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Abstract—In this work, a numerical method based on the
Jacobi collocation approximation is extended to the fractional
Bagley-Torvik equation. The fractional derivative is described in
the Caputo sense. First, the differential equation is equivalently
restated as the Volterra integral equation. Then, the Jacobi
collocation method is used to solve the integral equation.
Convergence analysis of the proposed method is investigated in
terms of the L∞ norm and the weighted L2 norm. In addition,
numerical results are presented to confirm our analysis.

Index Terms—Bagley-Torvik equation, Jacobi polynomial,
Collocation method, convergence analysis.

I. INTRODUCTION

OVER the past few decades, many mathematical, physi-
cal and engineering phenomena have been successfully

described using fractional calculus, which is the theory of
integrals and derivatives of non-integer orders. For example,
Torvik and Bagley [1] formulated a fractional differential
equation that simulates the motion of a rigid plate immersed
in a Newtonian fluid as follows:

Ay′′(t) +BD
3
2 y(t) + Cy(t) = f(t) (1)

subject to
y(0) = y0, y′(0) = y′0. (2)

Here, y(t) represents the displacement of the plate of mass
M and surface area S. The constants A,B and C are given
by

A =M, B = 2S
√
µρ,

where µ and ρ are the viscosity and density, respectively, of
the fluid in which the plate is immersed, and

C = k,

where k is the stiffness of the spring to which the plate
is attached. Finally, f(t) represents the loading force. The
operator Dα is the Caputo fractional derivative. The equation
of existence and the uniqueness of the solution to this initial
value problem have been discussed in [2], [3].

Fractional differential equations have been found to be
more realistic in modeling a variety of physical phenom-
ena, engineering processes, biological systems and financial
products, such as signal identification and image process-
ing, optical systems, thermal system materials and control
systems [4]–[6]. A considerable amount of work has been
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invested in determining numerical solutions of the Bagley-
Torvik equation. Podlubny [7] also investigated the solution
of this problem and proposed a numerical method in his
book. Ray and Bera [8] applied the Adomian decomposition
method to solve the Bagley-Torvik equation and obtained
the same solution as Podlubny’s solution by the Green’s
function. Diethelm and Ford [9] solved the problem with the
Adams predictor and corrector method. Cenesiz et al. [10],
[11] suggested a new generalization of the Taylor collocation
method for obtaining a numerical solution of a class of
fractional order differential equations. Li and Ray [12], [13]
derived the Haar wavelet operational matrix of the fractional
order integration and applied the matrix to the Bagley-Torvik
equation. In [14]–[17], Chebyshev polynomial and hybrid
functions were considered to find an approximate solution
for the problem. Most recently, Raja [18] introduced frac-
tional neural networks to solve fractional order differential
equations, including the Bagley-Torvik equation. Sakar et
al. applied a new reproducing kernel Hilbert space to the
fractional Bagley–Torvik equation [19].

II. BASIC DEFINITIONS OF FRACTIONAL CALCULUS
THEORY

There are various definitions of fractional integrals and
derivatives. The widely used definition of a fractional integral
is the Riemann-Liouville definition, and that of a fractional
derivative is the Caputo definition.

Definition 1: The Riemann-Liouville fractional integral
operator of order α > 0 of a function f ∈ Cµ, µ ≥ −1
is defined as

Jαf(t) =
1

Γ (α)

∫ t

0

(t− s)α−1f(s)ds, α > 0.

