
Unavailable Time Aware Scheduling of Hybrid
Task on Heterogeneous Distributed System

Hejun Xuan, Shiwei Wei, Xuelin Zhao, Yang Zhou, Xingpo Ma, Daohua Liu, Yanling Li

Abstract—The resource allocation for tasks in heterogeneous
distributed system is a well known NP-hard problem. For
the sake of making the makespan is minimized, it is hard
to distribute the tasks to proper processors. The problem is
even more complex and challenging when the processors have
unavailable time and the tasks type are various. This paper
investigates a resource allocation problem for hybrid tasks com-
prising both divisible and bag-of-tasks(BoT) in heterogeneous
distributed system when the processors has unavailable time.
First, the mathematical model, which minimizes the makespan
of the hybrid tasks when the processors have unavailable
time, is established. Second, we propose a scheduling algorithm
referred to as bag-of-tasks allocate-pull and divisible task
allocation (BoTAPDTA) algorithm for handling hybrid tasks
on heterogeneous distributed systems. In addition, to solving
the optimization model efficiently, a generic algorithm(GA)
is proposed. For the sake of reducing the search space and
solving the optimization model effectively, a two step scheduling
algorithm(TSGA), which first allocate bag-of-tasks(BoT) using
generic algorithm and then assign divisible task to processors
like BoTAPDTA, is designed. Finally, numerical simulation
experiments are conducted, and experimental results indicate
the effectiveness of the proposed model and algorithm.

Index Terms—Distributed computing, Task scheduling, Hy-
brid Tasks, Generic algorithm

I. INTRODUCTION

HETEROGENEOUS distributed system has emerged as
commonly systems for handling large scale scientific

and commercial applications in various fields, such as image
processing, signal processing, pattern matching in text, and
many scientific computation problems [1], [2], [3]. For the
sake of improving the performance of the system, many
task scheduling algorithms for heterogeneous or homoge-
neous distributed system have been proposed in the past
decades[4], [5], [6]. Wang[4] proposed a multi-objective bi-
level programming model for energy and locality aware
multi-job scheduling in heterogeneous system. Literature [5]

Manuscript received July 03, 2019; revised November 17, 2019. This
work is supported by National Natural Science Foundation of China
(No.31900710, 61572391, 61572417), Science and Technology Department
of Henan Province (No.182102210132, 182102210537), Innovation Team
Support Plan of University Science and Technology of Henan Province
(No.19IRTSTHN014), Guangxi Natural Science Foundation of China
(No.2016GXNSFAA380226), Guangxi Young and Middle-aged Teachers’
Basic Ability Improvement Foundation of China (No.2017KY0866), Internet
of Things and Big Data Application Research Foundation of Guilin Univer-
sity of Aerospace Technology (NO. KJPT201809), Nanhu Scholars Program
for Young Scholars of XYNU, Youth Sustentation Fund of Xinyang Normal
University (No.2019-QN-040), University Students Sustentation Fund of
Xinyang Normal University (No.2019-DXS-035).

Hejun Xuan, Xuelin Zhao, and Yang Zhou are with the school of
Computer and Information Technology, Xinyang Normal University, Henan
Xinyang, China, 464000 e-mail: xuanhejun0896@126.com.

Shiwei Wei are with the School of Computer and Technology, Guilin
University of Aerospace Technology, Guilin, China, 541000.

Xingpo Ma, Daohua Liu, and Yanling Li are with Henan Key Lab.
of Analysis and Application of Education Big Data, Xinyang Normal
University, Henan Xinyang, China, 464000.

proposed two scheduling algorithms to schedule a BoT (bag-
of-tasks, BoT) on heterogeneous system so as to minimize
the makespan and the energy consumption. In literature
[7], the reliability cost, which is defined as the product
of failure rate of processors and task processing time, is
incorporated into scheduling algorithm for the tasks with
precedence constraints on heterogeneous system. Lee and
Zomaya classified the tasks into computation-intensive and
data-intensive BoT task in literature[8] and presented two
task scheduling algorithms in Grid computing system respec-
tively. Anglano et al.[9] evaluated the performance of five
knowledge-free task scheduling algorithms for scheduling
multiple BoT in a desktop Grids computing system. In addi-
tion, the performance of several BoT scheduling solutions
in large-scale distributed systems also have been studied
in literature [10]. For BoT, there are some other studies
that aim to maximize throughput by establishing linear
programs or nonlinear programs[11], and the works focused
on steady-state optimization problems and concentrated on
numerous bag-of-tasks including independent and similar
tasks. To schedule concurrent bag-of-tasks, the online and
off-line scheduling algorithms are presented by Benoit et
al.[11]. In literature[12], a decentralized scheduling algo-
rithm, which minimizes the maximum stretch among user-
submitted tasks, is designed. Yang Y et al.[13] take the
constraints of time, cost, and security into consideration,
a scheduling algorithm for data-intensive tasks is designed.
Literature [14] investigated both two problems: optimizing
the makespan of the tasks under the constraints of energy,
or minimizing energy consumption subject to makespan.
However, this paper studied the static resource allocation to
optimize makespan and energy robust stochastic for bag-of-
tasks(BoT) on a heterogeneous computing system. A multi-
objective optimization model, which minimizes makespan
and resource cost, is established in literature[15]. To solve
the optimization model, a scheduling algorithm based on
the ordinal optimization method is designed. However, the
scheduling algorithm is inefficient when the task number or
processing node number is large.

In scheduling theory, the fundamental assumption is that
all processors which take participate in processing tasks are
always available for processing tasks[16]. However, it might
be unreasonable. If some certain maintenance requirements,
breakdowns, or other constraints exits, they will make the
processers unavailable for executing the tasks. In literature
[17], availability is defined. For a processor, availability is
defined as the ratio of the total available time to the total
time during a given interval. In previous work, Some work
has investigated task scheduling algorithm with processor
availability constraints[18]. Adiri et al[19]. investigates the
scheduling problem with availability constraints in a single
machine system. For minimizing maximum lateness of the n

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

jobs, literature [20] studied the problem on homogeneous ma-
chines under machine availability and eligibility constraints.
A branch-and-bound method is proposed in literature[21]
to solve the single-machine scheduling problem with ma-
chine availability constraints. For minimizing the total flow
time, literature [22] investigated the non-permutation flow
shop scheduling issue with the learning effects and ma-
chine availability constraints. To minimize the makespan,
the two-machine permutation flowshop scheduling problem
with an availability constraint is investigate in literature [23].
However, the basic assumption of this work is that the
availability constraint imposed only on the first machine.
Literature[24] developed a Hybrid Heuristic-Ant Colony Op-
timization (H2ACO) for multiclass tasks on heterogeneous
distributed systems with availability constraint. H2ACO al-
gorithm can make a good trade-off between availability and
makespans of the tasks. An availability-aware scheduling
model is investigated in literature [25], and an optimization
algorithm to increase the availability and to minimize the
makespan of tasks in heterogeneous systems is proposed.
Literature [26] proposed a quantum-behaved particle swarm
optimization algorithm to optimize the availability-aware task
Scheduling on heterogeneous systems. A novel distributed
availability-aware adaptive rate-allocation scheduling algo-
rithm for multimedia tasks in heterogeneous wireless net-
works is proposed in literature [27].

Divisible task has been studied extensively in the last
several decades, resulting in a cohesive theory called Di-
visible Load Theory (DLT). In our work, we investigates
a resource allocation problem for hybrid tasks comprising
both divisible and bag-of-tasks in heterogeneous distributed
system when the processors have unavailable time. The major
contributions of this study are summarized as follows:

• To minimize the makespan of the hybrid tasks, a math-
ematical optimization model, which takes unavailable
time constraint of processors into consideration, is es-
tablished.

• We propose a algorithm referred to as Bag-of-
Tasks Allocate-Pull and Divisible Task Allocation (B-
oTAPDTA) algorithm for the hybrid tasks scheduling
problem.

• To solving the optimization model effectively, a generic
algorithm(GA) is proposed.

