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Nearest Neighbor with Double Neighborhoods
Algorithm for Imbalanced Classification

Caiwen Wang, Youlong Yang

Abstract—Classification of imbalanced data is a challenge in
data mining and pattern recognition tasks. The over-advantage
of the majority classes often lead to poor performance of
traditional classifiers, when imbalanced data is processed. In
this paper, we propose an algorithm called nearest neighbor
with double neighborhoods algorithm (NNDN) to deal with
binary-class imbalanced data classification. In classification
step, a double neighborhoods scheme is presented based on data
distribution to judge the sparsity of the main neighborhood, and
a tendency weighting scheme is used to increase the sensitivity of
the algorithm to minority instances. Finally, we compare our
method with six well-known algorithms on forty benchmark
data sets. The results show that the proposed algorithm is
suitable for imbalanced data classification, and outperforms
the re-sampling and cost-sensitive learning strategies with
generality-oriented base learners in most data sets.

Index Terms—Nearest neighbor classification, Imbalanced
data, Classification, Data distribution.

I. INTRODUCTION

MBALANCED data classification has become a hot topic

in machine learning and pattern classification. It has been
successfully applied in various real-life application domains,
such as medical diagnosis [1], [2], credit card fraud detection
[3], [4], rare event detection [5], user rating prediction [6]
and spam email detection[7]. It seems more interesting and
meaningful for users to research on the minority instances
in these fields. For example, more attention is paid to
the correct identification of fraudulent credit cards and the
correct detection of spam emails, and so on.

Existing imbalanced learning strategies can be roughly
grouped into data-level approaches and algorithm-level ap-
proaches. Data-level methods focus on adjusting the size of
each class to balance the data set. As a commonly used
technique, resampling methods resize the proportion of each
class to balance the sample size of positive and negative
class in data set. It includes over-sampling, under-sampling
and hybrid sampling. Over-sampling methods [8], such as
the synthetic minority over-sampling technique SMOTE [9],
balance various sample sizes by synthesizing positive in-
stances. (Hereafter minority class and positive class are used
interchangeably, and majority class and negative class are
similar.) However, SMOTE may lead to over generalization,
variance [10] and increase amount of additional calculations.
Under-sampling methods [11] balance a training set by
selectively discarding part of negative instances. However,
it may lose important information. The incomplete existing
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information may result in a distortion of decision boundary.
Hybrid sampling methods [12] are combinations of over-
sampling and under-sampling methods.

Algorithm-level methods are improved on the basis of
existing classifiers to enhance their learning ability and sen-
sitivity for positive instances, and mitigate the inherent bias
of the original classifier towards negative instances. There
are many existing classifiers can be used, such as Decision
Tree [13], [14], K Nearest Neighbors, Bayesian Network
[15], [16], Neural Networks [17], [18], [19] and Support
Vector Machines [20], [21]. Cost-sensitive learning [22] is
a commonly used algorithm-level technique. It increases the
learning ability from positive instances by assigning larg-
er misclassification cost to false negative errors. MetaCost
[23] is widely used in cost-sensitive learning. However, the
misclassification costs of most data sets are unknown or
even impossible to measure with specific values. Ensemble
learning [24], [25] is another algorithm-level technique. It
increases the learning ability from positive instances by
a comprehensive decision made by multiple classifiers. In
general, the comprehensive model outperforms each base
classifier. It may be affected by probability and uncertainty.

The size of each class varies greatly in an imbalanced data
set. Imbalanced positive and negative information leads to
minority instances not being correctly identified by tradition-
al classifiers in classification process. Therefore, the skewed
class distribution of imbalanced data creates difficulties for
the classification task of the classifiers. Existence of posi-
tive sub-concepts also cause classification difficulties [26].
The single class is composed of various sub-concepts that
contain various number of examples, which causes within-
class imbalance [27]. Unfortunately, classification errors are
often heavily concentrated toward the smaller disjuncts[28].
These positive instances contained in sub-concepts are sur-
rounded by a large number of negative instances, resulting
in extremely low sensitivity to positive instances.

As a local-oriented classifier, K nearest neighbor (KNN)
makes decisions based on local information of the query in-
stances. It stores entire training set and classifies according to
the characteristics of local distribution of the query instances.
Therefor, it is a good choice for dealing with classification
of imbalanced data. However, a frequent type of error is
to erroneously classify as a negative instance due to the
positive sparse distribution of neighborhood in classification
process of KNN. It leads to a lower classification precision
of positive instances. There are many improved algorithms
based on KNN are used for imbalanced data, such as K Rare-
class Nearest Neighbor (KRNN) [29] and Positive-biased N-
earest Neighbor (PNN) [30]. The two methods increase their
learning ability from positive instances by directly adjusting
the posterior probability of positive class. For example, the
positive posterior probability is roughly adjusted to [K/2]/K
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in PNN algorithm, when there is positive tendency in the
query neighborhood with fewer half of positive neighbors.

In this paper, we will provide more convincing judgment
conditions and adjustment schemes. We propose a KNN-
based method named NNDN for dealing with binary classi-
fication of imbalanced data sets. The main neighborhood and
the auxiliary neighborhood are dynamically formed for the
query instance based on data distribution. They are used to
determine if the query neighborhood has positive sparsity and
if the query instance has a positive tendency. The neighbors
are given different tendency weights depending on whether
the two conditions are met after being weighted by the
distance. Finally, a classification decision is made by the
weighted posterior probability.

The main contributions of this paper can be summarized
as follows:

« We propose a double neighborhoods scheme in NNDN
that can effectively judge the sparsity of the nearest neighbors
of the query neighborhood.

. The tendency weighting scheme can achieve better
classification performance for imbalanced data.

« To demonstrate the usefulness and applicability of NND-
N, we compare it with six other methods using 40 benchmark
data sets. Experiments show that NNDN improves overall
classification performance of KNN, and outperforms KNN
family algorithms. At the same time, NNDN performs better
than algorithms that SMOTE and MetaCost combined with
C4.5 algorithm respectively.

The rest of the paper is organized as follows. A brief
introduction of related works is reviewed in Section II. In
Section III, the formation of the double neighborhoods is
described in detail. The NNDN algorithm is provided in
Section IV. Experimental results and analysis of NNDN and
comparison with other methods are presented in Section V.
In Section VI, conclusions are drawn and some suggestions
of the future work are given.