Definition 2: The fractional derivative Dα of f(t) in the
Caputo sense is defined as

Dαf(t) =
1

Γ (n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)d(τ),

for n− 1 < α ≤ n, n ∈ N, t > 0, and f(t) ∈ Cn−1.
For the Caputo definition, we have

JαDαf(t) = f(t)−
n−1∑
i=0

f (i)(0)
ti

i!
. (3)

III. EXISTENCE AND UNIQUENESS OF SOLUTIONS

The existence and uniqueness of the solution to linear
and nonlinear fractional differential equations have been
thoroughly investigated in [20], [21] and [22]. Before the
description of existence and uniqueness of solutions, we
find it convenient to rewrite the original Bagley-Torvik
equation in the form of the integral equations. Without loss
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of generality, we consider y0 = 0, y′0 = 0 and A = 1. We
convert (1) and (2) to the forms of

ỹ′′(t) +BD
3
2 ỹ(t) + Cỹ(t) = f̃(t), t ∈ [0, T ] (4)

and
ỹ(0) = 0, ỹ′(0) = 0, (5)

where ỹ(t) = y(t) − y0 − y′0t, and f̃(t) = f(t) − y0 −
y′0t. Integrating (4) and making use of (3), we obtain the
integrated form of (4) and (5):

ỹ(t) =
−B√
π

∫ t

0

(t−s)− 1
2 ỹ(s)ds−C

∫ t

0

(t−s)ỹ(s)ds+g(t),
(6)

where t ∈ [0, T ] and g(t) =
∫ t
0
(t − s)f̃(s)ds. The Bagley-

Torvik equation is equivalent to the integral equations (6)
For simplicity, the equation (6) that we shall consider is of
the form

ỹ(t) =

∫ t

0

K(t, s)ỹ(s)ds+ g(t) (7)

where
K(t, s) =

−B√
π
(t− s) 1

2 − C(t− s).

Theorem 3: Assume the function f̃(t) ∈ L1[0, T ] is
bounded. Then the problem (4) and (5) has a unique contin-
uous solution.

Proof: Consider the iterations

ỹk(t) =

∫ t

0

K(t, s)ỹk−1(s)ds+ g(t), k = 1, 2, · · · , (8)

and ỹ0(t) = g(t). Moreover, letting

φk(t) = ỹk(t)− ỹk−1(t), φ0(t) = g(t) (9)

we have

φk(t) =

∫ t

0

K(t, s)φk−1(s)ds, k = 1, 2, · · · . (10)

From (8),(9), we obtain

yk(t) =
k∑
i=0

φi(t).

Next, since f̃(t) ∈ L1[0, T ] is bounded, we deduce that the
function g(t) is continuous on [0, T ] and |g(t)| ≤M , M > 0.
From (9), we have

|φ1(t)| ≤M
∫ t

0

K(t, s)ds ≤ MT 2

2
, (11)

which, together with (10), leads to

|φk(t)| ≤M
∫ t

0

K(t, s)ds ≤ MT 2k

2k
.

Therefore the sequence φk(t) converges uniformly to a limit
ỹ(t). That is

ỹ(t) = lim ỹk(t) =
∞∑
i=0

φi(t).

In addition, by summing the equations in (10)
∞∑
i=0

φi+1(t) =
∞∑
i=0

∫ t

0

K(t, s)φi(s)ds.

Using (9) (10) one verifies easily that
∞∑
i=0

φi(t)− g(t) =
∫ t

0

K(t, s)
∞∑
i=0

φi(s)ds,

and

ỹ(t) =

∫ t

0

K(t, s)ỹ(s)ds− g(t).

Hence ỹ(t) is a solution of (7).
Now, we prove that ỹ(t) is a unique solution. Assume

there exists another solution ũ(t), then

|ỹ(t)− ũ(t)| ≤
∫ t

0

K(t, s)|ỹ(s)− ũ(s)|ds.

Since y(t) − u(t) is continuous function on [0, T ]. There
exist a constant L > 0 such that |y(t) − u(t)| < L for all
t ∈ [0, T ]. Thus the above equation becomes

|ỹ(t)− ũ(t)| ≤ L
∫ t

0

K(t, s)ds ≤ LT 2

2
. (12)

Repeated application of (12) gives

|ỹ(t)− ũ(t)| ≤ LT 2n

2n
.

Thus as n→∞, we have ỹ(t) = ũ(t).