• For the sake of reducing the search space and solving
the optimization model effectively, a two step schedul-
ing algorithm(TSGA), which first allocate bag-of-tasks
using generic algorithm and then assign divisible task
to processors like BoTAPDTA, is designed.

• An analysis on the effectiveness of our proposed algo-
rithm on two different size systems that vary in both
number of processors and tasks.

The rest of this paper is organized as follows. Section II
gives the system and task description, and the mathematical
model is established. The scheduling algorithm referred to as
bag-of-tasks allocate-pull allocate-pull scheduling (BoTAP)
algorithm is described in section III. Section IV proposed
a generic algorithm to solving the optimization model ef-
fectively. The two step hybrid tasks scheduling algorithm is
explained in section V. Section VI presents simulation results
to evaluate the algorithms. The paper is concluded with a
summary and a future work in Section VII.

II. PROBLEM FORMULATION

A. System and Task Description

In our work, the heterogeneous distributed system has
N +1 processors, which includes a master processor and N
slave processors. P0 denotes the master processor, and the
slave processors denoted by {P1, P2, · · · , PN}. Each slave
processor Pi(i = 1, 2, ···, N) is associated with a speed index
wi, which is the time taken to process a unit workload on
processor Pi. Slave processor is the most basic processing
unit in our research. Since some reasons, such as shutdown
or maintenance requirements, slave processors have some
unavailable time. [aji bji](i = 1, 2, · · ·, N ; j = 1, 2, · · ·, ni)
denote the jth(j = 1, 2, · · ·, ni) unavailable segment of
processor Pi(i = 1, 2, · · ·, N), and ni is the number of
unavailable segment for processor Pi(i = 1, 2, · · ·, N). For
the convenience, the jth(j = 1, 2, · · ·, ni) available segment
of processor Pi(i = 1, 2, · · ·, N) denoted by [cji dji](i =
1, 2, · · ·, N ; j = 1, 2, · · ·,mi), and mi is the number of
available segment for processor Pi(i = 1, 2, · · ·, N). To
understand easily, the system model is shown in Fig.1

1
P

2
P

1i
P

i
P

1i
P

1N
P

N
P

Available time Unavailable time

t

Fig. 1. Available and unavailable time of the processors in the heteroge-
neous distributed system.

In our study, the hybrid tasks comprising both divisible
and bag-of-tasks is investigated. Bag-of-tasks(BoT) are a
representatively type of tasks including of numerous in-
dependent tasks and can be processed parallelly without
communication. Divisible task(DT) can be partitioned into
a large number of load fractions and can be processed
independently on the processors in parallel since there are
no precedence relationships among these tasks. That is to
say, all the tasks our work investigated are independent.
The workload includes Nτ + 1 independent tasks and the
ith(0 ≤ i ≤ Nτ) task is denoted by τi, where task τ0
is a divisible task, and τi(1 ≤ i ≤ Nτ) are bag-of-tasks.
Following the previous studies[28], [29], we assume that
the size of load τσi (0 ≤ i ≤ Nτ) is known after a task
arrives according to the prediction mechanisms such as code
profiling and statistical prediction. As the previous work[30],
these bag-of-tasks have different computing requirements,
and we assume that each task can only be processed by
some specific processors. Ωi is a set of the processor’s that
τi can allocated to. In our work, we assume that the divisible
τ0 can be processed on all processors in the heterogeneous
distributed system. Similarly, we assume that the bag-of-
tasks are computation-intensive as prior works[31]. That is
to say, the time consuming of input data transmission does
not influence much the completion time and hence it can be

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

negligible. In our work, the transmission of divisible task is
negligible too.

B. Mathematical Modeling

The task scheduling problem investigated in this paper is
to schedule all the Nτ + 1 tasks to the N processors in
the heterogeneous distributed system with the purpose of
minimizing the makespan of the tasks. Then, we will give
the mathematical modeling of the optimization problem.

1) Objective Function: Generally speaking, makespan is
the latest finish processing time of the processors. If Ti de-
note the finish processing time of processor Pi, the makespan
T of the tasks can be denoted by Eq.(1).

T = max
1≤i≤N

{Ti} (1)

In our work, the purpose is minimize the makespan of the
hybrid tasks in the heterogeneous distributed system with
unavailable time considered. So, the objective function can
be described as Eq.(2).

minT = min

{
max

1≤i≤N
{Ti}

}
(2)

As shown in Eq.(1), we can see that the finish processing
time of each processor should be calculated. For a specific
processor Pi, its processing time diagram is shown in Fig.2.
In the processing time diagram of processor Pi, it shows

i
P

t

Available time Unavailable time

Processing time of BoT

...

The last segment of avail time which

has tasks assigned to.

i
T

Processing time of DT

Fig. 2. The processing time of processor Pi.

that the finish time of processor Pi determined by the last
segment of available time which has tasks assigned to. If
l(1 ≤ l ≤ mi) and δli denote the last segment of the tasks
assigned to processor Pi and the set of BoT tasks assigned
to segment lst respectively. αl

i is the ratio of the fraction size
assigned to the l segment on processor Pi to the workload
τσ0 . So, the finish processing time of processor Pi can be
calculated by Eq.(3).

Ti = cli + wi

αl
iτ

σ
0 +

∑
q∈δli

τσq

 (3)

Then, we can rewrite Eq.(2) as Eq.(4)

minT = min

{
max

1≤i≤N
{Ti}

}

= min

 max
1≤i≤N

cli + wi

αl
iτ

σ
0 +

∑
q∈δli

τσq

(4)

2) constraint conditions: (a)All the BoT must be assigned
to the processors that can satisfy BoT requirement: Θ =
(θkij)Nτ×N×mj is a binary matrix, where θkij = 1 if only
and if task τi is assigned to the kth(1 ≤ k ≤ mj) segment
available time of processor Pj(1 ≤ j ≤ N), otherwise θkij =
0. So, we can obtain a conclusion: If θkij = 1, the processor
Pj of task τi(1 ≤ i ≤ Nτ) assigned to must in the set Ωi.
That is to say, Eq.(5) is satisfied.

θkij = 1 ⇒ Pj ∈ Ωi (5)

(b)All the BoT must be allocated to assigned to the available
time segments on processors: A crucial principle of bag-
of-tasks scheduling problem is that all the tasks should be
allocated to the suitable processors. According the definition
of the binary matrix Θ, we can obtain Eq.(6) when all the
tasks are allocated.

Nτ∑
i=1

N∑
j=1

mj∑
k=1

θkij = Nτ (6)

(c)All the workload of divisible task must be assigned to
suitable processors: αj

i denotes the ratio of the fraction size
assigned to jth(1 ≤ j ≤ mi) of processor Pi(1 ≤ i ≤ N) to
the entire workload of the divisible task τ0. If the divisible
task τ0 is assigned Completely, Eq.(7) can be obtained.

N∑
i=1

mi∑
j=1

αj
i = 1 (7)

(d)The execution time of the tasks assigned to a available
segment should not be greater than the available time of
the segment: Since each processor Pj(1 ≤ j ≤ N) has
unavailable time, the processing time of tasks assigned to
kth segment should not be greater than the available time.
The workload of assigned to kth(1 ≤ k ≤ mj) segment
available time on processor Pj(1 ≤ j ≤ N) denoted by σk

j ,
the Eq.(8) should be satisfied as shown below.

wjσ
k
j ≤ dkj − ckj (8)

There are BoT and divisible task fraction allocate to kth(1 ≤
k ≤ mj) available time segment of processor Pj(1 ≤ j ≤
N). According to the definition of θkij(1 ≤ i ≤ Nτ) and
αk
j , we can can calculate the workload σk

j of assigned to kth

segment available time on processor Pj by Eq.(9).

