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Abstract—Rewriting the complex-valued system to real-
valued form (C-to-R) leads to a block two-by-two linear
system of particular form. Axelsson et al. [Numer. Algorithm
66(2014)811–841] proposed the C-to-R method for nonsingular
complex linear systems and illustrated its efficiency theoreti-
cally and experimentally. In this paper, we will use the C-to-
R method for solving the singular symmetric complex linear
systems based on the shift splitting (SS) and obtain an SS-
based C-to-R (SS-C-to-R) method. Eigenvalue properties of
the SS-C-to-R preconditioned matrix are analyzed. Numerical
experiments are also used to demonstrate the feasibility and
effectiveness by comparing with the existing preconditioned
methods.

Index Terms—Singular complex linear systems, C-to-R
method, Shift splitting, Eigenvalue properties, Block Two-by-
two linear system.

I. INTRODUCTION

CONSIDER the following complex system of linear
equations

Au =b , (I.1)

where A ∈ Cm×m is a large sparse complex symmetric
matrix of the form

A =W + iT,

with W, T ∈ Rm×m being both symmetric positive semi-
definite matrices, b = f + ig with f , g ∈ Rm being given
vectors, i =

p−1 being the imaginary unit and u ∈ Cm

being an unknown vector. We assume that A is a non-
Hermitian matrix, or equivalently, T ̸= 0. Let u = x + iy
with x ,y ∈ Rm , then the complex linear system (I.1) can
be rewritten in a real form [2], [17] as

A z :=

�
W −T
T W

��
x
y

�
=

�
f
g

�
. (I.2)

There are a variety of scientific computing and engi-
neering applications, such as structural dynamics [20],
chemical oscillations and nonlinear waves [1], quantum
mechanics [28], lattice quantum chromody-namics [21],
FFT-based solutions of certain time-dependent PDEs [15]
and so on. For more applications of this class of problems,
see [2], [9], [13].

When W and T are symmetric positive semi-definite
and at least one of them is positive definite, the coefficient
matrix of (I.1) is nonsingular [9]. Many efficient iteration
methods and preconditioning techniques can be used for
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solving the nonsingular system (I.1). For example, based
on the Hermitian and skew-Hermitian splitting (HSS) [6]
A = H + S, where H = W and S = iT , Bai et al. [9]
designed the modified HSS (MHSS) iteration method and
the preconditioned MHSS (PMHSS) iteration method in
[11]. Furthermore, Zeng and Ma [31] established a param-
eterized variant of the single-step HSS (P-SHSS) iterative
method. More efficient methods can be found in [18], [32],
[23] and references therein.

To fast solve the equivalent two-by-two block structure
nonsingular linear system (I.2), many efficient method-
s can be found in existing references, e.g., the C-to-R
method [3] by Axelsson, the preconditioned MHSS in [12],
the preconditioned generalized successive over-relaxation
(PGSOR) in [22] and so on. For more efficient methods,
see [10], [34], [33], [4], [5].

When W and T are both symmetric positive semi-
definite satisfying that null{T } ∩ null{W } ̸= {0}, the co-
efficient matrix of (I.1) is singular. For solving the non-
Hermitian singular linear equations (I.1) efficiently, Bai et
al. [8] investigated the semi-convergence property of the
HSS iteration method. Recently, Chen et al. [16], Yang et
al. [30] and Wu et al. [29] proposed the semi-convergence
properties of the MHSS iteration method for solving sin-
gular complex linear systems. There are also some recent
studies on iterative methods for singular linear systems in
[25], [19], [24]. However, from the numerical results we can
see that those iterative methods and the corresponding
preconditioned Krylov subspace methods converge very
slowly.

In this paper, to further investigate the efficient solvers
for the singular complex linear systems, based on the
shift-splitting (SS) strategy for the non-Hermitian positive
definite matrices [7] and by making use of the efficient C-
to-R method for nonsingular two-by-two linear system [3],
we will construct an SS-C-to-R method for solving the two-
by-two singular linear system (I.2). Then we will derive the
eigenvalue properties of the preconditioned matrix.

