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The Fractional Relationship between Viscosity and
Surface Tension on Lubricating Oils

Endang Rusyaman, Kankan Parmikanti, Diah Chaerani and Sudradjat Supian

Abstract—Viscosity is a measure which represents the mag-
nitude of a moving fluid. Meanwhile, the surface tension of
a fluid is the stretched elastic tendency of the fluid due to
the attraction force between the molecules. Previous studies
are interested in the fluid mechanics problem presenting the
relationship between the viscosity and surface tension in both
linear and exponential models. The aim of this study is to
present the the discourse about the fractional relationship in
the form of fractional differential equation model based on
the empirical data of the measurement of surface tension
and viscosity of lubricating oil in the laboratory. To find
solution of fractional differential equation, Laplace transform
and Mittag-Lefler function are used. The output of this research
is a proposed fractional model and some graphs showing the
relationship between them.

Index Terms—viscosity, surface-tension, fluid, relationship,
fractional.

I. INTRODUCTION

ISCOSITY is a measure of fluid that states the mag-

nitude of friction between molecules in a fluid. The
viscous the fluid the greater the friction in the fluid, so the
more difficult the liquid to flow and an object increasingly
difficult to move in viscous fluid. In the liquid, viscosity
occurs is due to the force of cohesion while in the gas is
the result of collisions between molecules. The measure of
the viscosity of a fluid is called the viscosity coefficient with
notation 7 and the unit is Nsm or Pascal seconds. If an
object moves with velocity v in a fluid with a coefficient
of viscosity 7, it means that the object will experience a
frictional force equal to

Ffrc = knv

where k is a constant that depends on the geometric shape
of the object. For a spherical object, k = 67r so that the
frictional force becomes

Fype = 6mrno.

On the other hand, the surface tension of a fluid is a
fluid tendency to stretch, so that the surface is covered by a
membrane caused by cohesion. Surface tension is the force
on the surface of each unit of length. For a fluid with one
surface,
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where ~ is the surface tension with the unit N/m, F is the
force with the unit N, and d is the surface length with the
unit m.

Previous study proposes that there is no relationship be-
tween viscosity and the surface tension because surface ten-
sion is about steady state while viscosity is about movement
[1]. However, based on the empirical data, other studies agree
that there is a relationship between both of them. Starting
from Pelofsky [2] which provides an empirical relationship
between the natural logarithm of surface tension and the
inverse of viscosity in a large variety of liquids with the

formula of
B
v = Aexp (—)
n

where A and B are constants. According to the study, the
model is applicable in both organic and inorganic solutions
of pure and mixed components. The Pelofsky formula is then
challenged by Schonhorn [3] which argues that it can only
be applied in a limited temperature range and will fail at the
critical temperature as viscosity is finite while the surface
tension is zero. He extends the formula by introducing the
concept of vapour viscosity 7, and liquid viscosity 7; into
the following equation:

B
v = Aexp <—) .
M =M

The equation appears to be valid for a variety of liquids
over the entire range of temperature including critical tem-
perature to the temperature at which the viscosity becomes
infinite.

Schonhorn equation, however, is not successful in correlat-
ing the temperature where 17 — oo gand surface tension at the
melting point. Thus, empirical equation has been developed
by Ahmari and Amiri [4]:

A Te—-T (1 B )

Tc—Tm n
where A and B are constant while 7T'c and T'm are critical
and melting temperatures respectively. The result of their
study indicates that correlation between surface tension and
viscosity can be valid in the absence of any surface active
agent and capillarity.

Furthermore, A.J. Queimada et al, generalized relation be-
tween surface tension and viscosity by doing a study on pure
and mixed n-alkanes [5], [6], whereas for saturated normal
fluids, a correlation containing four adjustable coefficients
for every fluid were obtained by fitting 200 data points. The
search for the model of the relationship between viscosity
and surface tension are then continued by several studies
[71, [8], [9], [10]. Among them, there are Zheng, Tian and
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Mulero [11] who propose the following equation

Inn=A+ e
Some studies even correlate it with the density level [12].

