37)

We take the optimal state and adjoint state as

y =

u− =
(x2

1+x2
2)3/2

β− , in Ω−,

u+ =
(x2

1+x2
2)3/2

β− + ( 1
β− − 1

β+ )r3
0, in Ω+,

(38)

and

p =

{
p− =

5(x2
1+x2

2−r
2
0)(1−x1)(x1+1)(x2−1)(x2+1)

β− , in Ω−,

p+ =
5(x2

1+x2
2−r

2
0)(1−x1)(x1+1)(x2−1)(x2+1)

β+ , in Ω+,
(39)

respectively.
The optimal control could be expressed as

u(x) = PUad
{−p(x)}

= min {1,max (−1,−p(x))} . (40)

Then the functions f and yd can be determined the above
functions accordingly.

In this experiment, we fix β− = −1, and consider β+ = 5
and β+ = 50 as two cases. We first approximate the circle Γ
by a polygon, and then give triangular subdivision to these

two domains separately. A uniform triangle grid mesh is thus
completed. The error estimates and convergence orders of the
control, state and adjoint state are shown in the following
Tables 1-4 for β+ = 5 and β+ = 50, and the convergence
rates are reported in Figures 3-6, where N denotes the
number of the elements, ”order” represents the convergence
order which is evaluated by

Order =
1

log(N2/N1)1/2
log
‖u− uN1

‖i,Ω
‖u− uN2

‖i,Ω
, (41)

here, ‖u− uN‖i is a special norm for i = 0, 1.

Table 1 The errors and convergence orders in L2-norm with β+ = 5
N ‖u− uh‖0,Ω ‖y − yh‖0,Ω ‖p− ph‖0,Ω
14 0.318638863 1.189625451 0.097867163

order / / /
72 0.065900590 0.248701791 0.021369779

order 1.92465 1.91149 1.85836
322 0.013276842 0.061789328 0.005924887

order 2.13918 1.85932 1.71284
1458 0.002700346 0.012417775 0.001352403
order 2.10908 2.12492 1.95631
2982 0.001287701 0.005823426 0.000638279
order 2.06986 2.11659 2.09876

Table 2 The errors and convergence orders in energy norm with β+ = 5
N |y − yh|1,Ω |p− ph|1,Ω
14 0.164654461 0.003396546

order / /
72 0.073176671 0.001588027

order 0.99043 0.92851
322 0.032943245 0.000887296

order 1.06562 0.77719
1458 0.018774017 0.000390204
order 0.74465 1.08790
2982 0.012140199 0.000271377
order 1.21854 1.01508
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Fig. 3. Convergence rates of L2 norm with β+ = 5
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Fig. 4. Convergence rates of energy norm with β+ = 5

Table 3 The errors and convergence orders in L2-norm with β+ = 50
N ‖u− uh‖0,Ω ‖y − yh‖0,Ω ‖p− ph‖0,Ω
14 0.678309069 3.631292383 0.171599428

order / / /
72 0.146790976 0.81557836 0.039212493

order 1.86930 1.82394 1.80283
322 0.039629437 0.214722199 0.010928453

order 1.74838 1.78192 1.70591
1458 0.00858952 0.049549885 0.003454323
order 2.02484 1.94186 1.52522
2982 0.004611587 0.023641828 0.001747589
order 1.73849 2.06830 1.90458

Table 4 The errors and convergence orders in energy norm with β+ = 50
N |y − yh|1,Ω |p− ph|1,Ω
14 0.537165421 0.062955460

order / /
72 0.227192916 0.024646492

order 1.05093 1.14532
322 0.132958099 0.013176262

order 0.71536 0.83614
1458 0.066483736 0.005838989
order 0.91782 1.07777
2982 0.043656470 0.003771959
order 1.17565 1.22137
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Fig. 5. Convergence rates of L2 norm with β+ = 50
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Fig. 6. Convergence rates of energy norm with β+ = 50

We can see that this linear body-fitted method could
achieve a optimal order convergence, which almost coincides
with our theoretical analysis.
Remark 1. It is worth mentioning that the fact (∇vh)|K =
constant for all vh ∈ Vh is crucial in the error analy-
sis, which implies that the idea in the error analysis can
be apply to P1−nonconforming triangular element [9] and
P1−rectangular element [22]. However, this approach could
not be generalized to higher order elements.

Remark 2. With properly handling the time variable, the
results obtained in this paper could be extended to some time-
dependent OCPs, such as parabolic and hyperbolic interface
control problems.
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