
Finding Differential Transform Using Difference
Equations

Shadi Al-Ahmad, Mustafa Mamat, and Rami AlAhmad

Abstract—Differential transform is applied to solve linear
and nonlinear ordinary differential/difference equations. Many
properties of the differential transform are known. In this
paper, we construct and prove new properties of the differential
transform. We particularly look into the differential transform
of certain quotients of functions. Also, we construct and prove
interesting relations between the differential transform, the
difference operator, and incomplete gamma functions. Finally,
we present some numerical examples to illustrate the results.

Index Terms—differential-transform, difference-operators,
incomplete-gamma-functions.

I. INTRODUCTION

IN mathematics, it is an essential problem to find the
image of products and quotients of two functions under

a linear transform. For example, one of the disappointments
of Laplace transform that the Laplace transform of a product
(or a quotient) of two functions doesn’t equal the product
(or the quotient) of their Laplace transforms, see [1]. In this
paper, we are interested in discussing this issue in the case
of what so called differential transforms. The differential
transform (DTM) was introduced by Zhou [2] in a study
of electrical circuits which have since developed into an
extensive, rigorous, and exciting disciplines. DTM has been
presented as a new iterative method for solving differential
equations, initial value problems, difference equations, and
boundary value problems. The idea of DTM is based on the
concept of Taylor series and it usually gets the solution in a
series form. This method constructs an analytical solution in
the form of a polynomial and uses it as the approximation
to exact solutions which are sufficiently differentiable [3],
[4], [5], [6], [7]. In the introduction section, we give the
definitions of the differential transform. Also, we present
some properties for the differential transform.

A. Differential Transform

Definition 1.1: Let f(x) be analytic at x0, then the differ-
ential transform is defined as

F (k) =
f (k)(x0)

k!
. (1)

The inverse differential transform of F (k) is defined as

f(x) =
∞∑
k=0

F (k)(x− x0)k. (2)
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From (1) and (2), we have

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k. (3)

The linearity of the differential transform and some more
properties can be deduced from equations (1) and (2) as
follows

Theorem 1.1: If u(x) = g(x)+h(x), then U(k) = G(k)+
H(k).

Theorem 1.2: If u(x) = cg(x), then U(k) = cG(k)
,where c is any constant.

Theorem 1.3: If u(x) = dng(x)
dxn , then U(k) =

(k+n)!
k! G(k + n).
Theorem 1.4: If u(x) = g(x)h(x), then U(k) =∑k
i=0G(i)H(k − i) .
Theorem 1.5: If u(x) = xn, then U(k) = δ(k − n) .
Theorem 1.6: If u(x) = exp(cx), then U(k) = ck

k! .
Theorem 1.7: If u(x) = cos(ωx), then U(k) =

ωk

k! cos(kπ2 ).
Theorem 1.8: If u(x) = sin(ωx), then U(k) =

ωk

k! sin(kπ2 ).
For further properties of the one dimensional DTM, see

[2], [8], [9], [10], [11], [12].

II. PRELIMINARIES

In the introduction section, we give the definitions for the
difference operators and incomplete gamma functions. We
present some properties for the difference operators and the
incomplete gamma functions.

A. Difference operators

An important tool in our calculations is the difference
operator, it is defined as follows

Definition 2.1: Let N be the set of the natural numbers
and let S(N) be the set of all sequences over N . Define the
difference operator ∆ : S(N)→ S(N) as

(∆u)(n) = u(n+ 1)− u(n).

It is easy to prove that the difference operator ∆ is linear
operator and it satisfies the following proposition

Proposition 2.1: For u ∈ S(N)

n−1∑
n=m

(∆u)(n) = u(n)− u(m). (4)

For further properties of the difference operators and the
difference equations, see [13], [14], [15], [16].
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B. Incomplete gamma functions

The incomplete gamma function will play an important
role in this paper, it is defined as

Definition 2.2: For <(s) > 0, The lower incomplete
gamma function is defined as

γ(s, x) =

∫ x

0

ts−1e−tdt,

and the upper incomplete gamma function is defined as:

Γ(s, x) =

∫ ∞
x

ts−1 e−t dt.