With regard to the problem of fractional calculus, Mah-
mood et al [13] uses fractional derivative model to find exact
analytic solutions for the unsteady flow of a non-Newtonian
fluid between two cylinders. The problem on fractional
differential equation, as well as fractional viscoelastic fluids
were also studied previously [14], [15]. More specifically,
there is a Viscoelastic Fluids study that used only fractional
derivatives, without differential equations [16], [17], [18],
[19], while Hayat et al and Khan et al discussed peri-
odic unidirectional flow of viscoelastic fluids and potential
vortex with the fractional Maxwell model [20], [21]. The
next development conducted by Podlubny et al [22] uses a
Partial Fractional Differential Equation as a method to model
the relationship between viscosity and tension surface and
continued by Yoon et al [23] which applied the equation in
a case of viscoelasticity.

II. BASIC THEORY

In this section, we present some basic theories that support
the subject matter, such as fractional derivatives, fractional
differential equations, and Mittag-Lefler functions.

A. Fractional Derivative

Fractional derivative is derivative of a function with frac-
tional numbers order. At least, there are three prominent def-
inition regarding this concept, namely Grunwald-Letnikov,
Riemann-Liouville, and Caputo. Two of them are presented
below. First, the definition of Fractional derivatives based on
Grunwald-Letnikov.

Definition 1 Fractional derivatives of f(x) with a-order
at interval [a, b] are

where n = |22 .

On the other hand, based on Riemann-Liouville, definition
of fractional derivative is as follows.

Definition 2 Fractional derivative of f(z) with order «
around = = a is

withn—1l<=a<=norn—1=|al.
From several definitions presented, it can be obtained that
fractional derivative of f(x) = P with order « is

T(p+1)
DfaP = —————/
U T Tp-atl)

oD f () =

xP~e. (1)
B. Fractional Differential Equation

Fractional differential equation is differential equation
with fractional order «; € @. General form of fractional
differential equation is

aly(al) + a2y(042) + ...+ any(an) — f(t)

where a; are real constans, «; fractional numbers for every ¢,
and y = y(t) as a solution function. More specifically, at the
last section of this paper, it will be shown that the problem
of the relationship between surface tension and viscosity can
be expressed in form

’y(a) +ay = belkn

where 7 represents surface tension and 7 represents viscosity.

C. Mittag-Leffler Function

The Mittag-Leffler function is a function that has an
important role in fractional calculus, which can be used to
find solutions of the fractional differential equations resulting
from Laplace transforms. This function has two parameters,
and is very flexible, so it can be transformed into an
exponent function, trigonometric function, or other functions
depending on the parameter values.

Definition 3 The Mittag-Leffler function with two param-
eters o and 3 is defined as follows [22]

0 k

Eup(z) = kZ:O m (@>0,8>0).

2)

Another form of Mittag-Leffler function is e (¢, A; , ).
This function is used to solve fractional differential equations
which is a particular case of the Mittag-Leffler function. The
function is defined as

en(t, o, B) = 5P (09) K =0,1,2,..  (3)
with E((j% (z) is k-order derivatives of Mittag-Leffler function
in (2) where

(B) () _ S (i+k)lZ _
Ea,ﬁ(z) - 1;) m, k= 07 1, 2,

Laplace transformation of Mittag-Leffler function is [22]

klse—B

Ller(t, X0, 8)] = (5* F R

“)

III. MAIN RESULT

For the needs of this research, the samples of 25 types
of lubricants from various brands and various types had
been taken, then their viscosity and surface tension in the
laboratory were measured. The results are presented in the
Table I.

As a preliminary, from this data we then obtained some of
the following regression models presented in Table II, where
~ represents surface tension and 7 represents viscosity.

According to those regression results, two model predic-
tions are taken which are fractional models. The first one is a
fractional derivative model, and the other one is a fractional
differential equation model.

A. Fractional Derivatives Model
From the power regression presented in Table II, it can be
predicted fractional derivative model as follows:

vy=aD% +b (5)

where ~y is the surface tension, 7 is the viscosity, « is the
fractional order, and a, b are the real constants.
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VISCOSITY AND SURFACE-TENSION ON ROOM TEMPERATURE 20°C'