σk
j = αk

j τ
σ
0 +

Nτ∑
i=1

θkijτ
σ
i (9)

Then, we can rewrite Eq.(8) as Eq.(10)

wj

(
αk
j τ

σ
0 +

Nτ∑
i=1

θkijτ
σ
i

)
≤ dkj − ckj (10)

3) Mathematical Modeling: The task scheduling problem
investigated in this paper is to schedule all the Nτ + 1
tasks to the N processors in the heterogeneous distributed
system with the purpose of minimizing the makespan of
the tasks. In section II-B1 and section II-B2. we give
the mathematical formulation of the objective function and

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

constraints respectively. Then, the mathematical optimization
model with constraints are presented in Eq.(11).

minT =

min

 max
1≤j≤N

clj + wi

αl
jτ

σ
0 +

∑
q∈δlj

τσq

s.t.
(a)θkij = 1 ⇒ Pj ∈ Ωi;

(b)
Nτ∑
i=1

N∑
j=1

mj∑
k=1

θkij = Nτ ;

(c)
N∑
i=1

mi∑
j=1

αj
i = 1;

(d)wj

(
αk
j τ

σ
0 +

Nτ∑
i=1

θkijτ
σ
i

)
≤ dkj − ckj ;

(e)1 ≤ i ≤ Nτ , 1 ≤ j ≤ N, 1 ≤ k ≤ mj ;
(11)

In this optimization model, constraints (a)-(d) has description
in section II-B2, and constraints (e) gives the scope of
parameters i, j, k. To solve this global optimization model,
an algorithm referred to as bag-of-tasks allocate-pull and
divisible task allocation (BoTAPDTA) algorithm and generic
algorithm with a local research strategy are proposed. The
algorithm of BoTAPDTA will be described in section III.
The proposed generic algorithm and two step scheduling
algorithm(TSGA) will be given in section IV and section
V respectively.

III. PROPOSED BOTAPDTA ALGORITHM

In our work, hybrid tasks comprising bag-of-tasks(BoT)
and divisible task scheduling problem is investigated. In ad-
dition, unavailable time is taken into account. Since divisible
can be divided into arbitrary fractions and proposed on any
processor in heterogeneous system, it has a great flexibility.
We first allocate BoT to suitable processor, and then the
divisible task assigned to the time slot before TBoT and
available time after TBoT as shown in Fig.3.

1P

2P

1iP

i
P

1iP

1N
P

N
P

Available time Unavailable time

t

Processing time of BoT

BoT
T

Time slot

Fig. 3. The processing time of processor Pi.

Based on analyzing, the scheduling algorithm can be
divide into two procedures: (a)Allocation the BoT to suitable
processors; (2)Allocation the divisible task to suitable time
slot and available time segment. For the sake of under-
standing the algorithm macroscopically, the framework of
the scheduling algorithm is presented before presenting the
detailed steps of the algorithm. The bag-of-tasks allocate-pull
and divisible task allocation(BoTAPDTA) algorithm is shown
in Algorithm 1. Step 1 is sort all the tasks τi(i = 1, · · · , Nτ)

in an descending order according to the workload τσi of
tasks; Step 3 to step 8 is allocate the tasks to available time
segments on processors. For minimizing the makespan, step
10 to step 25 is pull the tasks to available time segment before
the segment current them allocated to. Step 28 to step 33 is
allocate the divisible task to the processors.

Algorithm 1: The algorithm framework of BoTAP
Input: Tasks τi(i = 1, · · · , Nτ), speed index wi and

available time [cji , d
j
i](j = 1, · · · ,mi) of

processor Pi(i = 1, · · · , N);
Output: a schedule scheme;

1 Put all the tasks into a task queue TQ, and sort them in
an descending order according to the workload τσi of
tasks τi(i = 1, · · · , Nτ);

2 Allocation:
3 while TQ is not empty do
4 Take out the first task in TQ, and denote it as τhead;
5 Select a processor Phead in Ωhead to make the

current finish processing time is minimum;
6 Select a available time segment [cshead, d

s
head] on

processor Phead and assign task τhead to it.
7 Update available time, cshead = cshead + τσheadwhead;
8 end
9 Pull:

10 for i = 1 to N do
11 while l > 1 do
12 %l is the last segment of available time which

has tasks allocated to.
13 Put all the tasks in lth segment into a task

queue subTQl, and sort them in an descending
order according to the workload;

14 while subTQi is not empty do
15 Take out the first task and denote it as

τsubhead,flag = 0, k = 1;
16 while k < l & flag = 0 do
17 if τσsubheadwi ≤ dki − cki then
18 Update available time,

cki = cki + τσsubheadwi;
19 flag = 1;
20 end
21 k = k + 1;
22 end
23 end
24 l = l − 1;
25 end
26 end
27 Allocation DT:

28 if
N∑
j=1

wj

(
µj∑
k=1

ϕk
j

)
≥ τσ0 then

29 %ϕk
j and µj are the kth time slot and number of

time slot before TBoT on processor Pj ;
30 assign the divisible task on the time slot of the

processors;
31 else
32 assign the divisible task on the time slot and the

available time segment after TBoT ;
33 end

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

A. Descending Order

In the algorithm of BoTAP, we first sort the tasks in
descending order according to the workload of tasks. We will
give the reason that we choose descending order as follow:

Case 1: As shown in Fig.4, suppose two tasks τi and
τj are all allocated to processor Pk, and the workload of
tasks τi and τj satisfy τσi < τσj . In addition, tasks τi
and τj can executed in the first available time segment on
processor Pk respectively, but τi and τj can not executed
in the first available time segment simultaneous. As shown
in Fig.4(b), if τi executed before τj , we should allocate τi
to the first available time segment and allocate the τj to
the second segment. So, the makespan of the two tasks is
T 1
k = c2k + τσj wk. However, if τj executed before τi, the

makespan of the two tasks is T 2
k = c2k + τσi wk. We have

τσi < τσj , so T 1
k > T 2

k is obtained.
Case 2: As shown in Fig.4(d) and Fig.4(e), tasks τi

and τj can executed in the first available time segment
on processor Pk simultaneous. If τi executed before τj
as shown in Fig.4(d), the makespan of the two tasks is
T a
k = c1k + (τσi + τσj)wk. Similarly, the makespan of the

two tasks is T b
k = c1k + (τσi + τσj)wk when τj executed

before τi as shown in Fig.4(e). So, we can obtain T a
k = T b

k .
From the above, we can know that allocation order will effect
the makespan of the tasks. If larger workload task allocated
first, the makespan of tasks will equal to or shorter than that
obtained by smaller workload task allocated first.

B. Processor Selection in Allocation

When the task queue TQ is not empty, the first task is
taken out and allocated to the processor. Since the objective
is minimize the makespan of the tasks, so we must allocate
the task on a processor that can be make the makespan
is minimum. In our work, Eq.(12) and Eq.(13) is used to
determine the processor that task τi should be allocated to.

Φi =
{
Pj |Pj ∈ Ωi, ∃1 ≤ k ≤ mj ⇒ τσi wj ≤ dkj − ckj

}
(12)

npproper = argmin
np

{
max
np∈Φi

{Tnp}
}

(13)

where Pnp is the processor in processors set Φi that the task
τi can be allocated to, and npproper is the proper processor
determined. Eq.(12) is to find the set Φi that the task τi can
be allocated to in Ωi. The processors in Φi should satisfy
two conditions: (1) the processors should in the set Ωi. (2)
At least a available time segment, which can execute the task
τi punctually, exists.

C. Segment Selection in Allocation

After a proper processor determined, we should allocate
task τi to a optimal available time segment on processor Pnp.
A excellent strategy that allocate task to a available time
segment will help to minimize makespan of the tasks. we
use Eq.(14) and Eq.(15) to determine which segment should
task τi allocate to.