II. RELATED WORK

KNN is a simple and easy-to-understand algorithm. Given
a K value of the number of neighbors, the nearest K
instances of the query instance ¢ are found in training set as
its neighbors. Finally, a majority voting mechanism is used
to obtain the classification decision. It can be expressed as

K
L(t):argm?XZI(L(a:i) =c¢) (¢=0,1), (1)

where I(A) is an indicator function. When the condition A
is true, it has a value of 1 and O otherwise. Label of the
ith instance x; is represented as L(x;). Value of ¢ is 0 or 1
(where 0 is the negative class and 1 is the positive class).

The neighbors are often weighted by the reciprocal of the
distance squared, when K neighbors vary widely in distances
and closer neighbors are more reliable. The distance weight
of z; can be calculated as w; = m, where d(x;,t) is the
Euclidean distance [31] of x; to t. Neighbors that are very
close to ¢ may gain very large weights, which may cause
an overwhelming superiority on them. This is not conducive
to finding the real label of ¢, so a more gentle weighting
technique is used to alleviate this problem.

The Gaussian function with a height of 1, a width of 1
and an offset of 0 is used to distance weight in the NNDN
algorithm. The distance weight of z; can be calculated as

(@i,1)2

wl = e “EE )

Finally, L(t) is predicted by a weighted voting mechanism.
The mechanism can be expressed as

K
L(t)=arg maxZI(L(mi) =c) - w;. 3)
i=1

The strategy limits the distance weight to between 0 and 1.
The smaller the distance is, the greater weight will be given.
However, there may be an extreme decision when instances
in a class are very rare or non-existent. To avoid this situation,
the Laplace Smoothing approach [32] is used in the decision-
making scheme. L(t) is given by

K
S I(L(w:) =€) - wi + oy
L(t) = arg max =l - , @
42
z; Wi

where |T'| is the size of training set.

The distance weighting mechanism makes full use of infor-
mation of neighbors. But they are not strategies specifically
for dealing with imbalanced data. This is partly because
of the weighting technique is more bias towards the near-
distance class of ¢, and treats positive instances and negative
instances fairness. Besides, the distance weighting method
alone is not enough to deal with the complex distribution of
imbalanced data when positive neighbors are close to nega-
tive neighbors. In other words, the distance weighting does
not change an inherent bias of KNN algorithm toward the
negative class. So another mechanism needs to be proposed
for dealing with imbalanced data.

The common mistake is to classify a positive instance into
negative class due to the positive sparsity in KNN algorithm.
Therefore, a mechanism about positive propensity is pro-
posed for dealing with imbalanced data in our method. When
t tends to belong to positive class but positive neighbors
are sparse, t is easily misjudged. At this time, if weights
are added to these easily misjudged instances, false negative
errors will be avoided. Thus improving the learning ability of
the algorithm from positive instances. So the two problems
need to be solved as follows:

. which query neighborhood is called a positive sparse
neighborhood? Positive sparseness occurs when the size of
positive neighbors of ¢ is less than half of neighborhood’s
[30]. However, it is rough to judge positive sparseness only
based on the frequency of the positive neighbors. We believe
that the positive sparsity of a neighborhood is relative. Fig 1,
as an example, illustrates this point well.

Fig 1(a) is an artificially generated binary imbalanced
data set with 90 negative instances (denoted by “-””) and 10
positive instances (denoted by “4-). Fig 1(b) enlarges the
rectangular area in Fig 1(a). As can be seen from Fig 1(b),
although there are less than half of positive neighbors in
the circular neighborhood, positive neighbors in the neigh-
borhood are relatively dense compared to distribution of
positive instances outside of the neighborhood. This useful
information cannot be ignored.
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(a) An artificially generated binary imbalanced data set with 90 negative
instances (denoted by “-”) and 10 positive instances (denoted by “+”)
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(b) An enlarged result of the rectangular area in Fig 1(a)
Fig. 1. An example of positive sparse neighborhood

« How to determine whether a query instance has a
tendency to belong to positive class? Intuitively, the more
pronounced positive tendency the query instance has, the
more likely it is to belong to positive class.

In view of the problems mentioned above, we propose
the idea of the double neighborhoods. Considering that the
positive sparsity of a neighborhood is relative, it seems
more reasonable to judge positive sparsity of a neighborhood
according to the positive frequency of a larger neighborhood
than only to follow the positive and negative observation fre-
quency. For the propensity of a neighborhood, we calculate it
based on Pessimistic Estimate [33]. If the positive neighbors
are sparse of the query instance with positive tendency, we
will give greater weight to them. It will make the decision
bias towards the positive class. The method can also be
extended to multiple imbalanced classification problems by
dividing multi-class problems into several easier-to-solve
two-class sub-problems based on the well-known one-vs-
one[34] or one-vs-all[35] decomposition strategies. Here we
only study binary-class imbalanced data classification.

III. CONSTRUCTION OF THE DOUBLE NEIGHBORHOODS

In this section, we will detail the double neighborhoods
mechanism. This strategy can well capture the distribution
of positive instances near ¢, thereby increasing the sensitivity
and learning ability of KNN from positive instances.

In standard KNN algorithm, L(¢) is determined according
to whether the positive frequency is more than half of all
neighbors. However, the frequency cannot fully represent
the sparsity degree of positive instances near t. If ¢ has
positive tendency, a larger neighborhood which can capture
the distribution of positive instances well needs to be created
to determine the positive sparsity in the neighborhood. A
neighborhood that is too large has no research significance.

In NNDN algorithm, two neighborhoods are dynamical-
ly constructed (one is called the main neighborhood and
the other is called the auxiliary neighborhood). The two
neighborhoods jointly capture the distribution information of
positive neighbors around ¢. The main neighborhood is the
key research object, and the auxiliary neighborhood is used to
assist decision making. The first “positive-negative” dividing
line serves as the boundary of the main neighborhood,
and the second “positive-negative” dividing line serves as
the boundary of the auxiliary neighborhood. The specific
construction named Construct the Double Neighborhoods
Algorithm (CDN) is given by Algorithm 1, where B; and
B, are the first and second elements of B, respectively.

Algorithm 1 CDN
Input: Training set 7T'; The query instance .
Output: The main neighborhood r(¢) and the auxiliary
neighborhood R(t) of t.
1: Initialize a collection of neighborhood boundaries B into
an empty set.
for each z; € T do
Calculate the Euclidean distance d(x;,t).
end for
The distance values are sorted in ascending order, and
the sorted set is recorded as 7.
6: for each z; € T" do
7 if L(:Z?1) =1, L(zi—&-l) =0 and |B| < 2 then
8
9

Add z; to B.

: end if
10: end for
11: if |B| = 2 then
12:  Return r(t) = {z; € T'|d(z;,t) <= d(B1,t)}.
13:  Return R(t) = {z; € T'|d(z;,t) <= d(Ba2,t)}.
14: else
15 Return 7(t) =

d(B,t)}.