Clearly,

Γ(s, z) = Γ(s)− γ(s, z). (5)

Moreover, γ(s, x) −→ Γ(s) as x −→∞ and Γ(s, 0) = Γ(s).

Proposition 2.2: For N = 0, 1, 2, ...

N∑
n=0

an

n!
= ea

Γ(N + 1, a)

N !
.

Proof: By integration by parts

Γ(n+ 1, a) =

∫ ∞
a

tne−tdt = ane−a + nΓ(n, a).

Therefore,

Γ(n+ 1, a)− nΓ(n, a) = ane−a.

Divide both sides by n! to get

Γ(n+ 1, a)

n!
− Γ(n, a)

(n− 1)!
=
ane−a

n!
.

Thus,

∆
Γ(n, a)

(n− 1)!
=
ane−a

n!
.

Taking the sum for both sides from n = 1 to N − 1, and
using proposition 2.1 gives

Γ(N, a)

(N − 1)!
− e−a =

N−1∑
n=1

ane−a

n!
.

Hence,

Γ(N, a)

(N − 1)!
=
N−1∑
n=0

ane−a

n!
.

Therefore,

ea
Γ(N + 1, a)

N !
=

N∑
n=0

an

n!
.

For more properties of incomplete gamma functions and their
applications, see [9], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32].

III. MAIN RESULTS

In this section, we prove properties of the differential
transform for the functions of the forms
f(x)

ax+ b
,

f(x)

(ax+ b)2
,

f(x)

(ax+ b)n
, f(x) ln(ax+b), and

f(x)

Pr(x)
,

where r ∈ N and Pr(x) as

Pr(x) =
r∑

k=0

akx
k.

To start with, we have the following theorem which gives
partial solution for the problem that the differential transform
of the quotient of two functions doesn’t equal the quotient
of their differential transforms.

Theorem 3.1: Let

g(x) =
f(x)

Pr(x)

and let G(n; a, b) be the differential transform of g(x). Then
G(n; a, b) satisfies the difference equation

r∑
k=0

akG(n− k; a, b) = F (n).

Proof: Since

g(x) =
f(x)

Pr(x)
,

then
Pr(x)g(x) = f(x).

Therefore,
r∑

k=0

akx
kg(x) = f(x). (6)

Now, if h(x) = xmg(x) then

H(n) =
n∑
j=0

δ(j −m)G(n− j) = G(n−m).

Using this fact and by taking the differential transform
for (6), we get the desired result.

The following lemma is an application of Theorem 3.1.
Lemma 3.2: Let

g(x) =
f(x)

ax+ b
(7)

and let G(n; a, b) be the differential transform of g(x). Then
G(n; a, b) satisfies the difference equation

aG(n− 1; a, b) + bG(n; a, b) = F (n) for n ≥ 1.

Moreover, G(n; a, b) is given explictly as

G(n; a, b) =



1
bF (n), a = 0, b 6= 0;

1
aF (n+ 1), a 6= 0, b = 0;

1
b (−ab )n

∑n
i=0(− b

a )iF (i), a 6= 0, b 6= 0.

Proof:
Case1
If a = 0, b 6= 0, then (7) can be written as

g(x) =
f(x)

b
.
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This implies that

G(n; a, b) =
F (n)

b
.

Case2
If a 6= 0, b = 0, then (7) can be written as

g(x) =
f(x)

ax
.

This gives that
axg(x) = f(x).

Taking the Differential Transform for both sides to get that

G(n; a, b) =
1

a
F (n+ 1).

Case3
If a 6= 0, b 6= 0 then (7) can be written as

axg(x) + bg(x) = f(x).

Taking the differential transform for both sides gives

G(n+ 1; a, b) +
a

b
G(n; a, b) =

1

b
F (n+ 1).

Multiplying both sides by (− b
a )n+1 to get that

(− b
a

)n+1G(n+ 1; a, b)− (− b
a

)nG(n; a, b) =
1

b
(− b
a

)n+1

×F (n+ 1).

Sum both sides from 0 to n− 1, and use (7) to get
n−1∑
i=0

∆(− b
a

)iG(i; a, b) =
n−1∑
i=0

1

b
(− b
a

)i+1F (i+ 1)

(− b
a

)nG(n; a, b)−G(0) =
1

b

n−1∑
i=0

(− b
a

)i+1F (i+ 1).