NS =
{
ns|1 ≤ ns ≤ mnp, d

ns
np − cnsnp ≥ τσi wnp

}
(14)

k
P

t

Available time Unavailable time

(a) Time diagram of Pk

Processing time of BoT

1

kT

kP

t

Available time Unavailable time

i j

(b) τi executed before τj

Processing time of BoT

2

kT

kP

t

Available time Unavailable time

ij

(c) τj executed before τi

Processing time of BoT

a

kT

kP

t

Available time Unavailable time

i j

(d) τi executed before τj

Processing time of BoT

b

kT

kP

t

Available time Unavailable time

ij

(e) τj executed before τi

Fig. 4. Influence of execute order on Makespan.

nsproper = argmin
ns

{(
dnsnp − cnsnp

)
|ns ∈ NS

}
(15)

Eq.(14) is used to find some available time segments that can
complete task τi in time on processor Pnp. For the sake of
decreasing time debris which can not complete any task in
time, the shortest time segment in NS is selected. There are
two tasks τ1 and τ2 allocated on processor Pk, and τσ1 > τσ2 .
τ1 can completed in segment 1 and 2, and τ1 can completed
in segment 2 and 3. Because the tasks in task queue TQ
are sorted in descending order according workload, τ1 is
allocated first before τ2. For τ1, since d1k − c1k < d2k − c2k, so
τ1 is allocate to segment 1 according to Eq.(15) as shown
in Fig.5(b). Though segment 2 can complete τ2 in time and
segment 2 is before segment 3, we can see that τ2 is allocated
to segment 3 from Fig.5(c). This strategy can help to decrease
time debris and increase the utilization of the available time
segment.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

k
P

t

Available time Unavailable time

(a) Time diagram of Pk

Available time Unavailable time

Processing time of BoT

k
P

t

1

(b) Allocate τ1 to segment 1

2

Available time Unavailable time

Processing time of BoT

k
P

t

1

(c) Allocate τ2 to segment 3

Fig. 5. Segment determined.

D. The Strategy of Pull

After the process of allocate, all the tasks are allocated
to the available time segments on processors. However,
some available time segments are exit because the strategy
that described in section III-C. As shown in Fig.6(a), τi is
allocated to (j + 1)th available time segment processor Pk,
so the processing finish time of Pk is Tk = cj+1

k + τσi wk.
Since the jth available time segment can complete task τi
in time, we can pull task τi from (j + 1)th available time
segment to jth available time segment as shown in Fig.6(b).
So the processing finish time of Pk can be denoted as
T ′
k = cjk + τσi wk. T ′

k < Tk can be obtained intuitively. So,
the strategy of pull tasks to another available time segment
can decrease the processing finish time of processors. For the
sake of decreasing the processing time of the processors as
much as possible, we should solve following two problem-
s:(1)which task should be pull to the objective segment? (2)
which segment should be selected as the objective segment?
These two issues will be tackled in section III-D1 and section
III-D2.

1) Selection of Objective Task: In this paper, we investi-
gate the bag-of-tasks scheduling problem, and the objective
of scheduling algorithm is minimize makespan of thed tasks.
The makepan of the tasks is determined by the processing
finish time of all processors in the heterogeneous computing
system. From Eq.(3), we can see that the processing finish
time Ti(1 ≤ i ≤ N) is depended on the tasks completed
time in last available time segment l which allocate tasks
on processer Pi. Suppose SubQl is the tasks set which
allocate to the last available time segment l. Eq.(16) is used to
determine the task which should be pull to another available
time segment.

ntpro = argmin
nt

{τσi |τi ∈ SubQl} (16)

Available time Unavailable time

Processing time of BoT

kP

t

available segmentthj

i

(a) Time diagram of Pk after tasks are allocated

Available time Unavailable time

Processing time of BoT

kP

t

available segmentthj

i

(b) Pull τi to jth available time segment

Fig. 6. Pull tasks to another available time segment.

2) Selection of Objective Segment: To decrease the pro-
cessing finish time of processors, the strategy, which pulls
a task to another segment, is designed. In this strategy, two
problems should be solved. The problem of objective task
determined has been tackled in section III-D1. In this section,
we will solve the other question. For the sake of guaranteeing
the task τnt completed in time, the segment nspro is selected
according to Eq.(17).

nspro = argmin
ns

{ns|dnsk − cnsk > τprowk, 1 ≤ ns ≤ l}
(17)

The strategy of pull task to another segment can decrease
processing finish time as much as possible. First, the task
τntpro with largest workload is selected according to Eq.(16),
and a available time segment nspro is selected according to
Eq.(17). If nspro = ∅, let SubQl = SubQl \

{
τntpro

}
, and

then another task τntpro is selected according to Eq.(16). If
nspro ̸= ∅, We pull the task τntpro from segment l to the
segment nsprop.

A example is presented in Fig.7. Task τa and τb are
allocated to the lth available time segment, and τσa > τσb .
First, τa and τb are put into subQl. According to Eq.(16),
task τa is selected as the objective task. The ith segment is
selected as the objective segment according to Eq.(17). Then,
we pull τa to ith segment and update cik = cik+τσa wk. Since
nspro ̸= ∅, we can select task τb and jth segment as the
objective task and objective segment respectively. Then, task
τb is pulled to jth segment and update cjk = cjk + τσb wk.
Let l = l− 1, a new round of pulling is conducted until the
objective segment can not found.

E. Allocation Divisible Task

After allocate the BoT to the processors, we should
allocate the divisible task to the time slot and available
time segment to make the makespan of the hybrid tasks
minimized. We can see that scheduling of the divisible task
can be divided into two situations from algorithm 1. If
Eq.(18) is satisfy, the divisible task is called large divisible
task, otherwise, the divisible task is called small divisible
task. Then we will scheduling the small or large divisible task
according to different strategy which described in section

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

Available time Unavailable time

Processing time of BoT

kP

t

thj

a

thi

b

(a) Time diagram of Pk after tasks are allocated.

Available time Unavailable time

Processing time of BoT

kP

t

thj

a

thi

b

thl

(b) Pull τa and τb to ith, jth available time segment respectively.

Fig. 7. An example of pulling tasks to another available time segment.

III-E1 and section III-E2.
N∑
j=1

(
wj

µj∑
k=1

ϕk
j

)
≥ τσ0 (18)

where ϕk
j and µj are the kth time slot and number of time

slot before TBoT on processor Pj .
1) Small Divisible Task Scheduling: If the divisible task

is regarded as a small task, it means that the divisible task
τ0 can be completed in the time slot before TBoT . So, we
can allocate the divisible task in the time slot as shown
in Fig.8(a). In this case, we should solve two problems:
(1)which processor should the divisible task allocate to?
(2) which time slots in the processors should the divisible
task allocate to? In our work, the method as follow is
proposed to solve the two problems aforementioned. First,
wj

(∑µj

k=1 ϕ
k
j

)
(j = 1, 2, · · · , N) are sorted in descending

order and put them into a array Γ. Then, the processors are
determined by Eq.(19).

np = argmin
1≤np≤N

np∑
j=1

Γj ≥ τσ0

 (19)

If
∑np

j=1 Γj = τσ0 , we will assign the divisible task onto
the time slot on processors before Γnp . Otherwise, we will
assign the divisible task onto the time slot on processors
before Γnp−1, and the reminder workload (τσ0 −

∑np−1
j=1 Γj)

will allocate to processor Γnp−1. In this case, the makespan
of the hybrid tasks is TBoT .

2) Large Divisible Task Scheduling: If the divisible task
is regarded as a large task, it means that the divisible task τ0
can not be completed in the time slot before TBoT . In this
case, we first allocate all the time slot before TBoT . Then,
the reminder workload τσ = τσ0 −

∑N
j=1

(
wj

(∑µj

k=1 ϕ
k
j

))
will allocate to the available time after TBoT as shown in
Fig.8(b).

An essential condition used in the related works in
DLT(Divisible Load Theory, DLT) to derive optimal solution
is as follows: for the sake of obtaining an optimal processing
time, it is necessary and sufficient to demand that all the
processors participating in the computation must finish their
computing at the same time. So, we have Ti = Ti+1(1 ≤
i ≤ N − 1). If si(1 ≤ i ≤ N) denotes the unavailable

1P

2P

1iP

i
P

1iP

1N
P

N
P

Available time Unavailable time

t

Processing time of BoT

BoT
T

Time slot

Processing time of DT

(a) Allocation small divisible task to processors.

1P

2P

1iP

i
P

1iP

1N
P

N
P

Available time Unavailable time

t

Processing time of BoT

BoT
T

Time slot

Processing time of DT

DT
T

(b) Allocation large divisible task to processors.

Fig. 8. Allocation Divisible task to processors.

time between TBoT and Ti of processor Pi, the Eq.(20) is
obtained. In this case, the makespan of the tasks is TDT , and
we have TDT = T1. So the makespan of the hybrid tasks is
calculated by Eq.(20).

