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Abstract—In this paper, an analytical method called an
exp(−ϕ(ξ))-expansion method is applied to find new exact
traveling wave solution of a class of the fifth-order Korteweg-de
Vries equation (fKdV), and some particular cases of this class
have an aspect interesting physical that are the Lax, Sawada-
Kotera, Caudrey-Dodd-Gibbon, Kaup- Kupershmidt and Ito
equations.

Index Terms—Fifth-order Korteweg-de Vries equation,
exp(−ϕ(ξ))-expansion method, nonlinear evolution equation,
traveling wave solution, soliton solution.

I. INTRODUCTION

NOnlinear evolution equations (NLEEs) are applied in
many fields of science and engineering, especially in

fluid mechanics, laser optics, plasma physics, and others. The
study of the traveling wave solutions of the NLEEs allows
us to know the internal structure of nonlinear phenomena.

Several methods can be used to find these solutions, such
as Hirota’s bilinear method [1], tanh method [2], [3], sine-
cosine method [1], [4], tanh-coth method [1], [5], Painlevé
analysis [6], homogeneous balance method [7], [8], Dar-
boux transformation [9], Fan sub-equation method [10], exp-
function method [11], [12], (G

′

G )-expansion method [13], first
integral method [14], trial equation method [15], extended
trial equation method [16] and so on.

In this work, we present a technique called exp(−ϕ(ξ))-
expansion method [17]–[20], it’s described in section II. This
method allows to find new exact traveling wave solutions of
a class of the fifth-order Korteweg-de Vries equation (fKdV)
which has the formula [1], [21]

ut + uxxxxx + auuxxx + buxuxx + cu2ux = 0 (1)

Where a, b and c are non-zero real parameters, and
u = u(x, t) is an unknown function.

In accordance with the values of a, b and c, we found new
exact solutions of the most well-known equations of fKdV
[1], like the Lax equation for a = 10, b = 20 and c = 30,
the Sawada-Kotera (SK) equation for a = b = c = 5, the
Caudrey-Dodd-Gibbon (CDG) equation for a = b = 30 and
c = 180, the Kaup-Kupershmidt (KK) equation for a = 10,
b = 25 and c = 20, and the Ito equation for a = 3, b = 6
and c = 2.
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The fKdV equation attracted an important field of research
in mathematical physics, with various applications in nonlin-
ear optics and quantum mechanics. It represents movements
of long waves in shallow water surfaces. In recent years,
many analytical and numerical methods have been used to
solve several forms of this equation. Wazwaz [1]–[5] studied
the equation using Hirota’s bilinear, tanh, sine-cosine and
extended tanh methods. In [1], the multiple-soliton solutions
are determined for different forms of the fKdV equation by
using the Hirota’s bilinear formalism. In [2], [3], he used the
tanh method for solving various forms of the fKdV equation,
that include the Lax, SK, KK, Ito and the CDG forms and
other related special cases. Two main criteria are defined to
create effective strategies that regulate the relation between
the parameters of the equation. Abundant solitons solutions
are derived. In [4], the sine–cosine and the tanh methods
are used to present an analytic study of the fKdV equation,
that provided exact periodic and solitons solutions. In [5],
the extended tanh method is used to derive new solitons
solutions for many forms of the fKdV equation, which
contain the Lax, SK, Sawada–Kotera–Parker–Dye (SKPD),
KK, Kaup–Kupershmidt–Parker–Dye (KKPD), and the Ito
equations. The criteria established in [2] are confirmed by
using this new approach.

Many other authors as Sierra and Salas [22] used a
generalization of the tanh-coth method in order to obtain
new periodic and soliton solutions to various important forms
of the fKdV equation. Salas et al. [12], [23] found exact
solutions to the general fKdV equation by using the exp
function, the generalized projective Riccati equations meth-
ods and the Cole-Hopf transformation. Zayed and Alurrfi [7]
applied the homogeneous balance method to find the exact
solutions of the Lax, SK, KK, Ito and CDG forms. Khan
and Akbar [24] used the modified simple equation (MSE)
method to solve the generalized fKdV equation that gives
exact traveling wave solutions. Jaradat et al. [25] investigated
the multiple soliton solutions and multiple singular soliton
solutions of a class of the fifth-order nonlinear evolution
equation with variable coefficients. They used the simplified
bilinear method based on a transformation method combined
with the Hirota’s bilinear sense.