IV. SOLUTION OF THE BAGLEY-TORVIK EQUATION

Let ωα,β(x) be a weight function in the usual sense,
for α, β > −1. It is well known that the set of Jacobi
polynomials {Jα,βn (x)}∞n=0 forms a complete L2

ωα,β (−1, 1)-
orthogonal system, where L2

ωα,β (−1, 1) is a weighted space
defined by

L2
ωα,β (−1, 1) = {u : u is measurable and ‖u‖ωα,β <∞}

and

‖u‖ωα,β =

(∫ 1

−1
|u(x)|2ωα,β(x)dx

) 1
2

,

and the inner product

(u, v)ωα,β =

∫ 1

−1
u(x)v(x)ωα,β(x)dx,

where u, v ∈ L2
ωα,β (−1, 1).

For a given positive integer N , we denote the collocation
points by {xi}Ni=0, which is the set of N + 1 Jacobi Gauss,
Jacobi Gauss-Radau or Jacobi Gauss-Lobatto points, and by
{ωi}Ni=0, which are the corresponding weights. Let PN de-
note the space of all polynomials of degree not exceeding N .
For any u ∈ C[−1, 1], we define the Lagrange interpolating
polynomial Iα,βN u ∈ PN satisfying

Iα,βN u(xi) = u(xi), 0 ≤ i ≤ N.

It can be written in the form

Iα,βN u(x) =

N∑
i=0

u(xi)Fi(x), 0 ≤ i ≤ N,

where Fi(x) is the Lagrange interpolation basis associated
with the Jacobi collocation points {xi}Ni=0.
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Now, we present the Jacobi collocation method for (6).
For ease of analysis, we make the change of variables

t = T (1+x)/2, x = 2t/T −1, x ∈ [−1, 1], t ∈ [0, T ]

and
s = T (1 + τ)/2, τ ∈ [−1, x].

Equation (6) is transformed into

u(x) =B1

∫ x

−1
(x− τ)−

1
2 u(τ)dτ

+B2

∫ x

−1
(x− τ)u(τ)dτ +G(x),

(13)

where u(x) = ỹ(T (1+x)/2), G(x) = g̃(T (1+x)/2), B1 =
−B/

√
2πT and B2 = −TC/4.

First, equation (13) holds at the collocation points {xi}Ni=0

on [−1, 1]:

u(xi) =B1

∫ xi

−1
(xi − τ)−

1
2 u(τ)dτ

+B2

∫ xi

−1
(xi − τ)u(τ)dτ +G(xi)

(14)

for 0 ≤ i ≤ N . In obtaining high order accuracy for
the above Volterra integral equation, the main difficulty
is computing the integral term in (14). To overcome this
difficulty, we transfer the interval [−1, xi] to a fixed interval
[−1, 1]. We rewrite the integral terms in (14) as∫ xi

−1
(xi − τ)−

1
2u(τ)dτ

=

(
1 + xi

2

) 1
2
∫ 1

−1
(1− θ)− 1

2u(τi(θ))dθ

(15)

and ∫ xi

−1
(xi − τ)u(τ)dτ

=

(
1 + xi

2

)∫ 1

−1
(1− θ)u(τi(θ))dθ

(16)

by using the following variable change:

τ = τi(θ) =
xi + 1

2
θ +

xi − 1

2
, θ ∈ [−1, 1].

Next, using the Jacobi-Gauss quadrature formula, (15) and
(16) can be approximated by∫ xi

−1
(xi − τ)−

1
2u(τ)dτ ≈

(
1 + xi

2

)− 1
2
N∑
k=0

u(τi(θk))ω
− 1

2 ,0

k

(17)
and∫ xi

−1
(xi − τ)u(τ)dτ ≈

(
1 + xi

2

) N∑
k=0

u(τi(θk))ω
1,0
k , (18)

where the points {θi}Ni=0 coincide with the collocation points
{xi}Ni=0. We use ui to approximate the function value u(xi),
0 ≤ i ≤ N , and expand the approximate solution uN (x) as

uN (x) =
N∑
j=0

uiFj(x) (19)

to approximate the function u(x), and

u(τi(θk)) ≈
N∑
j=0

Fj(τi(θk))uj . (20)