16: end if

R(t) = {z; € T'|d(z;,t) <=

We analyze the time complexity of the CDN algorithm
first. From the procedures of Algorithm 1, the complexity
of the CDN algorithm proposed above depends mainly on
step 5. The time complexity of sorting all distances generated
by training set with size |T'| is O(|T| - log|T|). In a sorted
training set, two neighborhoods are found just by going
through them once. The time complexity of this process
is O(|T|). In general, the time complexity of the CDN
algorithm is O(|T| - log |T|).
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Fig. 2. Examples of the main neighborhood and the auxiliary neighborhood
under different distributions for the query instance ¢ (denoted by “x”).
Where, “+” represents a positive instance and “—” represents a negative
instance in training set. R is the size of the auxiliary neighborhood, r the
size of the main neighborhood and P is the number of positive instances in
training set.

Although different locations can be used, we have the
second position as the boundary of the auxiliary neighbor-
hood. Later in this paper (see Section V-C), we calculate
the classification performance with different locations on
benchmark data sets. The result shows that the location did
not significantly affect the classification performance of the
NNDN algorithm. Unless all positive instances are closer to
t than all negative instances, we can construct an auxiliary
neighborhood. If this misfortune has already occurred, the
boundary of the main neighborhood is used by the auxiliary
neighborhood (as shown in step 15 ). Therefore, the main
neighborhood is contained within the auxiliary neighborhood
or the same as the auxiliary neighborhood. If positive in-
stances centered on ¢ are sparse, the size of the auxiliary
neighborhood R may be large. In this case, many negative
instances are likely to exist in the auxiliary neighborhood. On
the contrary, if positive instances are dense, r and R may be
small and R is even close to 7. More positive instances are
added during the formation of the auxiliary neighborhood.
The strategy dynamically constructs neighborhoods based on
data distribution and lays the foundation for more accurate
classification.

Fig 2 shows four examples of the two neighborhoods for
the query instance ¢ based on some artificial data. Instances
centered on t (denoted by “x”) are arranged in ascending
order of distance, where, “+” represents a positive instance
and “—” represents a negative instance in training set to
facilitate the description. The sizes of two neighborhoods
vary with the distribution of positive instances.

Fig 2(a) shows the case when the positive instances near ¢
are sparsely distributed. At this point, the main neighborhood
contains two instances (r = 2), and one of which is a
positive instance. There are five instances (R = 5) in the
auxiliary neighborhood that contains two positive instances.
Two negative instances are added during the formation of
the auxiliary neighborhood. Positive instances in the aux-

iliary neighborhood are more sparse than that in the main
neighborhood.

Fig 2(b) shows the case when the positive instances near
t are relatively uniform distributed. At this point, the main
neighborhood contains two instances (r = 2), and one of
which is a positive instance. There are four instances (R =
4) in the auxiliary neighborhood that contains two positive
instances. Positive and negative instances are added equally
during the formation of the auxiliary neighborhood, and the
sparse degree of positive instances in the two neighborhoods
is identical.

Fig 2(c) shows the case when the positive instances near ¢
are densely distributed. At this point, the main neighborhood
contains one instance (r = 1). There are five instances
(R = b) in the auxiliary neighborhood that contains four pos-
itive instances. Three positive instances are added during the
formation of the auxiliary neighborhood. Positive instances
in the auxiliary neighborhood are denser than that in the main
neighborhood.

Fig 2(d) represents an extreme case where all positives are
closer to t than all negatives. At this point, instances in the
two neighborhood are positive instances. The size of them
are equal to the sample size of the positive instance P in the
training set.

Subsequent experimental results indicate that the strategy
is effective.

IV. THE NNDN ALGORITHM

In this section, we introduce the definitions of positive
tendency, positive sparsity and the calculation method of
tendency weight first. These theories make the NNDN algo-
rithm have a stronger ability to learn from positive instances.
They are the cornerstone for the algorithm to more accurately
classify imbalanced data. Then the detailed pseudo code of
the proposed algorithm is shown and analyze about its time
complexity are given.

A. Positive tendency of the query instance

A positive instance-intensive neighborhood of ¢ is likely
to belong to a positive sub-concept. That is the higher
positive frequency is, the greater the probability that the
region belongs to a positive sub-concept, and the higher
positive tendency of ¢. Obviously, it is inaccurate to quantify
the sparse degree of positive instances simply by using the
observed positive frequency in the region.

Pessimistic Estimates are used to estimate the error rate
at internal nodes as well as at leaf nodes of a decision
tree [33]. It also is used to estimate the false positive error
rate for a region [29]. Inspired by them, the true positive
frequency in a neighborhood can be estimated by Pessimistic
Estimates. And then the sparse degree of positive instances in
the neighborhood is measured by the true positive frequency.
In a neighborhood, each neighbor is either a positive instance
or a negative instance. Then if L(t) is treated as a random
variable, it is subject to the binomial distribution B(n,q),
where n is the size of the neighborhood, and ¢ is the
actual positive probability of it. If the observed frequency
of positive instances in the region is assumed to be ¢, the
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true positive frequency ¢ can be estimated as
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where z is the z-score corresponding to a given confidence
level ¢, which z = 1.28 for ¢=90%. The greater the
confidence level c is, the closer the ¢ is to ¢. The larger
q is, the more likely the neighborhood belongs to a positive
sub-concept and t is to be a positive instance. Therefore, ¢
can be regarded as the degree of positive tendency of ¢ when
using the actual positive frequency in the training set as a
criterion.

Definition 1. When the degree of the positive tendency g,
in the neighborhood of ¢ is greater than the degree gr of the
training set in which it is located, ¢ has a tendency to belong
to positive class. At the same time,

4 > qr (6)

is called the tendency condition, where ¢, and gr can be
estimated by Eq. 4, respectively.

B. Positive sparsity of the main neighborhood

Instances with positive tendency are often surrounded
by negative instances, which makes them susceptible to
misclassification in an imbalanced data set. If ¢ has a positive
tendency, it is necessary to further judge the positive sparsity
of its neighborhood. Predicting the label L(t) of ¢ simply
based on whether the positive frequency is greater than the
threshold of 0.5 in a neighborhood where positive instances
are very rare is very rough and can easily generate errors in
the classification. A dynamic description method is adopted
to dynamically describe it by the double neighborhoods
scheme (given in Section III).