This article is organized as follows: In Section II, we
give the steps of the method. In Section III, we apply this
method to solve a class of the fKdV equation. In Section IV,
we illustrated many solutions graphically for some particular
values of parameters. Also a conclusion is given in Section
V. Finally some references are given at the end of this paper.
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II. THE exp(−ϕ(ξ))-EXPANSION METHOD

The general nonlinear PDE

P (u, ut, ux, utt, uxx, uxt, uxxx......) = 0 (2)

is transformed into ODE

R (u, u′, u′′, u′′′, ......) = 0 (3)

by the transformation u(x, t) = u(ξ), ξ = x± ωt, where ω
is the speed of traveling wave.

Basic ideas of this method:
Step 1. Suppose that the solution of (3) can be described

as follows

u(ξ) =
m∑
i=0

αi(exp(−ϕ(ξ)))i (4)

Where m is a positive integer and αi (i = 0, 1, ...,m) are
constants to be established, such that αm 6= 0 and ϕ(ξ)
satisfies the following ODE:

ϕ′(ξ) = exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) + λ (5)

where λ and µ are constants.
We pose Θ = λ2 − 4µ, the solutions of (5) are:
When Θ > 0, µ 6= 0

ϕ(ξ) = ln

(
−1
2µ

(
√
Θ tanh

(√
Θ

2
(ξ + k1)

)
+ λ

))
(6)

or

ϕ(ξ) = ln

(
−1
2µ

(
√
Θ coth

(√
Θ

2
(ξ + k1)

)
+ λ

))
(7)

When Θ < 0, µ 6= 0

ϕ(ξ) = ln

(
1

2µ

(√
−Θ tan

(√
−Θ
2

(ξ + k1)

)
− λ

))
(8)

or

ϕ(ξ) = ln

(
1

2µ

(√
−Θ cot

(√
−Θ
2

(ξ + k1)

)
− λ
))

(9)

When Θ > 0, µ = 0, λ 6= 0

ϕ(ξ) = ln

(
1

λ
(exp(λ(ξ + k1))− 1)

)
(10)

When Θ = 0, µ 6= 0, λ 6= 0

ϕ(ξ) = ln

(
−2λ(ξ + k1) + 4

λ2(ξ + k1)

)
(11)

When Θ = 0, µ = 0, λ = 0

ϕ(ξ) = ln (ξ + k1) (12)

where k1 is a constant of integration.
Step 2. We find m that appeared in (4) by balancing the

higher order derivatives and the higher order nonlinear terms
occurred in (3). Then, we replace u (ξ) and its derivatives in
(3), we obtain a polynomial of exp(−ϕ(ξ)). This provides
a system of algebraic equations that implies the parameters
αi and ω. Finally, we get the exact solutions of (2).

III. APPLICATION OF THE FIFTH-ORDER KDV EQUATION

Let us the fifth-order KdV equation, that has the form

ut + uxxxxx + auuxxx + buxuxx + cu2ux = 0 (13)

Using u(x, t) = u(ξ) and ξ = x− ωt, we obtain

−ωu′ + u′′′′′ + auu′′′ + bu′u′′ + cu2u′ = 0 (14)

we integrate (14) and ignoring the constant of integration,
we have

−ωu+ u′′′′ + auu′′ +
b− a
2

(u′)
2
+
c

3
u3 = 0 (15)

Based on the finite expansion (4), we balance u′′′′ with
u3, we find m = 2, thus, the solution of (15) is of the form

u(ξ) = α0 + α1 exp(−ϕ(ξ)) + α2(exp(−ϕ(ξ)))2 (16)

where αi (i = 0, 1, 2) are constants to be established and
α2 6= 0.