Then, inserting (19) and (20) into (14) leads to

ui = B1

(
1 + xi

2

)− 1
2
N∑
j=0

(
N∑
k=0

Fj(τi(θk))ω
− 1

2 ,0

k

)
uj

+B2

(
1 + xi

2

) N∑
j=0

(
N∑
k=0

Fj(τi(θk))ω
1,0
k

)
uj +G(xi)

(21)

for 0 ≤ i ≤ N . By solving the system of linear equations
and obtaining the approximation uN (x), we can find that

y(t) ≈ yN (t) = uN

(
2

T
t− 1

)
.

V. SOME USEFUL LEMMAS

In this section, we will recall some elementary lemmas
that will be used in the convergence analysis.

Lemma 1: [23] If u ∈ Hm(I) with I := (−1, 1) for
some m ≥ 1 and φ ∈ PN , then for the Gauss quadrature
formula relative to the Jacobi weight, we have∣∣∣∣∫ 1

−1
u(x)φ(x)− (u, φ)N

∣∣∣∣ ≤ CN−m|u|Hm;N

ωα,β
(I)‖φ‖L2

ωα,β
(I),

(22)
where

|u|Hm,N
ωα,β

(I) =

 m∑
i=min(m,N+1)

‖u(i)‖2L2

ωα,β
(I)

 1
2

, (23)

(u, φ)N =

N∑
i=0

u(xi)φ(xi)ωi. (24)

Lemma 2: For any function u ∈ Hm,N
ωα,β

(I), denoting its
interpolation polynomial by Iα,βN u, the error estimates hold
(see [23], [24]):

‖u− Iα,βN u‖L2

ωα,β
(I) ≤ CN−m|u|Hm;N

ωα,β
(I), (25)

‖u− Iα,βN u‖∞ ≤{
CN

1
2−m logN |u|Hm;N

ωc
(I), −1 < α, β ≤ − 1

2 ,
CN1+γ−m|u|Hm;N

ωc
(I), γ = max{α, β}, otherwise,

(26)

where ωc = ω−
1
2 ,−

1
2 denotes the Chebyshev weight function.

Lemma 3: [25] Let {Fi}Ni=0 be the Lagrange basis poly-
nomials associated with the Gauss points of Jacobi polyno-
mials. Then,

‖Iα,βN ‖∞ = max
x∈[−1,1]

N∑
i=0

|Fi(x)|

≤
{
O(logN), −1 < α, β ≤ 1

2 ,
O(Nγ+ 1

2 ), γ = max(α, β), otherwise.
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Lemma 4: (Gronwall inequality, see [26]) Suppose that u
and v are nonnegative, locally integrable functions on [−1, 1]
satisfying

u(x) ≤ v(x) + L

∫ x

−1
(x− τ)−µu(τ)dτ,

where L ≥ 0 and 0 < µ < 1. Then, there exists a constant
C = C(µ) such that

u(x) ≤ v(x) + CL

∫ x

−1
(x− τ)−µv(τ)dτ − 1 ≤ x < 1.

Lemma 5: [27] Let a and b be two real numbers −∞ ≤
a < b ≤ ∞, and let 1 < p ≤ q < ∞. Then, for all
measurable functions f ≥ 0, we have that the generalized
Hardy inequality(∫ b

a

|(Tf)(x)|qu(x)dx

) 1
q

≤ C

(∫ b

a

|f(x)|pv(x)dx

) 1
p

holds if and only if

sup
a<x<b

(∫ b

x

u(t)dt

) 1
q (∫ x

a

v1−p
′
(t)dt

) 1
p′

<∞,

p′ =
p

p− 1
.