Solving for G(n; a, b) to get that

G(n; a, b) = (−a
b

)n(
F (0)

b
+

1

b

n∑
j=1

(− b
a

)jF (j)),

which can be simplified as

G(n; a, b) =
1

b
(−a

b
)n

n∑
i=0

(− b
a

)iF (i).

Lemma 3.3: Let L(n; a, b) be the differential transform of
f(x)ln(ax+ b).

Then ∂
∂bL(n; a, b) is the differential transform of f(x)

ax+b .
Proof: Since L(n; a, b) is the differential transform of

f(x)ln(ax+ b), then

f(x)ln(ax+ b) =
∞∑
i=0

L(i; a, b)(x− x0)i.

Differentiating both sides with respect to b, we get

f(x)

ax+ b
=
∞∑
i=0

∂

∂b
L(i; a, b)(x− x0)i.

This is proves that ∂
∂bL(n; a, b) is the differential transform

of f(x)
ax+b .

Example 3.1: Since the differential transform of ecx is cn

n!
for n = 0, 1, 2, ...., and by using (7), then the differential
transform of

g(x) =
ecx

ax+ b

is

G(n; a, b, c) =
1

b
(
−a
b

)n
n∑
i=0

(− cba )i

i!

=
1

b
(
−a
b

)ne−
cb
a

Γ(n+ 1,− cba )

Γ(n+ 1)
.

Lemma 3.4: If G(n; a, b) is the differential transform of

g(x) =
f(x)

ax+ b
,

then the differential transform of

h(x) =
f(x)

(ax+ b)m+1
, m ≥ 0

is

H(n; a, b) =
(−1)m

m!

∂mG(n; a, b)

∂bm
.

Proof: Assume G(n; a, b) is the differential transform
of g(x) = f(x)

ax+b , then

f(x)

ax+ b
=
∞∑
i=0

G(i; a, b)xi.

Differentiating both sides m-times with respect to b, we get

m!(−1)mf(x)

(ax+ b)m+1
=
∞∑
i=0

∂mG(i; a, b)xi

∂bm
.

This proves our assertion.
Definition 3.1: [33] The falling factorial (x)m is defind

by

(x)m = x(x− 1)(x− 2).....(x− (m− 1)) =
Γ(x+ 1)

Γ(x+m− 1)
.

(8)
Theorem 3.5: If G(n; a, b) is the differential transform of

g(x) =
f(x)

ax+ b
,

then the differential transform of

h(x) =
f(x)

(ax+ b)m+1
, m ≥ 0

is

H(n; a, b) =
1

m!b
(
−1

b
)m

n∑
i=0

(
−a
b

)n−iF (i)(i−N − 1)m,

where (x)m is the falling factorial defined by (8).
Proof: Using Lemma 3.4, the differential transform of

h(x) =
f(x)

(ax+ b)m+1
, m ≥ 0

is

H(n; a, b) =
(−1)m

m!

∂mG(n; a, b)

∂bm
,
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where G(n; a, b) is the differential transform of g(x) =
f(x)
ax+b . Therefore,

H(n; a, b) =
(−1)m

m!

∂m

∂bm
1

b
(
−a
b

)n
n∑
i=0

(
−b
a

)iF (i)

=
(−1)m

m!

∂m

∂bm

n∑
i=0

(−a)n−ibi−n−1F (i)

=
(−1)m

m!

n∑
i=0

(−a)n−i(i− n− 1)mb
i−n−1−mF (i)

=
1

m!b
(
−1

b
)m

n∑
i=0

(
−a
b

)n−iF (i)(i− n− 1)m.

Now, an interesting relation between differential transform
and the incomplete gamma is given in the following Corol-
lary

Corollary 3.6: The differential transform F (n; a, b, c) of

f(x) =
ecx

(ax+ b)m+1

is

F (n; a, b, c) =
e−

cb
a (−ab )n

bm+1n!

m∑
j=0

(
n+m− j

n

)(
n
j

)

×(
cb

a
)jΓ(n− j + 1,−cb

a
).