According to the step 2, we get the following system

aλµα0α1 − 1
2aµ

2α2
1 + 8λµ2α1 + 16µ3α2 + 2aµ2α0α2

+14λ2µ2α2 + λ3µα1 − ωα0 +
1
3cα

3
0 +

1
2bµ

2α2
1 = 0

6aλµα0α2 + aλ2α0α1 + 2bµ2α1α2 + bλµα2
1 + 30λ3µα2

+2aµα0α1 + λ4α1 + cα2
0α1 − ωα1 + 120λµ2α2

+22λ2µα1 + 16µ2α1 = 0

8aµα0α2 + aµα2
1 + 2bµ2α2

2 + 60λµα1 +
1
2bλ

2α2
1

+232λ2µα2 + cα0α
2
1 + 4aλ2α0α2 + 3aλα0α1 − ωα2

+4bλµα1α2 + 15λ3α1 + 3aλµα1α2 + cα2
0α2

+136µ2α2 + 16λ4α2 +
1
2aλ

2α2
1 + bµα2

1 = 0

2aλα2
1 + 6aµα1α2 + bλα2

1 + 10aλα0α2 + 2aλµα2
2

+4bλµα2
2 + 50λ2α1 + 2cα0α1α2 + 2aα0α1 + 40µα1

+2bλ2α1α2 + 440λµα2 +
1
3cα

3
1 + 4bµα1α2

+3aλ2α1α2 + 130λ3α2 = 0

2bλ2α2
2 + cα2

1α2 + 330λ2α2 + 4bµα2
2 + 9aλα1α2

+240µα2 + cα0α
2
2 + 6aα0α2 + 4bλα1α2 + 2aλ2α2

2

+ 3
2aα

2
1 + 60λα1 +

1
2bα

2
1 + 4aµα2

2 = 0

6aλα2
2 + 4bλα2

2 + cα1α
2
2 + 6aα1α2 + 2bα1α2

+336λα2 + 24α1 = 0
1
3cα

3
2 + 2bα2

2 + 120α2 + 4aα2
2 = 0

(17)
Solving the above system we find the following results:
Case A: If b = 10c

a −a
We obtain the two sets
Family 1:

ω =
(
λ2 − 4µ

)2
α0 =

−6aµ
c

, α1 =
−6aλ
c

, α2 =
−6a
c

(18)

Family 2:

ω =
1

8c

(
a2 − 4c∓ a

√
9a2 − 24c

) (
λ2 − 4µ

)2
α0 =

1

4c

(
±
√
9a2 − 24c(λ2 − 4µ)− 3aλ2 − 12aµ

)
α1 =

−6aλ
c

, α2 =
−6a
c

(19)

Case B: If b 6= 10c
a −a
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We obtain

ω = 0, µ =
1

4
λ2

α0 =
−3λ2

2c

β0δ ± β1 ∓ β2
γ0δ ± γ1 ∓ γ2

α1 =
−6λ
c

β3δ ± β4
(3a+ 2b) δ ± (β3 − 28c)

α2 =
−3
c

(2a+ b± δ)

(20)

Such as

δ =
√
(2a+ b)2 − 40c

β0 =(b+ a) (3a+ 2b)
2
(2a+ b)

3

− 2c (3a+ 2b) (2a+ b)
(
116a2 + 169ab+ 58b2

)
+ 2c

(
3754a2c+ 5136abc+ 1712b2c− 3920c2

)
β1 =(b+ a) (3a+ 2b)

2
(2a+ b)

4

β2 =2c (3a+ 2b) (2a+ b)
2 (

146a2 + 219ab+ 78b2
)

− 2c
(
13568a3c+ 26706a2bc+ 17200ab2c

)
− 2c

(
3632b3c− 32480ac2 − 22960bc2

)
β3 =(3a+ 2b) (2a+ b)− 28c

β4 =(3a+ 2b) (2a+ b)
2 − 116ac− 68bc

γ0 =(b+ a) (3a+ 2b)
2
(2a+ b)

2

− 2c (3a+ 2b)
(
101a2 + 144ab+ 48b2

)
+ 2c (1232ac+ 952bc)

γ1 =(b+ a) (3a+ 2b)
2
(2a+ b)

3

γ2 =2c (3a+ 2b) (2a+ b)
(
131a2 + 194ab+ 68b2

)
− 2c

(
5044a2c+ 7136abc+ 2472b2c− 7840c2

)

(21)

A. The first condition b = 10c
a −a

Family 1:
Substituting (18) into (16) we obtain

u(ξ) = −6aµ

c
−6aλ

c
exp(−ϕ(ξ))−6a

c
(exp(−ϕ(ξ)))2 (22)

According to the solutions of (5), we discuss the following
cases:

Case 1.1: When Θ > 0, µ 6= 0

u1(x, t) = −
6aµ

c
+

12aλµ

c
√
Θ tanh

(√
Θ
2 (ξ + k1)

)
+ cλ

− 24aµ2

c
(√

Θ tanh
(√

Θ
2 (ξ + k1)

)
+ λ
)2 (23)

or

u2(x, t) = −
6aµ

c
+

12aλµ

c
√
Θ coth

(√
Θ
2 (ξ + k1)

)
+ cλ

− 24aµ2

c
(√

Θ coth
(√

Θ
2 (ξ + k1)

)
+ λ
)2 (24)

where Θ = λ2 − 4µ, ξ = x − Θ2t and k1 is a constant of
integration.