Here, T is an operator of the form (Tf)(x) =∫ x
a
k(x, t)f(t)dt, with k(x, t) as the given kernel, and u and

v are nonnegative weight functions.
Lemma 6: [28] For a bounded function u(x), there exists

a constant C independent of u(x) such that

sup
N

∥∥∥∥∥
N∑
i=0

u(xi)Fi(x)

∥∥∥∥∥
L2

ωα,β
(I)

≤ C max
x∈[−1,1]

|u(x)|.

VI. CONVERGENCE ANALYSIS

Theorem 4: Let u(x) be the solution of (13), which is
assumed to be sufficiently smooth. The approximated solu-
tion uN (x) is obtained by using numerical scheme (21). If
u ∈ Hm

ω−α,−β (I) for some m ≥ 1, then we have the estimate

‖u− uN‖∞ ≤{
CN

1
2−m logNU1, −1 < α, β ≤ − 1

2 ;
CN1+γ−mU1, γ = max{α, β} < 0,

(27)

where U1 = |u|Hm;N
ωc

+N−
1
2 ‖u‖∞.

‖u− uN‖ωα,β ≤{
CN−m(U2 + U3), −1 < α, β ≤ − 1

2 ;
CN−m(U2 + U4), γ = max{α, β} < 0,

(28)

where U2 = |u|Hm,N
ωα,β

+‖u‖∞, U3 = N
1
2−κ logN |u|Hm,N

ωc
(I)

and U4 = N1+γ−κ|u|Hm,N
ωc

(I).
Proof: For ease of analysis, we rewrite numerical

scheme (21) as

ui =B1

∫ xi

−1
(xi − τ)−

1
2 uN (τ)dτ+

B2

∫ xi

−1
(xi − τ)uN (τ)dτ +G(xi) + I1 + I2

(29)

for 0 ≤ i ≤ N , where uN is defined in (19),

I1 =B1

(
1 + xi

2

)− 1
2
N∑
j=0

(
N∑
k=0

Fj(τi(θk))ω
− 1

2 ,0

k

)
uj

−B1

∫ xi

−1
(xi − τ)−

1
2 uN (τ)dτ,

(30)

and

I2 =B2

(
1 + xi

2

) N∑
j=0

(
N∑
k=0

Fj(τi(θk))ω
1,0
k

)
uj

−B2

∫ xi

−1
(xi − τ)uN (τ)dτ.

(31)

Using (30) and (31) and the integration error estimates in
(22), we obtain

|I1| ≤ CN−m|uN |Hm;N

ωα,β
, |I2| ≤ CN−m|uN |Hm;N

ωα,β
. (32)

Subtracting (29) from (14) gives

u(xi)− ui =B1

∫ xi

−1
(xi − τ)−

1
2 eN (τ)dτ+

B2

∫ xi

−1
(xi − τ)eN (τ)dτ − I1 − I2,

(33)

where e(x) = u(x) − uN (x). Multiplying Fi(x) on both
sides of equation (33) and summing from i = 0 to i = N
yields

INu− uN =B1IN

(∫ xi

−1
(xi − τ)−

1
2 e(τ)dτ

)
+B2IN

(∫ xi

−1
(xi − τ)e(τ)dτ

)
−

N∑
i=1

Fi(x)I1 −
N∑
i=1

Fi(x)I2.

(34)

Consequently,

e(x) =B1

∫ x

−1
(x− τ)−

1
2 e(τ)dτ+

B2

∫ x

−1
(x− τ)e(τ)dτ +

5∑
i=1

Ji,

(35)

where

J1 = u− INu,

J2 =
N∑
i=1

Fi(x)I1,

J3 =
N∑
i=1

Fi(x)I2,

J4 = IN

(∫ xi

−1
(xi − τ)−

1
2 e(τ)dτ

)
−
∫ xi

−1
(xi − τ)−

1
2 e(τ)dτ,

and

J5 = IN

(∫ xi

−1
(xi − τ) e(τ)dτ

)
−
∫ xi

−1
(xi − τ) e(τ)dτ.
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It follows from the Gronwall inequality in Lemma (4) that

‖eN (x)‖∞ ≤ C
5∑
i=1

‖Ji‖∞. (36)

First, by (26),

‖J1‖∞ ≤{
CN

1
2−m logN |u|Hm,N

ωc
(I), −1 < α, β ≤ − 1

2 ,
CN1+γ−m|u|Hm,N

ωc
(I), γ = max{α, β}, otherwise .