Definition 2. After constructing the double neighborhoods,
if the positive frequency in the main neighborhood of ¢ is
not greater than that in the auxiliary neighborhood, the main
neighborhood is a positive sparse neighborhood. At the same
time,

p P

TSR (N
is called the sparsity condition, where p and P are the
number of positive neighbors in them, respectively.

If frequencies of positive instances in the main neighbor-
hoods of two query instances are identical but that is different
in the auxiliary neighborhoods, the positive sparse degree of
the main neighborhoods is different. Later exprements proves
that the proposed method is effective.

C. Calculation of the tendency weight

More attention should be paid to the false negative error
in the positive sparse neighborhood. When ¢ has positive
tendency and its main neighborhood is a positive sparse
neighborhood, neighbors in the main neighborhood are
weighted by tendency. The weight is known as tendency
weight. Thus, the sensitivity of the algorithm to positive
instances is improved. In the NNDN algorithm, if ¢ satisfies
both the tendency condition and the sparsity condition, a

tendency weight is given to each neighbors in the main
neighborhood. It can be calculated as

G /ar
P
/%
Therefore, the decision of the NNDN algorithm is made

by

wi =1(L(x;) = c)

+ 1. ()

r

S I(L(wi) = o) - wit - wi® +
L(t) = arg max =

c

)

=

2
Z - w? + ]
=1

where w} and w? are the distance weight and the tenden-
cy weight of the ith neighbor in the main neighborhood,
respectively. The Laplace Smoothing approach is used in
the decision, so the denominator is added 2/|T'| and the
numerator is added 1/|T|.

D. The pseudo code of the NNDN algorithm

Each step of the NNDN algorithm is described in Algo-
rithm 2. All the strategies used in the algorithm have been
discussed previously. Input training set 7', the query instance
t, the confidence level ¢, of the main neighborhood and the
confidence level cr of training set. The NNDN algorithm
will output the label of the query instance ¢. Fig 3 shows the
flowchart of the NNDN algorithm.

Algorithm 2 NNDN

Input: Training set 7'; The query instance ¢; The confidence
level c,, of the main neighborhood and the confidence
level cr of training set.

Output: The label L(¢) of ¢.

: Construct the main neighborhood r(t) of t.
for each x; € r(t) do
x; is weighted by w
end for

Estimated the real positive frequency ¢, in r(¢) by Eq. 5.

Estimated the real positive frequency ¢ in T' by Eq. 5.

if ¢ < gr then

1

%

computed by Eq. 2.

A o e

> I(L(zi)=c)wi +

s
Il
-

9: else
10:  Construct the auxiliary neighborhood R(¢) of ¢.
11: if 2 < £ then

12: The tendency weights w? are computed by Egq. 8.
13:  else

14: The tendency weights w? = 1.

15:  end if

16:  L(t) is given by Eq. 9.

17: end if

—_
oo

: Return L(t).

Finally, we focus on analyzing the time complexity of
the NNDN algorithm. The complexity of NNDN depends
mainly on the construction of the two neighborhoods. The
time complexity of this process is O(|T|-log |T|). If the size
of test set is m, the final complexity of NNDN algorithm is
O(m - |T| - log |T|). It is equal to that of KNN. However,
it should be noted that some extra time need to be used to
select the appropriate K value by cross validation method
before using KNN.
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Output: the label of the
query instance

End

Fig. 3. Flowchart of the NNDN algorithm

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section verifies the classification performance of the
NNDN algorithm on 40 imbalanced data sets. All algorithms
are developed using R language. We have conducted five-fold
cross validation and the mean is recorded.

A. Algorithm settings, evaluation metrics and data sets

The NNDN algorithm is validated by comparison with
six existing algorithms, namely KRNN, PNN, over-sampling
strategy SMOTE and cost-sensitive learning strategy Meta-
Cost using KNN and J48 (the C4.5 decision tree in R
language) as the base learners. Parameters of these algo-
rithms ensure that algorithms for comparison have good
performance on most data sets.

The parameters of these algorithms are set as follows:

« For KRNN, K =1 and ¢; = ¢, = 0.9. For others in
the KNN family, K = 3. For NNDN ¢,, = ¢y = 0.9.

« J48 is set with the “-M” option (minimum one instance
is allowed for a leaf node without pruning).

« Setting for SMOTE and MetaCost imbalanced learning
strategies: SMOTE minority over-sampling of 3 times more
instances for the minority class. Misclassification cost of

MetaCost for the positive class is set to the negative-to-
positive ratio in training population.

Accuracy is the most commonly used evaluation metric.
However, in the framework of imbalanced learning, accuracy
may not be a good choice because it often has a bias
toward the majority class [36]. To measure the performance
of different algorithms, we have employed three evaluation
metrics commonly used in imbalanced data classification,
i.e. the Area Under ROC (AUC), Precision (Pre) and F-
Measure (F;) [39]. These are comprehensive metrics that
measure the overall classification performance of classifiers
in imbalanced data classification .

Receiver Operating Characteristic (ROC) curve is used
to check the trade-off between finding true positives and
avoiding false positives. AUC has been widely used to eval-
uate the performance of classifiers. It is an objective measure
which is not affected by subjective factors on account of its
independence from the decision criterion selected and prior
probabilities of class distributions and it is used to quantify
the trade-off [37], [38].

The Pre is a useful measure that evaluates the detection
performance. It can be calculated as

TP
T TP+ FP’

F1 is the harmonic mean of Precision and Recall. The F;
is calculated as

Pre (10)

Precision - Recall

F,=2. 11
! Precision + Recall’ (In
where Recall can be calculated as
TP
l=——— 12
Reca TP+ FN’ (12)

where TP, FP, TN and FN are true positives, false
positives, true negatives and false negatives, respectively.
Apparently, the greater the values of the three metrics is,
the better the performance of the algorithm.

To validate the proposed NNDN, we perform experiments
on forty commonly used imbalanced benchmark data sets.
The detailed characteristics of these data sets are summarized
in Table I. Some of them (Cleanl, German, Wine, SPE,
Yeast, Glass) can be downloaded from UCI machine learning
repository [41], and the rest can be downloaded from the
KEEL-dataset repository [40]. These publicly available data
sets vary in size, attributes and IR to guarantee the reliability
of performance measurements. Data sets range from lowly
imbalanced (with an imbalance-ratio of 1.82) to highly
imbalanced (with an imbalance-ratio of 85.88). With multi-
class data sets, one class is chosen as positive, and the others
are the negative class. Besides, the abbreviations are shown
in the second column, and they will be used in the rest of
this paper.