Proof: By Example 3.1, we know that the differential
transform of

f(x) =
ecx

ax+ b

is

G(n; a, b, c) = (−a)nb(−n−1)
n∑
i=0

(− c
a )ibi

i!
.

Now, by Lemma 3.4, we proved that the differential trans-
form of

h(x) =
f(x)

(ax+ b)m+1
, m ≥ 0

is
H(n; a, b) =

(−1)m

m!

∂mG(n; a, b)

∂bm
.

Hence,

F (n; a, b, c) =
(−1)m

m!

∂m

∂bm
((−a)nb(−n−1)

n∑
i=0

(− c
a )ibi

i!
).

By using Leibniz Rule [34]

∂m

∂bm

(
(−a)nb−n−1

n∑
i=0

(− c
a )ibi

i!

)

= (−a)n
m∑
j=0

(
m
j

)
∂m−j

∂bm−j
b(−n−1)

∂j

∂bj

n∑
i=0

(− c
a )ibi

i!
.

= (−a)n
m∑
j=0

(
m
j

)
(−1)(m−j)(n+m− j)m−j

×b(−n−1−m+j)
n∑
i=0

(− c
a )i

i!
)
∂j

∂bj
(b)i.

Now,
n∑
i=0

(− c
a )i

i!
)
∂j

∂bj
(b)i =

n∑
i=j

(− c
a )ib(i−j)

(i− j)!

=

n−j∑
i=0

(− c
a )(i+j)bi

i!

= (− c
a

)j
n−j∑
i=0

(− cba )i

i!

= (− c
a

)je−
cb
a

Γ(n− j + 1,− cba )

(n− j)!
.

Therefore,

F (n; a, b, c) =
e−

cb
a (−ab )n

bm+1n!

m∑
j=0

(
n+m− j

n

)(
n
j

)

×(
cb

a
)jΓ(n− j + 1,−cb

a
).

IV. NUMERICAL EXAMPLES

Example 4.1: To find the differential transform of f(t) =
t7

1−t , write this equation as

f(t)− tf(t) = t7. (9)

Taking the differential transform to both sides of (9) gives

(∆F )(n) = δ(n− 6). (10)

Now, take the sum from 0 to n − 1 for both sides of (10)
and use Proposition 2.1, you will get

F (n) = F (n)− F (0) =
n−1∑
k=0

(∆F )(k − 1)

=

n−1∑
k=1

δ(k − 6) = u(n− 7).

Therefore, F (n) = u(n − 7), where u(t) is the unit step
function defined as u(t) = 1 if t ≥ 0 and 0 if t < 0. This
result cocides with the result using Lemma 3.2.

Example 4.2: To find an approximation for
∫ 0.25

0
x3ex

1−x dx,
we begin with finding the differential transform of

g(x) =
x3ex

1− x
.

Write this equation as

g(x)− xg(x) = x3ex. (11)

Taking the differential transform to both sides of (11) gives

(∆G)(n−1) = G(n)−G(n−1) =
n∑
j=0

δ(j − 3)

(n− j)!
=

1

(n− 3)!
, n ≥ 3.

(12)
Now, take the sum from 3 to n for both sides of (10) and
use Proposition 2.1, you will get

G(n)−G(2) =
n∑
k=3

1

(k − 3)!
=
n−3∑
k=0

1

k!
=
eΓ(n− 2, 1)

(n− 2)!
.
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Therefore,

x3ex

1− x
= x3 + 2x4 +

5

2
x5 +

8

3
x6 +

65

24
x7 + · · · .

Using this expansion, the approximated value of the integral∫ 0.25

0

x3ex

1− x
dx = 0.00149733.

The actual value is 0.00149882 and the resulted relative error
is less than 10−3.
In the following two examples, one can figure out the steps
should be followed to find the differential transform for
quotient of two polynomials.

Example 4.3: To find the differential transform of

f(x) =
2− 3x

(1− x)(1− 2x)
. (13)

Equation (13) gives

(1− 3x+ 2x2)f(x) = 2− 3x. (14)

Taking the differential transform for both sides of (14) to get
that

F (n)− 3F (n− 1) + 2F (n− 2) = 0, n ≥ 2. (15)

Also, using Equation (14), we get

F (0) = 2 and F (1) = 3. (16)

Since Equation (15) is a constant coefficient difference equa-
tion, we set F (n) = λn. This implies that the characteristic
equation is

λn − 3λn−1 + 2λn−2 = 0. (17)

By solving Equation (17), we get that λ1 = 2 or λ2 = 1.
Thus,

F (n) = c1 + c22n.