TDT = T1 = TBoT + s1 + w1β1. (20)

The makespan of hybrid tasks can be calculated easily
through Eq.(20). si denotes the unavailable time between
TBoT and TDT of processor Pi, and si is related to TDT , so
it is impossible to determine si when TDT is not determined.
For the sake of searching the TDT , a binary search algorithm
is proposed and its pseudocode is shown in algorithm 2.

IV. GA FOR HYBRID TASKS SCHEDULING

Task scheduling is a NP hard problem in the well-known
hardest combinatorial optimization problems. GA(generic
algorithm, GA), which invented by is employed to solve the
task scheduling optimization model proposed in section II-B.
GA is a efficient technique for many realistic application
problems such as Control and Decision, image processing,
and machine learning, etc[32], [33].

A. Encoding and Population Initialization

Generally speaking, a suitable encoding scheme, which
encodes the solutions in problem domain to a chromosome,
is much more significant. A better encoding scheme will
make the search easier by limiting the search space and
converge to the global optimal solution rapidly. Based on
what characterizes this optimization model for hybrid tasks
scheduling problem, the encoding scheme of integer is
adopted for bag-of-tasks. A array CB

2×Nτ
= (cBij)2×Nτ is

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

Algorithm 2: TDT and workload βi are determined

Input: wi, [c
j
id

j
i](i = 1, 2, · · · , N ; j = 1, 2, · · · ,mi),

reminder workload τσ of divisible task;
Output: Makespan TDT and workload βi assigned to

processor Pi;

1 min time = 0, max time =

(
max

1≤i≤N
{wi}

)
τσ;

2 while max time−min time > ξ do
3 % ξ is a threshold of time;
4 mean time = (max time+min time) /2;
5 Calculate unavailable time si(i = 1, 2, · · · , N)

between TBoT and TBoT +mean time for every
Pi;

6 The fractions βi = (mean time− si)/wi that can
be allocated to Pi is calculated;

7 if
∑N

i=1 βi < τσ then
8 min time = mean time;
9 else

10 max time = mean time;
11 end
12 end
13 TDT = TBoT + (max time+min time) /2;
14 Calculate unavailable time si(i = 1, 2, · · · , N) between

TBoT and TBoT +mean time for every Pi;
15 The fractions βi = (mean time− si)/wi that can be

allocated to Pi is calculated;

represented as a list of 2×Nτ elements, called chromosome.
For a specific task τj(1 ≤ j ≤ Nτ), we have cB1j = a
and cB2j = b if only and if the task τj allocate to the bth

available time segment of processor Pa. In addition, a real
coding scheme is employed. A array CD

N×Ng
= (cDij)N×Ng

is chromosome for divisible task, where Ns = max
1≤i≤N

{mi}.

In CD
N×Ng

, we have cDij = αj
i (1 ≤ i ≤ N, 1 ≤ j ≤ mi)

and cDij = 0(1 ≤ i ≤ N,mi ≤ j ≤ Ng). We can obtain
the initial population Pop BoT and Pop DT of generic
allocate according to the algorithm 3.

B. Crossover Operator

For the sake of increasing diversity of the individuals
in population, a crossover operator for divisible task(DT)
coding presented in algorithm 4 respectively. To decrease the
makespan of the tasks, the divisible load should be assigned
to the former segment of the processors. So, two weight
coefficients, which decrease gradually, are used in step 11
and 12.

C. Mutation Operator

Mutation, which can change some gene values in a parent
individual to a new state, is a genetic operator. A bet-
ter mutation operator can produce entirely novel offspring
individuals and improve diversity of the population. With
these new individuals, the genetic algorithm may obtain a
better solution than previously one possible. Mutation is an
essential operator in generic algorithm, and it can help to
make the populations escape the local optimum. Suppose
that the chromosome C = (cij)2×Nτ and CD = (cDij)N×Ng

Algorithm 3: Encoding and population initialization
Input: N,Nτ , population size Popsize;
Output: Initial population Pop BoT and Pop DT ;

1 for i = 1 to Popsize do
2 Initial Pop BoT :
3 for j = 1 to Nτ do
4 flag all = 0;
5 while flag all == 0 do
6 pΩj permutation of the elements in Ωj ;
7 A random integer is generated in

[1, size(Ωj)], denoted as k1;
8 Pop BoT (1, j, i) = pΩj(k1),

flag seg = 0;
9 while flag seg == 0 do

10 Let np = Pop BoT (1, j, i); pM is a
permutation of elements {1, 2, · · · , np};

11 A random integer is generated in
[1,mnp], denoted as k2;

12 if ck2np
+ τσj wnp ≤ dk2np

then
13 flag seg = 1,

Pop BoT (2, j, i) = pM(k2);
14 end
15 end
16 if flag seg == 1 then
17 flag all = 1;
18 ck2np

= ck2np
+ τσj wnp ;

19 end
20 end
21 end
22 Initial Pop DT :
23

(
cDij
)
N×Ng

is generated randomly, and all the
elements range from 0 to 1;

24 for j = 1 to N do
25 for k = 1 to Ng do
26 if k < mj then

27 Pop DT (j, k, i) = cDjk

/(N∑
j=1

mj∑
k=1

cDij

)
;

28 else
29 Pop DT (j, k, i) = 0;
30 end
31 end
32 end
33 end

are chosen to take part in mutation, and the offspring C ′ =
(c′ij)2×Nτ , CD′

= (cD
′

ij)N×Ng are obtained by the mutation
as shown in algorithm 5 and algorithm 6 respectively. Similar
to algorithm 4, weight coefficients are used too.

{npbest, nsbest} = argmin
np,ns

{
max

np∈Ωi,1≤ns≤mnp

{Tnp}
}
(21)

where np is the processor number of a tasks allocated to and
ns is the available time segment on processor Pnp. Eq.(21)
is used to search a best processor Pnpbest

and available time
segment nsbetter on processor Pnpbest

for tasks τi to make
the maximum processing finish time of the processors in Ωi

is minimum.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

Algorithm 4: Crossover operator for DT coding

Input: Individual C1 in Pop DT , probability pn;
Output: Offsprings O1 and O2 for DT;

1 if rand() < pn then
2 An individual C2 is selected in the neighborhoods

neiber(C1) of individual C1;
3 else
4 An individual C2 is selected in the population

except for the neiber(C1);
5 end
6 O1 = C1, O2 = C2;
7 for i = 1 to N do
8 mi numbers are generated randomly, and put them

into W according to descend order.

9 W = W
/ mi∑

j=1

W (j);

10 for j = 1 to mi do
11 O1

ij = O1
ij +W (j)× |O1

ij −O2
ij |;

12 O2
ij = O2

ij +W (j)× |O1
ij −O2

ij |;
13 end
14 end

15 O1 = O1
/(N∑

i=1

mi∑
j=1

O1
ij

)
, O2 = O2

/(N∑
i=1

mi∑
j=1

O2
ij

)
;

Algorithm 5: Mutation operator for BoT coding
Input: Individual C = (cij)2×Nτ ;
Output: Offspring C ′ = (c′ij)2×Nτ ;

1 C ′ = C;
2 Two random integer i, j(i < j) are generated;
3 for k = i to j do
4 Let np = i+ j − k;
5 if C(1, np) ∈ Ωi and C(2, np) ≤ mC(1,np) then
6 C ′

1k = C1np , C ′
2k = C2np ;

7 else
8 Calculate npbest and nsbest by Eq.(21);
9 C ′

1k = npbest, C ′
2k = nsbest;

10 end
11 end

D. Local Search Operator
Local search is an important operator in generic algorithm,

and it can help to jump out the local optima. In this paper, a
local search operator, which can accelerate the convergence
and enhance the searching ability of the proposed algorithm,
is designed. If the local search operator applied to the
chromosome C = (cij)2×Nτ

and CD = (cDij)N×Ng , the
offspring C ′ = (c′ij)2×Nτ and CD′

= (cD
′

ij)N×Ng are
obtained by local search operator as shown in algorithm 7.

nsbetter = argmin
ns

{
max

1≤ns≤mnp

{Tnp}
}

(22)

where np is the processor number that the tasks is allocated
to. Eq.(22) is used to search a better available time segment
nsbetter in processor Pnp.