(a) u1 in 3D with −3 ≤ x ≤ 3, −3 ≤ t ≤ 3

(b) u1 in 2D with −10 ≤ x ≤ 10, t = 1

Fig. 1: Bell shape soliton solution of u1 for a = 10, b = 20,
c = 30, λ = 2, µ = 0.5, k1 = 1

Case 1.2: When Θ < 0, µ 6= 0

u3(x, t) = −
6aµ

c
+

12aλµ

cλ− c
√
−Θ tan

(√
−Θ
2 (ξ + k1)

)
− 24aµ2

c
(
λ−
√
−Θ tan

(√
−Θ
2 (ξ + k1)

))2
(25)

or

u4(x, t) = −
6aµ

c
+

12aλµ

cλ− c
√
−Θ cot

(√
−Θ
2 (ξ + k1)

)
− 24aµ2

c
(
λ−
√
−Θ cot

(√
−Θ
2 (ξ + k1)

))2
(26)

where ξ = x−Θ2t.
Case 1.3: When Θ > 0, µ = 0, λ 6= 0

u5(x, t) = −
6aλ2 exp(λ(ξ + k1))

c (exp(λ(ξ + k1))− 1)
2 (27)

where ξ = x− λ4t.
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(a) u5 in 3D with −3 ≤ x ≤ 3, −3 ≤ t ≤ 3

(b) u5 in 2D with −10 ≤ x ≤ 10, t = 0

Fig. 2: Dark solitary wave solution of u5 for a = 10, b = 20,
c = 30, λ = 2, µ = 0, k1 = 1

Case 1.4: When Θ = 0, µ 6= 0, λ 6= 0

u6(x, t) = −
3aλ2

2c
+

3aλ3 (x+ k1)

cλ(x+ k1) + 2c
− 3aλ4(x+ k1)

2

2c(λ(x+ k1) + 2)2
(28)

Case 1.5: When Θ = 0, µ = 0, λ = 0

u7(x, t) = −
6a

c (x+ k1)
2 (29)

Family 2:
Substituting (19) into (16) we find

u(ξ) =
1

4c

(
±Θ
√
9a2 − 24c− 3aλ2 − 12aµ

)
− 6aλ

c
exp(−ϕ(ξ))− 6a

c
(exp(−ϕ(ξ)))2

(30)

Based on the solutions of (5), we discuss the following
cases:

Case 2.1: When Θ > 0, µ 6= 0

u8,9(x, t) =
1

4c

(
±Θ
√
9a2 − 24c− 3aλ2 − 12aµ

)
+

12aλµ

c
√
Θ tanh

(√
Θ
2 (ξ + k1)

)
+ cλ

− 24aµ2

c
(√

Θ tanh
(√

Θ
2 (ξ + k1)

)
+ λ
)2

(31)

or

u10,11(x, t) =
1

4c

(
±Θ
√
9a2 − 24c− 3aλ2 − 12aµ

)
+

12aλµ

c
√
Θ coth

(√
Θ
2 (ξ + k1)

)
+ cλ

− 24aµ2

c
(√

Θ coth
(√

Θ
2 (ξ + k1)

)
+ λ
)2

(32)

where ξ = x− 1
8c

(
3a2 − 4c∓ a

√
9a2 − 24c

)
Θ2t.

(a) u6 in 3D with −4 ≤ x ≤ 2, −3 ≤ t ≤ 3

(b) u6 in 2D with −10 ≤ x ≤ 10

Fig. 3: Rational solution of u6 for a = 30, b = 30, c = 180,
λ = 2, µ = 1, k1 = 1

Case 2.2: When Θ < 0, µ 6= 0

u12,13(x, t) =
1

4c

(
±Θ
√
9a2 − 24c− 3aλ2 − 12aµ

)
+

12aλµ

cλ− c
√
−Θ tan

(√
−Θ
2 (ξ + k1)

)
− 24aµ2

c
(
λ−
√
−Θ tan

(√
−Θ
2 (ξ + k1)

))2
(33)
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(a) u8 in 3D with −6 ≤ x ≤ 3, −6 ≤ t ≤ 3