The remainder of this paper is organized as follows. In
Section II, the SS-C-to-R method and the corresponding
preconditioner is proposed. Then some eigenvalue prop-
erties of the preconditioned matrix are given in Section III.
In Section IV, we will examine the feasibility and efficien-
cy of the SS-C-to-R methods by numerical experiments.
Finally, a brief conclusion will be given to end this work
in Section V.
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II. THE SS-C-TO-R METHOD

For the block two-by-two linear system (I.2), by making
use of the following splitting [7]

A = 1

2

�
αI +W −T

T αI +W

�
− 1

2

�
αI −W T
−T αI −W

�
,

where α> 0 is a given constant and I is the identity matrix
with proper dimension, we can obtain the corresponding
preconditioner, denoted as PSS , as:

PSS =
1

2

�
αI +W −T

T αI +W

�
. (II.1)

Applying the SS preconditioner PSS within a Krylov sub-
space method, one needs to solve sequences of general-
ized residual equations of the form

PSS z = r,

where r = [r T
1 , r T

2 ]T with r1, r2 ∈ Rm and z = [z T
1 ,z T

2 ]T

with z 1, z 2 ∈ Rm are the generalized and the current
residual vectors, respectively. Therefore, one can use the
following steps [33] to solve the above generalized residual
equations,

Step 1: solve (αI +W )w = 2r2 for w ;
Step 2: compute w̃ = 2r1+Tw ;
Step 3: solve (αI +W +T (αI +W )−1T )z 1 = w̃ for z 1;
Step 4: solve (αI +W )v =−Tz 1 for v ;
Step 5: compute z 2 = v +w .

It can be seen that the workload of Step 3 is heavy.
To conquer the inconvenience, preconditioning technique
should be used for the shift system (II.1). We will try the
C-to-R preconditioner [3], which is very efficient for non-
singular symmetric complex linear systems. By omitting
the constant coefficient 1

2
, which would not affect the

iteration counts of the preconditioned Krylov subspace
method [14], we obtain the SS-C-to-R preconditioner as,

P =

�
αI +W −T

T αI +W +2T

�
. (II.2)

Applying the preconditioner P within a Krylov subspace
method needs solving the following linear matrix precon-
ditioning equations

Pz =

�
αI +W −T

T αI +W +2T

��
x
y

�
=

�
f
g

�
. (II.3)

Adding the second to first equation in (II.3), the system
can be rewritten in a equivalent form,¨

(αI +W +T )(x + y ) = f + g ,

T (x + y )+ (αI +W +T )y = g ,

i.e.,

Pz =

�
αI +W +T 0

T αI +W +T

��
z̃
y

�
=

�
f + g

g

�
,

where z̃ = x + y . Hence, the algorithm to obtain the
solution of (II.3) can be written as
⋄ Solve (αI +W +T )z̃ = f + g ;
⋄ Compute f̃ = g −T z̃ ;
⋄ Solve (αI +W +T )y = f̃ ;
⋄ Compute x = z̃ − y .

III. THE EIGENVALUE PROPERTIES OF THE PRECONDITIONED

MATRIX

One of the important aspects that affects the conver-
gence property of the Krylov subspace methods is the
eigenvalues distribution of the preconditioned coefficient
matrix. Hence, in this section, we will concentrate on
the eigenvalue properties of the preconditioned matrix
P−1A . As P−1A = 1

2
P−1(2PSS)P−1

SS A . Firstly, we discuss the
spectral properties of the preconditioned matrix P−1

SS A .
Let λ be an eigenvalue of P−1

SS A and [u T , v T ]T be the
corresponding eigenvector, then according to Theorem 2.2
in [33], we have the following theorem.

Theorem III.1. Assume W ∈ Rm×m , T ∈ Rm×m be sym-
metric positive semi-definite matrices. Let α be a positive
constant. Then the nonzero eigenvalue λ of the precondi-
tioned matrix P−1

SS A satisfies

|λ−1|< 1, ∀α> 0.

Or equivalently, all nonzero eigenvalues of the precondi-
tioned matrix P−1

SS A cluster in the unit disk with center
(1, 0). Besides, the dimension of the eigenvalue space for
λ = 0 equals n 2

0, where n 0 = dim(null(W ) ∩ null(T )) with
null(X ) being the null space of X .

Proof: If λ ̸= 0, then by making use of the conclusion
in [33], we know that for any α> 0, it holds |λ−1|< 1.

If λ= 0, then �
W −T
T W

��
u
v

�
=

�
0
0

�
leads to ¨

W u = T v,

Tu +W v = 0.

Hence, it must hold

u ∈ null(W )∩null(T ), v ∈ null(W )∩null(T )

and
∥u ∥22+ ∥v ∥22 ̸= 0.

Therefore, the dimension of the zero eigenvalue space
equals n 2

0, where n 0 = dim(null(W )∩null(T )).
Next, we consider the spectral properties of P−1(2PSS).

According to Proposition 3.1 in [5], we acquire the follow-
ing theorem immediately.

Theorem III.2. Assume P and PSS are defined previously.
Then the eigenvalue µ of the matrix P−1(2PSS) satisfies
µ ∈ [ 1

2
,1]. The dimension of the eigenvalue space for

µ = 1 equals to n + n 1, where n 2 = dim(αI +W ) and
n 1 = dim(null(T )).