(37)

Next, using (30), (31), (32) and Lemma (3), we obtain

‖J2‖∞ =

∥∥∥∥∥
N∑
i=0

I1(xi)Fi(x)

∥∥∥∥∥
∞

≤ max
0≤i≤N

|I1(xi)| max
x∈(−1,1)

N∑
i=0

|Fi(x)| ≤{
CN−m logN(‖uN‖∞), −1 ≤ α, β ≤ − 1

2 ,
CN

1
2+γ−m(‖uN‖∞), γ = max{α, β}, otherwise,

(38)

and

‖J3‖∞ =

∥∥∥∥∥
N∑
i=0

I2(xi)Fi(x)

∥∥∥∥∥
∞

≤{
CN−m logN(‖uN‖∞), −1 ≤ α, β ≤ − 1

2 ,
CN

1
2+γ−m(‖uN‖∞), γ = max{α, β}, otherwise,

(39)

for sufficiently large N . Finally, applying the results in [24],
[29], we obtain

‖J4‖∞ ≤{
CN−κ logN(‖e‖∞), −1 ≤ α, β ≤ − 1

2 ,
CN

1
2+γ−κ(‖e‖∞), γ = max{α, β}, otherwise.

(40)

By virtue of (26) with m = 2, we obtain

‖J5‖∞ ≤{
CN−

3
2−m logN‖e‖∞, −1 < α, β ≤ − 1

2 ;
CN−γ−1‖e‖∞, γ = max{α, β}, otherwise.

(41)

Combining (37), (38), (39), (40) and (41) gives the desired
estimate (27).

Considering (35), we have

|e(x)| ≤ B1

∫ x

−1
(x− τ)−

1
2 |e(τ)|dτ +H(x), (42)

where

H(x) = B2

∫ x

−1
(x− τ)e(τ)dτ +

5∑
i=1

Ji.

Applying the Gronwall inequality in Lemma 4, we have

|e(x)| ≤ C
∫ x

−1
(x− τ)−

1
2 |H(τ)|dτ +H(x). (43)

Using the Hardy inequality Lemma 5, we obtain

‖e(x)‖ωα,β ≤ C
∥∥∥∥∫ x

−1
(x− τ)−

1
2 |H(τ)|dτ

∥∥∥∥
ωα,β

+ C‖H(x)‖ωα,β

≤ C‖H(x)‖ωα,β ≤ C
5∑
i=1

‖Ji‖ωα,β .

(44)

Now, using (26), we have

‖J1‖ωα,β = ‖u− Iα,βN u‖ωα,β ≤ CN−m|u|Hm;N

ωα,β
. (45)

Similarly, we obtain the estimates

‖J2‖ωα,β ≤ C‖I1‖∞ ≤ CN−m(‖e‖∞ + ‖u‖∞) (46)

and

‖J3‖ωα,β ≤ C‖I2‖∞ ≤ CN−m(‖e‖∞ + ‖u‖∞). (47)

Similarly, applying the results in [24], [29] and (27) yields

‖J4‖ωα,β ≤ CN−κ‖e‖∞{
CN

1
2−m−κ logNU1, −1 ≤ α, β ≤ − 1

2 ,
CN1+γ−m−κU1, γ = max{α, β} < 0.

(48)

By virtue of (26) with m = 2, we obtain

‖J5‖ωα,β ≤ CN−2‖e‖ωα,β . (49)

Combining (45), (46), (47), (48) and (49) gives the desired
estimate (28).