E. Modify Operator
For the sake of accelerating the convergence of generic

algorithm and minimizing makespan of the tasks, a modify

Algorithm 6: Mutation operator for DT coding

Input: Individual CD = (cDij)N×Ng and constant F ;
Output: Offspring CD′

= (cD
′

ij)N×Ng ;
1 CD′

= CD;
2 for i = 1 to N do
3 mi numbers are generated randomly, and put them

into W according to descend order.

4 W = W
/ mi∑

j=1

W (j);

5 for j = 1 to mi do
6 if cDij < 0.5 then
7 δ = (1− cDij)

1+F ;
8 else
9 δ = (cDij)

1+F ;
10 end
11 R = rand();
12 if R < 0.5 then
13 σ = 1− (2R+ (1− 2R)δ)

1
1+F ;

14 else
15 σ = 1− (2(1−R) + 2δ(R− 0.5))

1
1+F ;

16 end
17 cD

′

ij = cDij +W (j)σ;
18 end

19 CD′
= CD′

/(N∑
i=1

mi∑
j=1

cD
′

ij

)
;

20 end

Algorithm 7: Local search operator

Input: C = (cij)2×Nτ , C
D = (cDij)N×Ng ;

Output: C ′ = (c′ij)2×Nτ , C
D′

= (cD
′

ij)N×Ng ;
1 C ′ = C,CD′

= CD;
2 for i = 1 to Nτ do
3 Calculate nsbetter by Eq.(22);
4 if nsbetter ̸= C(2, i) then
5 C ′

2i = nsbetter;
6 end
7 end
8 for i = 1 to N do
9 Two integer j1, j2 and a random 0 < R < 1 are

generated randomly, and 1 ≤ j1 < j2 ≤ mi;
10 cD

′

ij1
= cDij2(1 +R), cD

′

ij2
= cDij2(1−R);

11 end

operator is designed. The pseudocode of the modify operator
is shown in algorithm8. Chromosome C = (cij)2×Nτ and
CD = (cDij)N×Ng will modified as C ′ = (c′ij)2×Nτ and
CD′

= (cD
′

ij)N×Ng according to the modify operator.

V. TSGA FOR HYBRID TASKS SCHEDULING

To solve the optimization model, a generic algorithm is
designed in section IV. In GA, the allocation scheme of BoT
and divisible task are both determined, a large search space
exits. So, we propose a two step scheduling algorithm to
minimizing makespan of the hybrid tasks. We first scheduling
the bag-of-tasks using GA proposed in section IV, and then
the divisible task is scheduled through the methods described

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

Algorithm 8: Modify operator

Input: C = (cij)2×Nτ , C
D = (cDij)N×Ng ;

Output: C ′ = (c′ij)2×Nτ , C
D′

= (cD
′

ij)N×Ng ;
1 C ′ = C,CD′

= CD;
2 for i = 1 to N do
3 for j = mi to 2 do
4 Ψj

i is the tasks set allocated to jth available
time segment of processor Pi, and the tasks
sorted descending order according to workload;

5 for k = size(Ψi) to 1 do
6 if ∃p < j satisfy τσ

Ψj
i (k)

wi < dp − cp then

7 if Ψj
i (k) ̸= 0 then

8 c′
2Ψj

i (k)
= p;

9 else
10 cD

′

ip = cD
′

ip + cD
′

ij , cD
′

ij = 0;
11 end
12 end
13 end
14 end
15 end

in section III-E1 and section III-E2. The framework of the
algorithm is shown in algorithm 9.

Algorithm 9: Framework of TSGA algorithm
Input: Tasks τi(i = 1, · · · , Nτ), speed index wi and

available time [cji , d
j
i](j = 1, · · · ,mi) of

processor Pi(i = 1, · · · , N);
Output: a schedule scheme;

1 Scheduling BoT by GA;
2 if divisible task workload is small then
3 Scheduling the divisible task according to the

method proposed in section III-E1;
4 else
5 Scheduling divisible task according to algorithm 2;
6 end

VI. EXPERIMENTS AND ANALYSIS

Several experiments are presented in this section to show
the efficiency of the proposed algorithm. In section VI-A,
some parameters used in the algorithms will be given.
Experimental results are presented in section VI-B. Finally,
the experimental results are analyzed in section VI-C.

A. Parameters Value

1) Tasks parameters: In this paper, we investigate the
hybrid tasks scheduling problem in heterogeneous distributed
system. In the experiments, the workload of the BoT ranges
from 1000 to 7000. In simulation system, the tasks num-
ber Nτ is varying between 50 and 500. In addition, the
processors set Ωi(1 ≤ i ≤ Nτ), which can process task
τi(1 ≤ i ≤ Nτ), is generated as follow: nr is a random
number in (0, 1], npro = ⌊nrN⌋. Then, npro processors
are selected in P and put them in Ωi. In our experiments,

the workload of the divisible task is generated randomly in[
1
N

N∑
i=1

mi−1∑
j=1

(
wi(d

j
i − cji)

)
,

N∑
i=1

mi−1∑
j=1

(
wi(d

j
i − cji)

)]
.

2) System parameters: In this section, we show our
simulation system parameters. The simulation system has
20 heterogeneous slave processors, and the time consuming
for unit workload ws

i (1 ≤ i ≤ Ns) of Pi(1 ≤ i ≤
Ns) in the heterogeneous distributed system is referred
to Shang[34], where Ns denote the number of processors
in simulation system. The available time segment mi on
processor Pi is generated randomly in [5, 12]. The length
of kth(1 ≤ k < mi) on Pi is generated randomly in[
wi × mean

1≤i≤Nτ

{τσi }, 3wi × mean
1≤i≤Nτ

{τσi }
]

. If k = mi, dki can

equal to +∞, that is to say, the processor Pi can processing
tasks all the time in mth

i available time segment.
3) Generic algorithm parameters: In this paper, GA

denotes the algorithm of generic algorithm without local
search operator, and generic algorithm with local search
and modify operator denoted as GALM. Similarly, GAL
and GAM are indicated as the generic algorithm with local
search and modify operator proposed in section IV respec-
tively. TSGA denotes the algorithm proposed in section
V without local search operator, TSGAL, TSGAM and
TSGALM are denote the two step scheduling algorithm
with local search or modify operator. In the algorithm of
GA, GAL, GAM, GALM, TSGA, TSGAL, TSGAMA and
TSGALM, the following parameters are chosen: population
size Popsize = 100, crossover probability pc = 0.8, mutation
probability pm = 0.05, elitist number E = 5 and maximum
iterations Gmax = Nτ . Since the concept of neighborhoods
of a individual is employed, neighbor size T = 10 in our
experiments.

B. Simulation Results

As there is no algorithm available in the literature for
scheduling hybrid task in heterogeneous system with unavail-
able time segment constraints. To evaluate the effectiveness
of the proposed scheduling algorithm, we first will present
a performance evaluation study in simulation system. First,
we will evaluate the nine algorithms (BoTAPDTA, GA, GAL,
GAM, GALM, TSGA, TSGAL, TSGAM and TSGALM) on
makespan for various tasks number (Nτ) and workload size,
and the makespan obtained by the five algorithms are shown
in Fig.9 and Fig.10.

To evaluate the convenience of the eight algorithm-
s(GA, GAL, GAM, GALM, TSGA, TSGAL, TSGAM, T-
SAGALM), convergence performance of the four algorithms
are shown in Fig.11 and Fig.12. In this experiment, a specific
number of task is selected, Nτ = 50, and the maximum
iterations Gmax = 1000 in every group experiment.