B. The overall performance of the NNDN algorithm

AUC values obtained from NNDN and other six compar-
ison methods on the 40 imbalanced data sets are given in
Table II. Pre values and F'; values are given in Table III and
Table IV, respectively. We have conducted five-fold cross
validation and the mean is recorded. The best values are
bolded.
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TABLE 1
CHARACTERISTICS OF IMBALANCED DATA SETS USED IN EXPERIMENTAL RESULT
Dataset(Pos,Neg) Abbr Size Min Attr IR Dataset(Pos,Neg) Abbr Size Min Attr IR
Cleanl — 476 207 166 1.30 Led7digit02456789vs1 L7891 443 37 7 10.97
Glass1 — 214 76 9 1.82 Glass2 — 214 17 9 11.59
Wisconsin Wis 683 239 9 1.86 Ecoli0146vs5 E1465 280 20 6 13.00
Pima — 768 268 8 1.87 Yeastlvs7 Y17 459 30 7 14.30
German(2,1) — 1000 300 20 233 Glass(5,other) - 214 13 9 15.46
Yeastl — 1484 429 8 2.46 Pageblocks13vs4 P134 472 28 10 15.86
Wine(3,other) — 178 48 13 2.71 Thyroid(2,other) T2 720 37 21 18.46
VehicleO Vo 846 199 18 3.25 Yeast1458vs7 Y4587 693 30 8 22.10
SPECT_F(0,1) SPE 267 55 44 3.85 Yeast2vs8 Y28 482 20 8 23.10
Yeast(MIT,other) — 1484 244 8 5.00 Yeast4 - 1484 51 8 28.10
Newthyroid2 N2 215 35 5 5.14 Winequalityred4 w4 1599 53 11 29.17
Glass6 — 214 29 9 6.38 Yeast1289vs7 Y2897 947 30 8 30.57
Paw02a-800-7-60-BI PBI 800 100 2 7.00 Yeast5 — 1484 44 8 32.73
04clover5z-800-7-50-BI CBI 800 100 2 7.00 Winequalityred8vs6 W86 656 18 11 35.44
Yeast3 — 1484 163 8 8.10 Yeast6 - 1484 35 8 41.40
Ecoli3 — 336 35 7 8.60 Winequalityred8s67 w867 855 18 11 46.50
Yeast02579vs368 Y9368 1004 99 8 9.14 Winequalitywhite39vs5 W395 1482 25 11 58.28
Ecoli0347vs56 E4756 257 25 7 9.28 Poker89vs6 P896 1485 25 10 58.40
Yeast05679vs4 Y6794 528 51 8 9.35 Poker89vs5 P895 2075 25 10 82.00
Ecoli0147vs2356 E2356 336 29 7 10.59 Poker8vs6 P86 1477 17 10 85.88
TABLE II
AUC RESULTS OBTAINED FROM NNDN AND OTHER SIX COMPARISON METHODS FOR THE 40 IMBALANCED DATA SETS, AND THE BEST RESULT IS IN
BOLD FACE
Datasets || KRNN || PNN SMOTE MetaCost NNDN | Datasets || KRNN || PNN SMOTE MetaCost NNDN
KNN 1438 KNN 148 KNN J48 KNN J48
Clean] 95.10 91.07 85.74 77.71 66.71 66.88 96.29 L7891 94.37 94.79 90.03 88.02 89.63 86.93 94.84
Glassl 86.24 84.82 80.51 71.03 70.95 65.04 87.10 Glass2 72.75 69.63 66.75 64.99 62.82 67.25 76.50
Wis 99.27 98.49 97.19 94.53 97.02 95.12 99.26 E1465 97.90 96.98 92.55 84.93 93.73 82.84 98.11
Pima 76.74 77.92 72.29 68.14 74.06 72.63 76.78 Y17 79.00 75.92 74.00 64.55 70.88 64.28 78.75
German 69.92 71.99 66.09 62.73 68.08 65.26 70.18 Glass5 96.80 93.11 93.70 85.11 84.91 74.87 97.34
Yeastl 75.70 76.45 72.45 68.40 72.89 69.66 76.11 P134 99.88 99.57 99.89 99.64 93.33 91.11 99.92
Wine 99.88 99.12 98.85 95.52 98.24 93.97 99.90 T2 65.39 61.89 59.63 98.16 58.81 95.46 65.74
Y 98.22 97.55 95.90 91.69 91.45 91.43 98.30 Y4587 73.87 66.74 66.63 55.35 65.25 59.12 73.95
SPE 73.91 74.76 74.31 63.14 69.61 66.01 76.45 Y28 88.11 83.24 82.12 76.00 79.51 63.71 87.47
Yeast 83.36 83.46 79.65 73.24 81.70 76.38 83.77 Yeast4 91.22 88.84 78.55 65.35 84.90 81.14 91.11
N2 99.63 99.27 99.09 92.94 98.37 88.55 99.63 w4 67.20 70.94 59.51 60.04 64.86 63.05 68.28
Glass6 95.85 94.65 91.60 87.83 85.59 88.84 95.99 Y2897 71.87 71.15 64.08 60.78 64.65 64.90 73.40
PBI 90.25 89.92 82.31 79.58 83.25 70.09 90.61 Yeast5 99.29 97.87 94.86 90.46 97.00 92.86 99.13
CBI 88.43 87.53 81.71 79.35 80.56 59.75 88.62 W86 82.48 78.88 67.14 63.52 76.09 63.37 84.00
Yeast3 95.96 96.17 91.51 87.33 93.43 91.82 96.26 Yeast6 93.17 90.09 86.08 75.62 88.20 86.90 92.89
ecoli3 93.12 92.98 88.28 84.31 89.29 77.20 93.56 w867 72.58 72.70 54.33 63.77 66.60 62.27 75.19
Y9368 94.30 94.39 91.79 85.8 91.49 84.75 94.36 W395 65.70 68.78 60.79 58.18 59.25 62.28 65.31
E4756 96.16 95.67 90.69 88.68 88.00 79.34 96.68 P896 98.40 94.08 96.29 72.36 88.81 61.88 98.60
Y6794 87.90 86.67 80.73 73.13 83.70 75.67 88.16 P895 73.19 68.35 55.97 55.94 65.69 58.51 75.68
E2356 94.51 95.55 90.67 85.07 89.29 76.75 94.62 P86 96.98 80.55 94.72 64.78 84.63 65.34 98.25
Average 86.86 85.31 81.22 76.44 80.33 75.08 87.43

The proposed algorithm achieves outstanding overall per-
formance compared with the other methods on most imbal-
anced data sets. If we take a closer look at the average values
of the performance, the NNDN algorithm obtains the highest
average AUC of 87.43, the highest averages Pre of 50.51
and F; of 54.93 than that of other methods. The NNDN
algorithm achieves the best AUC score (including tie for
first) in 26, achieves the best Pre score in 23 and the best
Pre score in 22 out of the 40 imbalanced data sets. And the
results are close to the best performances in the rest of cases.
Furthermore, as the IR goes on, the NNDN algorithm still
shows its advantage. The above results show that our strategy
is very effective for imbalanced data.