VII. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness and
simplicity of the proposed method using two examples.

Example 7.1: First, we consider the following Bagley-
Torvik equation:

y′′(t) + y
3
2 (t) + y(t) = f(t),

with the initial conditions

y(0) = 1, y′(0) = 1,

where f(t) = 15
4

√
t + 15

√
π

8 t + t
5
2 + 1. In [30] the authors

applied piecewise polynomial collocation method to deal
with the equation on the intervals of [0, 1]. We applied the
present method to solve the problem on the intervals of
[0, 1] and [0, 10]. In Fig. 1, the numerical errors are plotted
for various choices of N in terms of both the L2 and L∞

norms. The results of the piecewise polynomial collocation
and our present methods, with various values of N , are listed
in Table I. The numerical solutions using the present method
are consistent with the solutions of the methods in [30].

TABLE I
COMPARISON OF THE MAXIMUM ERRORS OF THE PIECEWISE

POLYNOMIAL COLLOCATION METHOD AND PRESENT METHOD FOR
EXAMPLE 7.1

N Method in [30] Our method
8 2.4382e-04 2.9572e-04

16 3.1586e-06 5.5642e-06
32 4.0640e-07 3.9324e-07
64 5.1963e-08 2.9746e-08
128 6.6429e-09 7.8351e-10
256 8.4399e-10 1.7682e-10
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Fig. 1. The error e(t) verse the number of collocation points in L2 and
L∞ norms.

Example 7.2: Second, we consider the following Bagley–
Torvik equation:

y′′(t) +
1

2
D

3
2 y(t) +

1

2
y(t) = g(t)

subject to the initial conditions y(0) = 0 and y′(0) = 0,
where

g(t) =

{
8, 0 ≤ t ≤ 1;
0, t > 1.

The problem was considered in [10], [13], [16], [31]. We
applied the present method to solve the problem with N =
32. The numerical solutions obtained by the present method
and other numerical methods, such as the wavelet method
[13] are given in Table II. Clearly, the numerical results
show that the present method is effective and its accuracy
is comparable to that of existing methods. The numerical
results with N = 32 and the exact solution are plotted in
Fig.2. The approximate solutions obtained using the present
method show excellent agreement with the exact solutions.

0 5 10 15 20
−6

−4

−2

0

2

4

6

8

 

 

exact solution

Numerical solution

Fig. 2. Exact solution and numerical solution for N = 32

VIII. CONCLUSION

This work has addressed the extension of the Jacobi
collocation method to the Bagley-Torvik equation. We have

TABLE II
COMPARISON OF THE NUMERICAL RESULTS OF THE WAVELET AND

PRESENT METHOD FOR EXAMPLE 7.2

t Wavelet method [13] Our method N = 32 Exact solutions
1 3.53856 2.952482792 2.952583880
2 7.53718 6.760087332 6.760110396
3 8.28540 7.666174786 7.666141755
4 6.26126 6.077230168 6.077249465
5 2.53055 2.943928811 2.943935566
6 -1.49195 -0.525196957 -0.525171420
7 -4.50898 -3.246325319 -3.246304280
8 -5.72074 -4.550282354 -4.550290680
9 -5.00085 -4.302851128 -4.302864780
10 -2.84029 -2.848382245 -2.848380860

implemented the proposed method based on the Jacobi
polynomial approximation and Gauss quadrature formula.
First, we transformed the differential equation to the Volterra
integral equation with a weakly singular kernel. Next, we
presented a numerical scheme for the new Volterra integral
equation. We proved the convergence of the method and
obtained the error estimates in terms of the L∞ norm and
weighted L2 norm for the approximated solution. These
results were confirmed by some numerical examples. In our
future work, the Jacobi collocation spectral analysis will be
extended to nonlinear fractional differential equations and
nonlinear fractional integro-differential equations.
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