What is more, we evaluate the robustness of the eight
algorithm(GA, GAL, GAM, GALM, TSGA, TSGAL, TS-
GAM, TSAGALM). In the experiments, every algorithm is
executed 30 times independently. Workload of the bag-tasks
are uniform distribution in [1000 5000], and the number of
task ranges from 50 to 500. The statistics results of the four
algorithms are shown in Fig.13 to Fig.16 respectively using
Box-whisker Plot.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

50 100 150 200 250 300 350 400 450 500

3.20

3.25

3.30

3.35

3.40

3.45

TSGALM

TSGAM

TSGA

GA

GALM GAL
GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA
TSGAL

(a) 1000 ≤ τσi ≤ 2000

50 100 150 200 250 300 350 400 450 500

3.20

3.25

3.30

3.35

3.40

3.45

TSGALM
TSGAM

TSGA

GA

GALM GAL

GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA

TSGAL

(b) 1000 ≤ τσi ≤ 3000

50 100 150 200 250 300 350 400 450 500

3.25

3.30

3.35

3.40

3.45

TSGALM

TSGAM

TSGA

GA

GALM

GAL

GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA

TSGAL

(c) 1000 ≤ τσi ≤ 4000

Fig. 9. Makespan in the first experiment.

C. Experimental Analysis

The makespans obtained by the four algorithms are shown
in Fig.9 and Fig.10. Proposed algorithms can obtain a better
scheduling strategy according to all the information and the
state of the processors. Since local search operator and mod-
ified operator are tailor-made, both of them are conducive
to increasing the diversity of solutions and searching a local
optimal solution in search space. So, TSGAL and GAM can
convergent to a better solution than TSGA. That is to say,
makespan obtained by TSGAL and TSGAM both are smaller
than that obtained by GA. TSGALM is a algorithm that
local search and modified operator are added into TSGA.
So, makespan obtained by GALM is smallest. However,
TSGAL is hard to tell from TSGAM. Because local search
operator and modified operator both are search a local
optimal solution by changing scheduling scheme of a task.
As shown in the Fig.9 and Fig.10, we can see that makespan
obtained by TSGALM is smallest, and makespan obtained
by TSGA is largest among the eight algorithms. Makespan
obtained by TSGAL is smaller than that obtained by GAM
in some cases. But, the opposite results can be obtained in
other cases.

In additional, convergence of proposed eight algorithms
are investigated in a simulation system. In this paper, we
design a local search operator and a modify operator, and the
two optimization algorithms referred as TSGAL and GAM.

50 100 150 200 250 300 350 400 450 500

3.25

3.30

3.35

3.40

3.45

TSGALM

TSGAM

TSGA

GA

GALM

GAL
GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA

TSGAL

(a) 1000 ≤ τσi ≤ 5000

50 100 150 200 250 300 350 400 450 500

3.25

3.30

3.35

3.40

3.45

TSGALM

TSGAM

TSGA

GA

GALM

GAL
GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA

TSGAL

(b) 1000 ≤ τσi ≤ 6000

50 100 150 200 250 300 350 400 450 500

3.25

3.30

3.35

3.40

3.45

TSGALM

TSGAM

TSGA

GA

GALM
GAL

GAM

M
ak
es
p
an

BoTAPDTA

GA

GAL

GAM

GALM

TSGA

TSGAL

TSGAM

TSGALM

BoTAPDTA

TSGAL

(c) 1000 ≤ τσi ≤ 7000

Fig. 10. Makespan in the second experiment.

Local search operator and modified operator are conducive
to increasing the diversity of the solutions and searching a
local optimal solution in search space. On the one hand, local
search operator can generate a better offspring than its parent
individual by changing the value of a gene. On the other
hand, modified operator can also decrease the processing
finish time of a processor as much as possible. For a specific
generation, the offsprings obtained by local search operator
and modified operator will have better fitness than their
parents. So, TSGAL and TSGAM can convergent to global
optimal solution quickly. That is to say, TSGAL and TSGAM
have a higher convergent speed than GA. However, we can
not tell good or bad for GAL and GAM. As we can see in the
experimental results, TSGAL is better than TSGAM in some
cases, and TSGAM is better than TSGAL in others case.
Because local search operator and modified operator are both
searching a local optimal solution by changing scheduling
scheme of a task. GALM is a algorithm that comprise of
TSGA, local search operator and modified operator. So,
it can convergent to a global optimal solution as fast as
possible. As shown in the Fig.11 and Fig.12, TSGALM has a
highest convergent speed among the four algorithms (TSGA,
TSGAL, TSGAM and TSGALM), and the convergent speed
of TSGA is lowest.

What is more, the robustness of the four algorithms are
investigated in simulation system. Fig.13 to Fig.16 give the

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

0 100 200 300 400 500 600 700 800 900 1000

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALM

GALM GA

GAL
GAM

(a) 1000 ≤ τσi ≤ 2000

0 100 200 300 400 500 600 700 800 900 1000

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALM

GALM

GA

GAL

GAM

(b) 1000 ≤ τσi ≤ 3000

0 100 200 300 400 500 600 700 800 900 1000

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALMGALM

GA

GAL

GAM

(c) 1000 ≤ τσi ≤ 4000

Fig. 11. Convergence of the four algorithms in the first experiment.

robustness of TSGA, TSGAL, TSGAM and TSGALM in
simulation system for various task number. From the figures,
we can see that the four algorithms have a high robustness
for various task number. With increasing of the tasks and
processors, much more local optimal solutions exit. So, the
robustness of the four algorithms are much higher in a
simulation system for the same task number.

VII. CONCLUSION

In this paper, we investigate a hybrid tasks compris-
ing both bag-of-tasks(BoT) and divisible tasks scheduling
problem with unavailable time considered in heterogeneous
distributed system. For the sake of minimizing the makespan
of the tasks, a mathematical optimization model with the
unavailable time constraint is established. A hybrid schedul-
ing algorithms with local search or modified operator are
designed. Makespan obtained by the proposed algorithms
with various number of tasks and workload are evaluated.
In addition, convergence and robustness of eight algorithm
(TSGA, TSGAL, TSGAM and TSGALM) are evaluated in
the simulation system. Experimental results show that the
proposed algorithms are efficiency.

0 100 200 300 400 500 600 700 800 900 1000

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALMGALM

GA

GAL

GAM

(a) 1000 ≤ τσi ≤ 5000

0 100 200 300 400 500 600 700 800 900 1000

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALM

GALM

GAM

GAL GA

(b) 1000 ≤ τσi ≤ 6000

0 100 200 300 400 500 600 700 800 900 1000
3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6
M
ak
es
pa
n

Number of generation

GA

GAL

GAM

GALM

GALM

GAM

GAL GA

(c) 1000 ≤ τσi ≤ 7000

Fig. 12. Convergence of the four algorithms in the second experiment.

50 100 150 200 250 300 350 400 450 500
3.27

3.30

3.33

3.36

3.39

3.42

3.45

3.48

M
ak
es
p
an

(a) The robustness of GA

50 100 150 200 250 300 350 400 450 500

3.20

3.25

3.30

3.35

3.40

3.45

M
ak
es
p
an

(b) The robustness of GAL

Fig. 13. Robustness of the GA and TSGA.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

50 100 150 200 250 300 350 400 450 500

3.27

3.30

3.33

3.36

3.39

3.42

3.45

3.48

3.51
M
ak
es
p
an

(a) The robustness of GAL

50 100 150 200 250 300 350 400 450 500
3.20

3.25

3.30

3.35

3.40

3.45

3.50

M
ak
es
p
an

(b) The robustness of TSGAL

Fig. 14. Robustness of the GAL and TSGAL.

50 100 150 200 250 300 350 400 450 500

3.27

3.30

3.33

3.36

3.39

3.42

3.45

3.48

3.51

M
ak
es
p
an

(a) The robustness of GAM

50 100 150 200 250 300 350 400 450 500

3.25

3.30

3.35

3.40

3.45

3.50

M
ak
es
p
an

(b) The robustness of TSGAM

Fig. 15. Robustness of the GAM and TSGAM.

50 100 150 200 250 300 350 400 450 500
3.21

3.24

3.27

3.30

3.33

3.36

3.39

3.42

3.45

3.48

3.51

M
ak
es
p
an

(a) The robustness of GALM

50 100 150 200 250 300 350 400 450 500

3.20

3.25

3.30

3.35

3.40

3.45

3.50

M
ak
es
p
an

(b) The robustness of TSGALM

Fig. 16. Robustness of the GALM and TSGALM.