The performance results of each algorithm for all im-

balanced data sets are depicted in Fig 4 so that we can
more directly demonstrate the performance advantages of the
NNDN algorithm. From the results in the three figures, the
boxplots of all other algorithms are visibly lower than the
boxplot of the NNDN algorithm. Besides, if we look more
closely at these boxplots, the scale of the box representing
the NNDN algorithm is almost always the smallest in a same
figure. Based on these two aspects, it can be concluded that
our proposal is not only optimal in overall performance, but
also the most robust. One critical fact that makes the NNDN
suitable for the imbalanced dataset is that the training data
distribution is adequately learned by the NNDN algorithm.
The local instance distribution features of the query instance
is captured by the double neighborhoods scheme.
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TABLE III
PRE RESULTS OBTAINED FROM NNDN AND OTHER SIX COMPARISON METHODS FOR THE 40 IMBALANCED DATA SETS, AND THE BEST RESULT IS IN
BOLD FACE
Datasets || KRNN || PNN SMOTE MetaCost NNDN | Datasets || KRNN || PNN SMOTE MetaCost NNDN
KNN || 148 || KNN || J48 KNN || 148 || KNN || J48
Cleanl || 63.09 || 68.19 || 69.48 || 71.28 || 57.36 || 58.86 || 66.67 | L7891 4989 || 51.80 || 57.32 || 65.85 || 5476 || 32.92 || 60.52
Glass1 5869 || 67.39 || 63.98 || 5627 || 5776 || 5048 || 6341 | Glass2 1845 || 1236 || 22.85 || 30.36 || 986 || 6.66 || 2540
Wis 9587 || 9572 || 95.69 || 93.67 || 9628 || 9454 || 9637 | E1465 6291 || 49.98 || 82.67 || 5874 || 4567 || 2169 || 81.81
Pima 5263 || 5823 || 5128 || 5098 || 56.17 || 56.81 || 55.62 Y17 2368 || 1630 || 21.37 || 2455 || 1375 || 1443 || 3179
German || 4195 || 48.83 || 4201 || 44.08 || 4039 || 4221 || 4490 | Glasss || 4498 || 2266 || 5250 || 4886 || 2925 || 11.85 || 52.89
Yeast] 4522 || 5136 || 44.56 || 4809 || 4379 || 4750 || 48.14 P134 70.53 || 4075 || 94.80 || 92.56 || 41.82 || 2564 || 73.16
Wine 89.07 || 89.07 || 89.71 || 88.03 || 8824 || 7921 || 8859 T 7.69 702 || 1371 || 80.51 || 668 || 3727 || 21.05
Vo 7648 || 79.55 || 79.05 || 82.54 || 6577 || 69.71 || 7594 | v4587 1026 || 724 || 1133 || 1492 || 593 || 904 || 1547
SPE 3338 || 3426 || 3525 || 37.70 || 3152 || 3260 || 38.03 Y28 2858 || 14.50 || 4945 || 5891 || 22.80 || 3254 || 64.14
Yeast 4238 || 4544 || 4270 || 4583 || 39.08 || 41.53 || 4610 | Yeast4 || 20.10 || 1562 || 28.15 || 2563 || 1827 || 1845 || 2927
N2 9244 || 92.53 || 91.50 || 8855 || 9021 || 57.90 || 93.96 w4 7.83 814 || 962 || 969 || 682 || 753 || 1582
Glass6 || 7097 || 6955 || 80.98 || 75.14 || 6938 || s53.82 || 72.86 | Y2897 9.98 755 || 1243 || 17.63 || 649 || 890 || 27.93
PBI 3979 || 3642 || 4371 || 3775 || 3324 || 2822 || 4334 | Yeasts || 4264 || 2800 || 60.84 || 63.48 || 3464 || 2549 || 4878
CBI 39.13 || 36.68 || 4042 || 3509 || 2079 || 2897 || 41.00 W86 939 662 || 1213 || 1338 || 668 || 976 || 2776
Yeast3 5046 || 57.92 || 6239 || 66.02 || 4831 || 53.94 || 6563 | Yeast6 || 2058 || 1556 || 31.66 || 29.88 || 1990 || 1721 || 31.68
Ecoli3 4778 || 4327 || 4921 || 5143 || 4080 || 26.00 || s51.86 | Wws67 432 385 || 552 || 856 || 403 || 216 || 1255
Y9368 || 61.82 || 58.88 || 60.06 || 6655 || 41.76 || 44.07 || 68.64 | w395 1226 || 561 || 1273 || 1243 || 551 || 564 || 1548
E4756 6837 || 5581 || 63.95 || 57.47 || 4236 || 2833 || 70.90 P896 2087 || 547 || 8817 || 2105 || 2122 || 815 || 70.84
Y6794 || 4014 || 3126 || 3802 || 3607 || 27.80 || 25.87 || 44.65 P85 443 202 || 560 || 648 || 274 || 376 || 1672
E2356 64.03 || 5619 || 5971 || 62.51 || 33.66 || 23.08 || 64.24 P86 1713 || 1.83 || 7820 || 3098 || 17.07 || 471 56.48
Average || 4195 || 3749 || 4887 || 47.74 || 35.19 || 31.19 || 50.51