(b) u8 in 2D with −15 ≤ x ≤ 10, t = 1

Fig. 4: Bell shape soliton solution of u8 for a = 30, b = 30,
c = 180, λ = 2, µ = 0.5, k1 = 1

or

u14,15(x, t) =
1

4c

(
±Θ
√
9a2 − 24c− 3aλ2 − 12aµ

)
+

12aλµ

cλ− c
√
−Θ cot

(√
−Θ
2 (ξ + k1)

)
− 24aµ2

c
(
λ−
√
−Θ cot

(√
−Θ
2 (ξ + k1)

))2
(34)

where ξ = x− 1
8c

(
3a2 − 4c∓ a

√
9a2 − 24c

)
Θ2t.

Case 2.3: When Θ > 0, µ = 0, λ 6= 0

u16,17(x, t) =
1

4c

(
±
√
9a2 − 24c− 3a

)
λ2

− 6aλ2 exp(λ(ξ + k1))

c (exp(λ(ξ + k1))− 1)
2

(35)

where ξ = x− 1
8c

(
3a2 − 4c∓ a

√
9a2 − 24c

)
λ4t.

According to the values of parameters a, b and c, the
first condition (III-A) is satisfied for the Lax, SK and
CDG equations. Therefore, each of them has the seventeen
solutions indicated above (23)–(29), (31)–(35).

B. The second condition b 6= 10c
a −a

Substituting (20) into (16), four solutions are obtained.

Case 1: When Θ = 0, µ 6= 0, λ 6= 0

u18,19(x, t) =
−3λ2

2c

β0δ ± β1 ∓ β2
γ0δ ± γ1 ∓ γ2

+
3λ3 (β3δ ± β4) (x+ k1)

c ((3a+ 2b) δ ± (β3 − 28c)) (λ(x+ k1) + 2)

− 3λ4

4c

(2a+ b± δ) (x+ k1)
2

(λ(x+ k1) + 2)
2

(36)

Case 2: When Θ = 0, µ = 0, λ = 0

u20,21(x, t) = −
3 (2a+ b± δ)
c (x+ k1)

2 (37)

The KK and Ito equations check the second condition
(III-B), then, each one admits the four solutions (36), (37).

Remark 1: All solutions obtained in this paper verify the
entire equations indicated above.

(a) u12 in 3D with −3 ≤ x ≤ 3, −3 ≤ t ≤ 3

(b) u12 in 2D with −40 ≤ x ≤ 40, t = 7

Fig. 5: Dark periodic cusp solution of u12 for a = 5, b = 5,
c = 5, λ = 2, µ = 2, k1 = 1

IV. GRAPHICAL ILLUSTRATION OF THE SOLUTIONS

Some traveling wave solutions of the fKdV equation are
graphically illustrated using Maple 17 in the figures 1 to 5,
which present the shapes of the solutions u1, u5, u6, u8 and
u12 respectively.

Solutions u1, u8 and u9 describe the bell shape soliton
solution. The figures 1 and 4 present the bell shape soliton

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_18

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



solution obtained from u1 and u8 respectively. Figure of u9
is similar to that of u8.

Solutions u2, u5, u10, u11, u16 and u17 represent
the dark solitary wave solution. The figure 2 shows the
shape of dark solitary wave solution of u5. Shapes of
u2, u10, u11, u16 and u17 are similar to the figure of u5.

Solutions u6, u7, u18, u19, u20 and u21 represent the
rational solution. In figure 3, we present the rational solution
of u6. The figures of u7, u18, u19, u20 and u21 are similar
to that of u6.

Solutions u3, u4, u12, u13, u14 and u15 describe the dark
periodic cusp solution. The figure 5 illustrates the shape of
dark periodic cusp solution obtained from u12. The figures
of u3, u4, u13, u14 and u15 are similar to that of u12.

V. CONCLUSION

In this work, we have found new exact traveling wave
solutions of a class of the fifth-order Korteweg-de Vries equa-
tion, and several forms of this class using the exp(−ϕ(ξ))-
expansion method with the help of Maple 17. We have de-
fined two main criteria to obtain the traveling wave solutions
of fKdV equation according to the parameters values of the
equation. We can observe that there are different types of
traveling wave solutions, which are soliton type solutions,
dark solitary wave solutions, dark periodic cusp solutions and
rational solutions. This study demonstrates that the method
proved its efficiency for application to NLEEs.
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