Apply the conditions (16) to get that F (n) = 1 + 2n is the
differential transform of f(x).

Example 4.4: In this example, we find the differential
transform of

f(x) =
5x2 − 2x+ 3

x4 − 2x2 + 1
. (18)

Equation (18) gives

(x4 − 2x2 + 1)f(x) = 5x2 − 2x+ 3. (19)

This means

(x4 − 2x2 + 1)(F (0) + F (1)x+ F (2)x2 + F (3)x3 + . . . )

= 5x2 − 2x+ 3.

By the comparing the coefficients, we get

F (0) = 3, F (1) = −2, F (2) = 11, and F (3) = −4 (20)

Taking the differential transform for both sides of (19) will
give that

F (n− 4)− 2F (n− 2) + F (n) = 0, n ≥ 4. (21)

Since (21) is a difference equation with constant coefficients,
if we set F (n) = λn, then the corresponding characteristic
equation would be

λn−4 − 2λn−2 + λn = 0. (22)

Solving (22) will give that λ1 = 1 or λ2 = −1 with algebric
multiplicities 2 for each of them. Therefore, the general
solution is

F (n) = c1(1)n + c2n(1)n + c3(−1)n + c4n(−1)n

= c1 + c2n+ c3(−1)n + c4n(−1)n.

Now, by using the initial conditions (20), we get that F (n) =
5
2 (−1)nn+ 3

2n+ 2(−1)n + 1 is the differential transform of
f(x).

Example 4.5: The results of this papers can be helpful to
find a series approximation for the solution for the initial
value problem

y′′ +
y

1 + x
= x2; y(0) = 0, y′(0) = 1. (23)

Taking the differential tranform for (23) gives

(n+ 2)(n+ 1)Y (n+ 2) + (−1)n
n∑
i=0

(−1)iY (i) = δ(n− 2).

Take n = 0, 1, 2, 3, 4, · · · gives the following system
2Y (2) + Y (0) = 0,
6Y (3)− (Y (0)− Y (1)) = 0,
12Y (4) + Y (0)− Y (1) + Y (2) = 1,
20Y (5)− (Y (0)− Y (1) + Y (2) + Y (3)) = 0,
30Y (5) + Y (0)− Y (1) + Y (2)− Y (3)− Y (4) = 0.
...
Solving this iterative system gives Y (2) = 0, Y (3) =
− 1

6 , Y (4) = 1
6 , Y (5) = − 1

24 , and Y (6) = 1
45 . Therefore

y(x) = x− 1
6x

3 + 1
6x

4 − 1
24x

5 + 1
45x

6 + · · ·
Example 4.6: Using Theorem 3.5, one can conclude that

the differential transform of

f(x) =
x10

(1− x)2
,

is

F (n) = −
n∑
i=0

δ(i− 10)(i− n− 1)1

=

{
n− 9, n ≥ 10;
0, n < 10.

Therefore, the power series of f is

f(x) =
x10

(1− x)2
= x10 + 2x11 + 3x12 + 4x13 + · · · .

Example 4.7: By Corollary 3.6, one can deduce that the
differential transform of

h(x) =
e−x

(2x+ 1)2

is

H(n) =
e

1
2 (−2)n

n!

1∑
j=0

(
n+ 1− j

n

)(
n
j

)
(−1

2
)j

×Γ(n− j + 1,
1

2
).

After Simplifications, the differential transform of h(x) is

H(n) =
e

1
2 (−2)n

n!

(
(n+ 1)Γ(n+ 1,

1

2
)− n

2
Γ(n,

1

2
)
)
.
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V. CONCLUSION

The differential transform is an important tool to solve
differential equations. One of the tools to be used, specially
for quotients, to find the differential transform is the dif-
ference operators. Under such assumptions we have shown
that the new properties are efficient and thus can be used as
alternatives in solving differential equations.
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