TABLE IV
F1 RESULTS OBTAINED FROM NNDN AND OTHER SIX COMPARISON METHODS FOR THE 40 IMBALANCED DATA SETS, AND THE BEST RESULT IS IN
BOLD FACE
Datasets || KRNN || PNN SMOTE MetaCost NNDN | Datasets | KRNN || PNN SMOTE MetaCost NNDN
KNN || 748 || KNN || 148 KNN || 748 || KNN || 148
Cleanl || 7726 || 80.05 || 78.02 || 77.10 || 6629 || 6452 || 7933 | 17891 || 61.95 || 6238 || 68.71 || 7056 || 54.18 || 47.14 || 64.19
Glassl || 6765 || 6773 || 68.28 || 6384 || 6024 || 5608 || 7082 | glass2 || 29.08 || 2088 || 23.15 || 27.00 || 1631 || 1380 || 27.54
Wis 9636 || 9545 || 9558 || 9435 || 9370 || 9452 || 9693 | Eid65 || 73.14 || 61.08 || 8348 || 6266 || 6043 || 3422 | 78.64
Pima 6277 || 6170 || 6034 | 6178 || 6243 || 6330 || 6378 | Y17 3119 || 2273 || 3164 || 2678 || 2100 || 19.00 || 3491
German || 5273 || 52.86 || 50.87 || 50.15 || 51.62 || 5340 || 5389 | Glasss || 5656 || 3526 | 6361 || 5930 || 3125 || 2163 || 61.52
Yeastt || 5601 || 5488 || 5583 || 5530 || 5657 || s6.64 || 5685 | pi34 8122 || 5637 || 90.63 || 9395 || 4360 || 4210 || 83.13
Wine 0437 || 0475 || 9442 || 9339 || 9320 | 8805 || 9s.04 ™ 1279 || 1186 || 12,14 || 9008 || 1116 || 5411 || 14.15
VO 85.97 || 86.07 || 8447 || 8524 || 7370 || 8070 || 8473 | vassz || 17.87 || 1357 || 17.45 || 1224 || 1268 || 1234 || 20.09
SPE 4768 || 48.10 || 4725 || 4241 || 4186 || 4336 || s0.88 | v28 3979 || 2501 | 5505 || 5034 || 1801 || 926 || s6.81
Yeast 5269 || 5403 || 5267 || 5274 || 5242 || 5126 || 5528 | Yeass || 2085 || 2594 || 3243 || 3178 || 2222 || 2822 || 3524
N2 9463 || 9453 || 93.00 | 8655 || 8832 || 6490 || 9s.10 Wi 1215 || 1392 || 13.03 || 12267 || 1032 || 1285 || 15.16
Glass6 || 74.81 || 72.95 || 8141 || 7849 || 5880 || 6625 || 7277 | Y2897 || 1575 || 1332 || 1871 || 2031 || 804 || 1226 || 1895
PBI 5104 || 5120 || 5066 | 48.06 || 4434 || 37.10 || 530 | Yeasts 589 || 4335 || 6520 || 70.07 || 43.55 || 3094 || 6335
CBI 4995 || 5007 || 5033 || 4558 || 41.16 || 2860 || 5118 | wse 1513 || 12,14 || 1532 || 1864 || 11.63 || 1223 || 27.39
Yeas3 || 69.96 || 7022 || 7237 || 73.91 || 6803 || 6661 || 7223 | Yeasts | 3224 || 2602 || 4727 || 4275 || 2054 || 27.15 || 40.11
Eeoli3 || 50.16 || 5929 || 56.53 || 5844 || 5253 || 37.17 || 6468 | wse7 714 || 728 || 816 || 1146 || 631 || 633 || 1232
vo3es || 7225 || 7011 || 7462 || 7383 || 6609 || 5556 || 7479 | w3os || 1699 || 935 | 1492 || 1505 || 678 || 936 || 1227
E4756 || 7165 || 67.63 || 72.03 || 6843 || 5008 || 37.15 || 7403 | Psos 4393 || 1034 || 81.26 || 3620 || 1556 || 793 || 7642
Y6794 || 5134 || 4520 || 4561 || 4178 || 4045 || 3647 || ss61 | Psos 734 || 393 || 350 || 777 || 404 || 344 || 515
E2356 || 6806 || 66.00 || 70.50 || 6500 || 50.47 || 3422 || es.72 P86 2734 || 354 | 7687 || 2044 || 986 || 777 || s59.96
Average || 50.67 || 45.53 || 5444 || 5266 || 4100 || 3843 | 54.93

. . TABLE V
In spite of our method has the overall good performance in AVERAGE RANKINGS OF THE ALGORITHMS FOR AUC METRIC
direct comparison with the rest, the result must be statistically OBTAINED BY APPLYING THE FRIEDMAN TEST
validated. We conduct a non-parametric Friedman’s test
Lo . . Method A k
which is a favorable statistical test for comparing more than o verage ran
. . , NNDN 14125
two algorithms over multiple data sets and Holm’s post- KRNN 52125
hoc procedure. AUC, Pre and F1 are selected as evaluation PNN 27250
criteria, respectively. SMOTE-KNN 4.6250
. . . MetaCost-KNN 4.9250
The first step in the Friedman’s test is to calculate average o
. . . . MetaCost-J48 6.0250
rankings of the algorithms in terms of the three metrics. SMOTE-J48 6.0750

We report the average rank of each comparing algorithms
on forty data sets in Table V, Table VI and Table VII,
respectively. A ranking of 1 is the best.
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Fig. 4. Boxplots of the overall performance of all methods

It can be seen that NNDN is ranked better than that of
other algorithms in terms of each metric. We could highlight
the robustness of NNDN with respect to the other approaches
since there is a clear difference for the average rankings.

TABLE VI
AVERAGE RANKINGS OF THE ALGORITHMS FOR PRE METRIC OBTAINED
BY APPLYING THE FRIEDMAN TEST

Method Average rank
NNDN 1.8875
SMOTE-KNN 2.7375
SMOTE-J48 2.9000
KRNN 4.0125
PNN 4.7250
MetaCost-KNN 5.8500
MetaCost-J48 5.8875

TABLE VII

AVERAGE RANKINGS OF THE ALGORITHMS FOR F1 METRIC OBTAINED
BY APPLYING THE FRIEDMAN TEST

Method Average rank
NNDN 1.8000
SMOTE-KNN 2.9750
KRNN 3.4250
SMOTE-J48 3.6000
PNN 4.2500
MetaCost-KNN 5.9750
MetaCost-J48 5.9750

TABLE VIII

HOLM’S TEST RESULTS FOR ALL ALGORITHMS ON THE AUC METRICS

Method z p Holm’s adjusted alph
KRNN 1.52e-09 0.0083 Rejected
PNN 1.52e-09 0.0100 Rejected
SMOTE-KNN 7.50e-09 0.0125 Rejected
SMOTE-J48 7.50e-09 0.0167 Rejected
MetaCost-KNN 7.88e-05 0.0250 Rejected
MetaCost-J48 7.88e-05 0.0500 Rejected

TABLE IX

HOLM’S TEST RESULTS FOR ALL ALGORITHMS ON THE PRE METRICS

Method z P Holm’s adjusted alph
KRNN 4.24e-09 0.0083 Rejected
PNN 9.87e-09 0.0100 Rejected
SMOTE-KNN 8.35e-08 0.0125 Rejected
SMOTE-J48 7.40e-05 0.0167 Rejected
MetaCost-KNN 2.64e-03 0.0250 Rejected
MetaCost-J48 1.37e-02 0.0500 Rejected

Then we verify that the average ranks are significantly
different in all data sets. Friedman’s statistics are calculated
as 181.52, 130.69 and 122.10, respectively, and have a chi-
square distribution with 6 degrees of freedom after applying
the Friedman’s test. The p-value of the test on each metric
is less than 2.2e-16, indicating that the null hypothesis of
equal performance should be rejected with an a=0.05.