Proof: See [5].
By combining Theorem III.1 with Theorem III.2, we can

obtain the following theorem.

Theorem III.3. Assume W, T, P and A are defined previ-
ously. Let α> 0 be a constant, γ be a generalized eigenvalue
of P−1A , then it satisfies |γ| ≤ 1.

Proof: Suppose z to be the nonzero eigenvector cor-
responds to the eigenvalue γ. If γ ̸= 0, then

P−1A z = γz , i.e., γ=
z T P−1A z

z T z
.
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Denote by H1 = P−1(2PSS) and H2 = P−1
SS A , then P−1A =

1
2

H1H2. Besides, it is known that H
1
2

1 makes sense accord-
ing to Theorem III.2, hence γ can be rewritten as

γ=
1

2

z T H1H2z

z T z
=

1

2

y T y

z T z
· y T H

1
2

1 H2H
− 1

2
1 y

y T y
=

1

2

z T H1z

z T z
·φ(y ),

where y =H
1
2

1 z and

φ(y ) =
y T H

1
2

1 H2H
− 1

2
1 y

y T y
.

It is known that the matrix H
1
2

1 H2H
− 1

2
1 is similar to the

matrix H2, hence they have the same eigenvalues. Then
there exists y1 such that

φ(y ) =
y T

1 H2y1

y T
1 y1

.

Therefore,

γ=
1

2

z T H1z

z T z
· y

T
1 H2y1

y T
1 y1

.

It follows from Theorem III.1 that

|γ| ≤ 1

2
λmax(H1)λmax(H2)≤ 1,

where λmax(X ) denotes the maximum eigenvalue in mod-
ule of X .

Remark III.4. When α→ 0+, according to the expression of
P, we know that all the nonzero eigenvalues of P−1

SS A will
cluster around 1. Hence, when α → 0+, all the nonzero
eigenvalues of P−1A cluster at [ 1

2
, 1]. However, α → 0+

means the preconditioner P tends to be singular. Therefore,
we should not use the tiny α in our experiments so as to
reach the most effectiveness of the preconditioner P.

IV. NUMERICAL EXPERIMENTS

In this section, we will test the feasibility and effec-
tiveness of the SS-C-to-R method for solving the singular
complex linear systems in terms of both iteration counts
(denoted as ‘IT’) and the computing times (in second,
denoted as ‘CPU’). In our implementations, the initial
guess is chosen to be zero vector and the iteration is
terminated once the current iterate u (k ) satisfies

RES=
∥b −Au (k )∥2
∥b∥2 < 10−6.

All the computation results are run in MATLAB R2017a
[version 9.2.0.538062] in double precision, on a personal
computer with 2.40GHz central processing unit (Intel(R)
Core(TM) 2 Duo CPU), 4.00 GB memory and Windows
64-bit operating system. The sparse Cholesky factorization
[27] is used in solving each step of linear sub-systems in
our experiments.

Example 1. [16] Consider the singular linear system Ax =
b , with the coefficient matrix A = W + iT ∈ Cm×m being
given by

W = tridiag(c i−1, a i , c i )∈Rm×m , T = I⊗Vc+Vc⊗I ∈Rm×m ,

TABLE I
THE EXPERIMENTAL OPTIMAL PARAMETERS USED IN MHSS AND MHSS-GMRES

METHODS.

m
Method 32 48 64 80 96
MHSS αe x p 0.62 0.42 0.32 0.25 0.21
MHSS-GMRES αe x p 0.39 0.4 0.38 0.3 0.25

with

Vc =V − (e1e T
m + em e T

1 )∈Rm×m ,

V = tridiag(−1,2,−1)∈Rm×m ,

e1 = (1, 0, · · · ,0)∈Rm ,

em = (0, · · · ,0, 1)∈Rm ,

e i = (1, 3, 5, 7, · · · ,2m −3, m −1)∈Rm ,

c i = (−1,−2, · · · ,−(m −1))∈Rm−1.

The right-hand side vector b is defined as b = Ax⋆, with
x⋆ = (1,2, · · · , n )T ∈Rm .

We will compare the SS-C-to-R method with the MHSS
iteration method [16] and the corresponding precondi-
tioned GMRES methods. Table I lists the experimental
optimal parameters, which are found experimentally, of
the MHSS iteration method and the MHSS preconditioned
GMRES method. SS-C-to-R(1), SS-C-to-R(2) and SS-C-to-
R(3) method in Table II refers to α= 1, 0.1 and 0.01 in SS-
C-to-R method. The same α is used in the corresponding
preconditioned GMRES methods.