TABLE I

No Brand Type Viscosity Surface-tension
1 Brand-1 SAE 40 296 19.22
2 Brand-1 SAE 90 406 19.00
3 Brand-1 B 40 342 19.25
4 Brand-1 40 260 18.98
5 Brand-1 20W-50 339 19.12
6 Brand-2 10W-40 193 18.68
7 Brand-2 15W-40 257 18.94
8 Brand-2 20W-50 367 19.13
9 Brand-3 0W-20 50 18.14
10 Brand-3 15W-50 277 18.68
11 Brand-3 10W-40 189 18.58
12 Brand-4 20W-40 363 19.03
13 Brand-4 15W-40 246 18.68
14 Brand-5 15W-40 225 18.77
15 Brand-5 10W-40 184 18.80
16 Brand-5 20W-50 336 19.29
17 Brand-6 40 350 19.25
18 Brand-6 15W-40 230 19.01
19 Brand-7 10W-40 183 18.74
20 Brand-7 15W-40 207 18.95
21 Brand-8 15W-40 234 18.88
22 Brand-8 40 361 19.19
23 Brand-8 15W-40 229 18.97
24 Brand-9 15W-40 205 18.58
25 Brand-10 || 20W-50 269 18.74

TABLE II

REGRESSION MODEL OF RELATION OF VISCOSITY AND

SURFACE-TENSION

No || Type Regression Model R-square
1 Linear ~v = 0.00271+18.182 0.6745
2 Power ~ = 16.128 00288 0.6986
3 Exponential v = 18.189 exp 0.0001n 0.6753
4 Logaritmic v =0.5393 In n + 15.932 0.6928

Fig. 1.
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Graphs of Fractional Derivative Model

Based on the scatter plot of data in Table I, Table II, and
the graphs in Figure 1, the fractional derivative model is
obtained

v = 16.223D% 975y, (6)

where D975 means that “fractional derivative of 1 with
order 0.975”.
Finally, using equation (1), we get the solution

v = 16.451°:0%,

with green graph in Figure 1. Figure 1 also shows graphs
with various numbers of «.

Selection of green graph in Figure 1 as the best fractional
derivative model is also supported by the value of Mean
Square Error (MSE) which is smaller than the other models
as shown in Table III.

B. Fractional Differential Equation (FDE) Model

Based on exponential regression in Table II, the fractional
differential equation model can be predicted as follows:

A 4 ary = betn (7)

with 0 < a < 1 and initial conditions v(0) = 0.

Solution of this FDE are as follows.

Using the Laplace transforms on both sides and the
linearity properties of this transformation, from equation (7)
is obtained

b
“F F =
s"F(s) + aF(s) = —.
so that
bk oo bk:l
F === = 87 .
() s+ a Z s +a

n=0

Furthermore, by using Laplace inverse to F(s), we ob-
tained the function of solution in the form of Mittag-Lefler
function as follows:

oo O!Saf(a+n+l)
_ —1 n
’7(77) - E bL ( (SO‘ T a)0+1 k )

n=0

By using equation (4) obtained

v(n) = Z bk"eo(n, —a; a, (e + m 4 1)).
n=0

Thus based on (3), the solution of the fractional differential
equation (7) in the form of the Mittag-Lefler function is

’7(77) = Zbknna+nEa,a+n+l(_ana)

n=0
or can be written in form

_ — n, at+n (_ana)i
7(”)_;;% T faitasnsn

Based on the scatter plot of data in Table I, can be shown
some possible solutions as seen in Figure 2.

Thus, based on the result of observation of solution func-
tion in Figure 2 and matching with Table I, the most optimum
model is the blue graph with the fractional differential
equation model:

7(0‘) +ay= bekn
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Fig. 2. Graphs of fractional differential equation model

where a = 1, b = 19.485, k£ = 0.00015, and o = 0.3, or
explicitly, can be expressed as

7(0.3) 4y = 19.485¢%-000157,

Selection of blue graph in Figure 2 as the best fractional
differential equation model is also supported by the value of
Mean Square Error (MSE) which is smaller than the other
models as shown in Table III.

TABLE III
MSE COMPARISON FOR DIFFERENT MODELS

No Graph in MSE

1 Fig. 1 Red Graph 0.056258
2 Fig. 1 Green Graph 0.022719
3 Fig. 1 Yellow Graph || 0.038015
4 Fig. 2 Green Graph 0.033479

5 Fig. 2 Blue Graph 0.023443

6 Fig. 2 Purple Graph 0.034969

IV. CONCLUSION

Based on the research that has been conducted using the
measurement of surface tension and viscosity of various
brand of lubricating oils marketed, we found that there is an
empirical relationship between surface tension and viscocity.
This relationship can be expressed in the regression model
or fractional relationship, i.e., the fractional derivative model
and the fractional differential equation model. Regardless of
the size of the MSE value, the existence of the solution of
the fractional differential equation model is assured.
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