According to the statistical studies shown in Table VIII,
Table IX and Table X, the null hypothesis of equality is
rejected. It indicates that the proposed NNDN approach
statistically outperforms all the algorithms of comparison. It
is a competitive technique to solve imbalanced classification
in a general scenario. We must also stress that the p-values
associated with the comparisons support our conclusions
with a high degree of confidence. So we can state that our
approach is obviously better than its competitors from the
view of statistical point.
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neighborhood, and the vertical axis represents the corresponding AUC value.

TABLE X
HOLM’S TEST RESULTS FOR ALL ALGORITHMS ON THE F1 METRICS

Method z P Holm’s adjusted alph
KRNN 1.52e-09 0.0083 Rejected
PNN 9.37e-09 0.0100 Rejected
SMOTE-KNN 3.05e-07 0.0125 Rejected
SMOTE-J48 6.30e-06 0.0167 Rejected
MetaCost-KNN 8.85e-03 0.0250 Rejected
MetaCost-J48 1.14e-02 0.0500 Rejected

C. The properties and parameters of NNDN

We analyze the properties and parameters of NNDN in
this section. The influence of the rules for constructing
the auxiliary neighborhood on classification performance of
NNDN will be demonstrated. We will explain the reasons
for not taking other positions of the auxiliary neighborhood
from the view of experimental point. Subsequently, the size
of the main neighborhood and the auxiliary neighborhood
generated by CDN is given.

As shown in Fig 5, 15 data sets with different IR are
selected from Table I for the experiment. The horizontal axis
represents the boundary position of the auxiliary neighbor-
hood. (For example, “3” indicates that the third “positive-
negative” dividing line is served as the boundary.) The
vertical axis represents the corresponding AUC value of
NNDN. Some curves like Y28, P134 and E4756 are incom-

AUC results with settings of the boundary of the auxiliary neighborhood. the horizontal axis represents the boundary position of the auxiliary

plete, due to the fact that the location of boundary for the
auxiliary neighborhood cannot be further. It is obvious that
the performance of NNDN is not sensitive to the boundary.
Even when further boundary is taken, the negative effects
will follow. For example, AUC value of Y28 and W86 all
have been negatively affected. Therefore, the second location
is chosen as the boundary of the auxiliary neighborhood.

TABLE XI
THE PROPORTION OF INSTANCES THAT THE SIZE OF THE MAIN
NEIGHBORHOOD IS LESS THAN OR EQUAL TO 9 AND THAT THE
AUXILIARY NEIGHBORHOOD IS EXTENDED BY ITS MAIN NEIGHBOR

Datasets The proportion 1 (%) The proportion 2 (%)
German 84.50 84.90
Yeast 49.12 66.51
Glass6 11.21 29.44
PBI 38.38 51.00
Ecoli3 26.79 32.14
Y9368 21.31 43.13
E4756 24.12 35.41
L7891 19.19 32.96
P134 9.96 27.97
Y28 12.86 62.24
Yeast4 15.50 45.75
Y17 20.91 77.61
W86 16.01 50.46
T2 35.00 88.61
Yeast6 10.38 39.35
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Classification performance of the NNDN algorithm on imbalanced data sets with different noise rates. the horizontal axis represents the noise

rate of each training set, and the vertical axis represents the corresponding AUC value of it.

The proportion of instances whose main neighborhood’s
size is less than or equal to 9 is counted (abbreviated
as the proportion 1). Then the proportion are counted for
all instances whose auxiliary neighborhood is extended by
its main neighborhood (abbreviated as the proportion 2).
Detailed contents are shown in the Table XI.

As shown in Table XI, the proportion 1 and the proportion
2 are described in the last two columns, respectively. For a
lowly imbalanced data set, such as German, 84.50% of all
main neighborhoods with a size is less than or equal to 9, and
84.90% of all auxiliary neighborhoods extended by its main
neighbor. This computational complexity is very small due
to the low IR. For a moderately imbalanced data set, both
of proportions are relatively small. A data set with a high
IR requires more computational costs. For example, IR of
Yeast6 is 41.10, and 10.38% of all main neighborhoods with
a size less than or equal to 9. However, 39.35% of auxiliary
neighborhoods are expanded from the main neighborhood.

D. The robustness of the NNDN algorithm on noise data
sets

Experiments on robustness of the NNDN algorithm in
imbalanced data sets with varying noise ratios are conducted
in this section. Due to space constraints, only eight data
sets with different IR are selected from Table I for the
experiment. when each data set is classified, 0.5% to 5%

of the labels in the training set are artificially changed to
error labels.

As shown in Fig 6, the horizontal axis represents the noise
rate of each training set, and the vertical axis represents the
corresponding AUC value of the NNDN algorithm. On data
sets P896, PBI and T2, as the noise rates increase, the perfor-
mance of the NNDN algorithm is slightly reduced. However,
most data sets correspond to smooth lines. It is shown that
the NNDN algorithm is robust to most data sets with the
increase of noise data. In summary, the proposed algorithm
has a good robustness when classifying on imbalanced data
sets with low noise rates.

VI. CONCLUSION AND FUTURE WORK

False negative errors caused by positive sparsity often
occur in imbalanced data classification. In the NNDN al-
gorithm, more attention is paid to it. We put forward the
idea of the double neighborhoods, which is more convenient
to describe the distribution of positive neighbor of the query
instance. Instances closer to the query instance are usually
more reliable to its classification, so the neighbors in the
main neighborhood are weighted by distance first. After de-
termining positive tendency by the positive frequencies of the
main neighborhood and training set, we decide whether the
sparsity of the main neighborhood needs to be further judged
by constructing the auxiliary neighborhood. The neighbors
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in the main neighborhood that satisfies two conditions are
given a weight by tendency. Experiments on 40 benchmark
data sets showed that NNDN is significantly better than the
resampling and cost-sensitive strategies for imbalanced data.
It is also superior to the most advanced algorithms in the
KNN family for dealing with imbalanced data. At the same
time, the proposed algorithm has a good robustness when
classifying on imbalanced data sets with low noise rates.

We intend to extend the NNDN algorithm to multi-class
data imbalance in the future. We are also working on more
efficient estimation methods of the positive frequency of the
neighborhood.
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