The results corresponding to the experimental parame-
ters shown in Table I are listed in Table II. It can be seen
from Table II that the MHSS-GMRES method outperforms
the MHSS iteration method in iteration counts, but the
CPU times for the MHSS iteration method grow rapidly
when the mesh grid increases. However, the SS-C-to-R
method keeps the most efficient both in iteration counts
and CPU times. It can also be found in Table II that the
iteration counts of the SS-C-to-R method remain steady
for all the mesh grids. Besides, it can be seen from Table
II that the parameter α doesn’t affect the iteration counts
and computing times in the preconditioned GMRES meth-
ods.

In order to better illustrate the effectiveness and con-
firm the theoretical results for the SS-C-to-R method, we
give Figure 1 to describe the eigenvalues distributions of
the preconditioned matrices. We show the original matrix
in the left top for m = 32. The eigenvalues distributions
of the SS-C-to-R preconditioned matrices for α=1, 0.1 and
0.01 are shown in the right top, in the left bottom and in
the right bottom. From this picture, we can see that, when
α=0.01, almost all the eigenvalues are clustered in [ 1

2
, 1],

which is in accordance with the result in Remark III.4.
All the eigenvalues of the preconditioned matrix cluster
tightly and their modulus are less than 1. Hence, the SS-
C-to-R preconditioning techqniue should be a choice for
solving the singular complex linear systems.

V. CONCLUDING REMARKS

In this paper, based on the shift splitting preconditioner
[7] and the C-to-R method [3], we propose an SS-C-to-
R preconditioned method for solving a class of singular
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TABLE II
NUMERICAL RESULTS FOR MHSS, MHSS-GMRES, SS-C-TO-R AND

SS-C-TO-R-GMRES METHODS.

m : 32 48 64 80 96
Method
MHSS IT 187 284 385 489 595

CPU 2.37 24.68 75.36 217.68 524.3
RES 9.33e-7 9.95e-7 9.82e-7 9.89e-7 9.79e-7

MHSS-GMRES IT 37 46 55 62 68
CPU 5.06 29.45 131.16 400.64 967.47
RES 9.22e-7 9.57e-7 8.54e-7 7.81e-7 8.59e-7

SS-C-to-R(1) IT 19 19 19 19 19
CPU 0.30 3.25 5.20 24.78 84.56
RES 7.39e-7 7.39e-7 7.43e-7 7.45e-7 7.45e-7

SS-C-to-R(1)-GMRES IT 7 8 8 8 8
CPU 1.11 5.78 19.54 52.30 123.32
RES 9.94e-7 9.32e-7 9.99e-7 9.91e-7 6.92e-7

SS-C-to-R(2) IT 16 16 16 16 16
CPU 0.29 2.61 4.41 23.59 80.38
RES 7.64e-7 7.81e-7 7.76e-7 7.73e-7 7.79e-7

SS-C-to-R(2)-GMRES IT 8 8 8 8 8
CPU 1.12 5.77 19.54 52.30 123.32
RES 9.94e-7 9.32e-7 9.99e-7 9.91e-7 247

SS-C-to-R(3) IT 15 15 14 14 14
CPU 0.28 1.89 4.12 18.09 78.56
RES 5.41e-7 5.63e-7 8.25e-7 7.26e-7 7.54e-7

SS-C-to-R(3)-GMRES IT 7 8 8 8 8
CPU 1.11 5.77 19.54 52.30 123.30
RES 9.52e-7 2.34e-7 3.01e-7 3.50e-7 4.09e-7
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Fig. 1. The eigenvalues distributions of SS-C-to-R preconditioned
matrices for m=32

complex linear systems. Detailed eigenvalue properties
of the preconditioned matrix are analyzed theoretically.
Numerical results show that the SS-C-to-R method and
the SS-C-to-R preconditioned GMRES method are feasible
and efficient for solving the proposed singular complex
linear equations.

ACKNOWLEDGMENT

The author would like to thank the anonymous referees
for his/her careful reading of the manuscript.

REFERENCES

[1] Aranson IS, Kramer L(2002)The world of the complex Ginzburg-
Landau equation. Rev Modern Phys 74:99.

[2] Axelsson O, Kucherov A(2000)Real valued iterative methods for
solving complex symmetric linear systems. Numer Linear Algebra
Appl 7:197–218.

[3] Axelsson O, Neytcheva M, Ahmad B(2014)A comparison of iterative
methods to solve complex valued linear algebraic systems. Numer
Algorithms 66:811–841.

[4] Axelsson O, Farouq S, Neytcheva M(2017)A preconditioner for
optimal control problems, constrained by Stokes equation with a
time-harmonic control. J Comput Appl Math 310:5–18.
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