REFERENCES

[1] M. Kolár, M. Beneš, D. Ševcovic, and J. Kratochvıl, “Mathematical
model and computational studies of discrete dislocation dynamics,”
IAENG International Journal of Applied Mathematics, vol. 45, no. 3,
pp. 198–207, 2015.

[2] N. Leal, E. Leal, and S.-T. German, “A linear programming approach
for 3d point cloud simplification,” IAENG International Journal of
Computer Science, vol. 44, no. 1, pp. 60–67, 2017.

[3] X. Wang and B. Veeravalli, “Performance characterization on handling
large-scale partitionable workloads on heterogeneous networked com-
pute platforms,” IEEE Transactions on Parallel & Distributed Systems,
vol. 28, no. 10, pp. 2925–2938, 2017.

[4] X. Wang, Y. Wang, and Y. Cui, “A new multi-objective bi-level pro-
gramming model for energy and locality aware multi-job scheduling
in cloud computing,” Future Generation Computer Systems, vol. 36,
pp. 91–101, 2014.

[5] M. Sajid, Z. Raza, and M. Shahid, “Energy-efficient scheduling
algorithms for batch-of-tasks (bot) applications on heterogeneous
computing systems,” Concurrency and Computation: Practice and
Experience, vol. 28, no. 9, pp. 2644–2669, 2016.

[6] W. Tong, S. Xiao, and H. Li, “Fault-tolerant scheduling algorithm with
re-allocation for divisible loads on homogeneous distributed system.”
IAENG International Journal of Computer Science, vol. 45, no. 3, pp.
450–457, 2018.

[7] S. Srinivasan and N. K. Jha, “Safety and reliability driven task
allocation in distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 3, pp. 238–251, 1999.

[8] Y. C. Lee and A. Y. Zomaya, “Practical scheduling of bag-of-tasks
applications on grids with dynamic resilience,” IEEE Transactions on
Computers, vol. 56, no. 6, pp. 815–825, 2007.

[9] C. Anglano and M. Canonico, “Scheduling algorithms for multiple
bag-of-task applications on desktop grids: A knowledge-free ap-
proach,” in IEEE International Symposium on Proceedings of Parallel
and Distributed Processing. IEEE, 2008, pp. 1–8.

[10] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The performance
of bags-of-tasks in large-scale distributed systems,” in Proceedings of
the 17th international symposium on High performance distributed
computing. ACM, 2008, pp. 97–108.

[11] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, “Schedul-
ing concurrent bag-of-tasks applications on heterogeneous platforms,”
IEEE Transactions on Computers, vol. 59, no. 2, pp. 202–217, 2010.

[12] J. Celaya and U. Arronategui, “Fair scheduling of bag-of-tasks applica-
tions on large-scale platforms,” Future Generation Computer Systems,
vol. 49, pp. 28–44, 2015.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

[13] Y. Yang, X. Peng, and X. Wan, “Security-aware data replica selection
strategy for bag-of-tasks application in cloud computing,” Journal of
High Speed Networks, vol. 21, no. 4, pp. 299–311, 2015.

[14] M. A. Oxley, S. Pasricha, A. A. Maciejewski, H. J. Siegel, J. Apodaca,
D. Young, L. Briceno, J. Smith, S. Bahirat, B. Khemka et al.,
“Makespan and energy robust stochastic static resource allocation of
a bag-of-tasks to a heterogeneous computing system,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 26, no. 10, pp. 2791–
2805, 2015.

[15] F. Zhang, J. Cao, K. Li, S. U. Khan, and K. Hwang, “Multi-objective
scheduling of many tasks in cloud platforms,” Future Generation
Computer Systems, vol. 37, pp. 309–320, 2014.

[16] G. Schmidt, “Scheduling with limited machine availability,” European
Journal of Operational Research, vol. 121, no. 1, pp. 1–15, 2000.

[17] C. Z. Hoong Chuin LAU, “Job scheduling with unfixed availability
constraints,” in Proceedings of the 35th Meeting of the Decision
Sciences Institute(DSI). ACM, 2004, pp. 4401–4406.

[18] X. Qin and T. Xie, “An availability-aware task scheduling strategy for
heterogeneous systems,” IEEE Transactions on Computers, vol. 57,
no. 2, pp. 188–199, 2008.

[19] I. Adiri, J. Bruno, E. Frostig, and A. R. Kan, “Single machine flow-
time scheduling with a single breakdown,” Acta Informatica, vol. 26,
no. 7, pp. 679–696, 1989.

[20] G.-J. Sheen and L.-W. Liao, “Scheduling machine-dependent jobs to
minimize lateness on machines with identical speed under availability
constraints,” Computers & operations research, vol. 34, no. 8, pp.
2266–2278, 2007.

[21] I. Kacem, C. Sadfi, and A. El-Kamel, “Branch and bound and
dynamic programming to minimize the total completion times on a
single machine with availability constraints,” in IEEE International
Conference on Proceedings of Systems, Man and Cybernetics, vol. 2.
IEEE, 2005, pp. 1657–1662.

[22] B. Vahedi-Nouri, P. Fattahi, and R. Ramezanian, “Minimizing total
flow time for the non-permutation flow shop scheduling problem with
learning effects and availability constraints,” Journal of Manufacturing
Systems, vol. 32, no. 1, pp. 167–173, 2013.

[23] X. Wang and T. E. Cheng, “An approximation scheme for two-machine
flowshop scheduling with setup times and an availability constraint,”
Computers & operations research, vol. 34, no. 10, pp. 2894–2901,
2007.

[24] Z. Tong, K. Li, Z. Xiao, and X. Qin, “H2aco: An optimization ap-
proach to scheduling tasks with availability constraint in heterogeneous
systems,” Journal of Internet Technology, vol. 15, no. 1, pp. 115–124,
2014.

[25] ——, “A QoS scheduling scheme with availability constraint in
distributed systems,” in International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies (PDCAT). IEEE,
2012, pp. 481–486.

[26] H. Yuan, Y. Wang, and L. Chen, “An availability-aware task scheduling
for heterogeneous systems using quantum-behaved particle swarm
optimization,” in Advances in Swarm Intelligence. Springer, 2010,
pp. 120–127.

[27] L. Zhou, H. Wang, S. Lian, Y. Zhang, A. Vasilakos, and W. Jing,
“Availability-aware multimedia scheduling in heterogeneous wireless
networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 3,
pp. 1161–1170, 2011.

[28] W. Y. Lee, S. J. Hong, and J. Kim, “On-line scheduling of scalable
real-time tasks on multiprocessor systems,” Journal of Parallel and
Distributed Computing, vol. 63, no. 12, pp. 1315–1324, 2003.

[29] N. D. Doulamis, A. D. Doulamis, E. A. Varvarigos, and T. A.
Varvarigou, “Fair scheduling algorithms in grids,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 11, pp. 1630–1648,
2007.

[30] M. Hu and B. Veeravalli, “Requirement-aware scheduling of bag-of-
tasks applications on grids with dynamic resilience,” IEEE Transac-
tions on Computers, vol. 62, no. 10, pp. 2108–2114, 2013.

[31] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu, “Incentive-based scheduling
for market-like computational grids,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 7, pp. 903–913, 2008.

[32] K. Sastry, D. E. Goldberg, and G. Kendall, “Genetic algorithms,” in
Search methodologies. Springer, 2014, pp. 93–117.

[33] W. Ding, Z. Guan, Q. Shi, and J. Wang, “A more efficient attribute self-
adaptive co-evolutionary reduction algorithm by combining quantum
elitist frogs and cloud model operators,” Information Sciences, vol.
293, pp. 214–234, 2015.

[34] S. Mingsheng, “Optimal algorithm for scheduling large divisible
workload on heterogeneous system,” Applied mathematical modelling,
vol. 32, no. 9, pp. 1682–1695, 2008.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_20

Volume 50, Issue 1: March 2020

__

