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Abstract—The Benjamin-Ono (BO) equation is a nonlinear
partial integro-differential equation that describes internal
waves in deep stratified fluids. Here we present a numerical
study of the blow-up phenomenon for the BO-generalized
KP version with different types of nonlinearities. A dynamic
rescaling is used to identify the type of the singularity and
explore the investigation of observed blow-ups. For the numer-
ical experimentations, an exponential time-differencing fourth-
order Runge-Kutta method combined with a space-scheme
based on the Fourier spectral method is used.

Index Terms—Benjamin-Ono equation; Spectral Methods.

I. INTRODUCTION

Water waves are dispersive, i.e. have longer wavelengths
and travel faster. Dispersion can arise from the constraints or
bound nature, of the particle component in a given medium.
For example, the following equations are models for water
waves in interesting physical settings:

1- The nonlinear Shrödinger flow is the universal model
for dispersive waves in 1-d with nondegenerate dispersion,
valid in a small frequency window and at small amplitudes.

2- The Korteweg-de Vries (1895) flow describes the evo-
lution of unidirectional waves of small amplitude and long
wavelength in shallow water, for more details see [13].

3- The Benjamin-Ono flow was introduced by Benjamin
(1967) and Ono (1975), as a model for the propagation of
one dimensional internal waves in deep water, i.e. wave
propagation at the interface of layers of fluids with different
densities. More recently, it was derived as a model for small
amplitude and long wavelength in constant vorticity flows.

These partial differential equations (PDEs) have common
features, such as they are completely integrable, globally
well-posed with an infinity conservation laws and admit
soliton solutions.

This paper is organized as follows. The next section
is devoted to a study of some known linear dispersive
equations, followed by two sections on the KP-BO
equations and their dynamic rescaling. In Section 5, we set
the numerical discretisations, revealing first the L2 critical
case, then the blow-up cases, followed by an extention to the
supercritical case. Finally numerical results with comments
and concluding remarks are presented.
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II. SOME LINEAR DISPERVIVE EQUATIONS

Let us consider the following dispersive wave equations

utt = uxx−u(KG), ut = uxxx(KDV ), ut = H(uxxx)(BO),

ut = iuxx(S), ut − ux = uxxt(RLW ). (*)

These PDEs are respectively known as the Klein-Gordon
(KG), Korteweg-de Vries (KDV), Benjamin-Ono (BO),
Shrödinger (S) and the regularised long wave (RLW) equa-
tions, where for the case of (BO), H is the Hilbert transform
on the real line. If we write u(x, t) = exp(i(kx−wt)), their
corresponding dispersion relations are respectively given by

w2 = k2+1, w = k3, w = sign(k)k2, w = k2, w = k/(1+k2)

and they enable one to solve these PDEs, analytically involv-
ing Fourier integrals, and numerically by computing them
with the discrete fast Fourier transform FFT. Note that these
dispersion relations, and particularly dw

dk give a complete
description of the evolution of each wave equation.

A. Fourier Spectral Approach

For the numerical Fourier spectral-based approximations,
one proceeds as follows: a given initial condition is converted
to Fourier space via the FFT to give the coefficients a(k, 0).
Then the solution is advanced in Fourier space with respect to
the time variable t to get a(k, t) = a(k, 0) exp(−iw(k)t. An
inverse FFT brings us back to u(x, t). The errors incurred
here are those in approximating the Fourier integrals with
the FFT. These errors can be rendered small by taking many
points in the FFT and choosing a sufficiently large space
interval so that the waves do not touch the boundaries,
particularly for a problem with a strong dispersion.
Here we plot the solution of the five PDEs (*) with the same
initial condition, on the same space interval. The solutions
are plotted at different times t, for example for a PDE with
a strong dispersion, such as the (KDV), we could go only
to about t = 1 before the waves reached the edge of the
computational domain; while for weak dispersion cases such
as the (KG) and (RLW), we could go up to t = 10 or t = 20
for u(x, 0) = cos(x), x ∈ [−20, 20]; and to t = 20 or t = 25
for u(x, 0) = sech(x), x ∈ [−40, 40] (see Fig. 1.).
Inspired by these results, we are interested to study the
dispersive decay of long time solutions for small localized
data and explore the blow-up phenomenon of the generalized
BO-equation with different types of nonlinearities.

III. GENERALISED BENJAMIN-ONO EQUATION

Recently, the study of the generalization of the BO equa-
tion for weak transverse perturbations has become more
meaningful for researchers in many fields. To our Knowl-
edge, there is no class of (1 + 2)-dimensional BO equations

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_24

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



Fig. 1. Numerical wave evolution of equations (*):
Top for u(x, 0) = sech(x), and bottom for u(x, 0) = cos(x).

known to be integrable. However, there are some interesting
results concerning a larger class of these equations, see [4],
[11] and [16] for a more recent review.
The KP-BO equations describe the motion of long, weakly
nonlinear internal waves in a deep stratified fluid with
weak transverse effects (see [5] for more details). By using
different techniques, these equations have been studied by
several authors, for example:

• In [3], the authors have developed a proof for the
solution’s local well-posedness by the use of a method
due to Kato [7], and investigated its blows-up in finite
time, for suitable conditions as in [15].

• Esfahani has claimed in [2] the existence of solitary
waves, by a suitable application of the anisotropic
Sobolev embedding theorem.

• More recently, by the use of the so-called minimax
theory techniques and the Lizorkin’s theorem. The
existence, regularity and analyticity properties of their
solitary waves, were established in [16] .

• For the case when p = 1, some interesting results were
shown, such as analytical stability issues for (1) can
be found in [5], the existence of global solutions and
scattering was proved for small, smooth and localized
initial data (see [4]) and the local Cauchy problem of
the gKP-BO was studied in [11].

In the following we focus on a class of the generalized two
dimensional BO equations (GKP-BO) written as:

(ut −Huxx + upux)x = λuyy, λ = ±1, (1)

or in the integrated form as

ut −Huxx + upux = λ∂−1x uyy, λ = ±1, (2)

with p = n1

n2
, n1, n2 ∈ N∗ and λ = 1 in the case of (GKPI-

BO) or λ = −1 for (GKPII-BO). The operator H is the
Hilbert transform operator defined by

Hu(x, y, t) =
1

π
P.V.

∫
R

u(z, y, t)

z − x
dz. (3)

P.V. stands for the principal value.
Here ∂−1x is defined via the Fourier transform by

∂̂−1x f(kx, ky) =
1

ikx
f̂(kx, ky). (4)

Equations (2) satisfy some conservation quantities such as
the mass, given by the L2 norm of u as

M [u] = ‖u‖2, (5)

and the energy by

E[u] =
∫
R2 [− 1

2uxHu−
1

(p+1)(p+2)u
p+2+

λ

2
(∂−1x uy)] dxdy. (6)

In addition they have localized travelling wave solutions in
the x-direction of the form u(x; y; t) = Q(x− ct; y), where
the nontrivial Q(z; y) satisfies

−cQzz +
1

n+ 1
Qp+1
zz −HQzzz − λQyy = 0. (7)

Due to the antiderivative term ∂−1x uyy in (2), ∀t > 0 the
solutions satisfy the constraint∫

R

uyydx = 0. (8)

Furthermore a singularity at the x frequency kx = 0 delimits
the achievable precision in the solutions of the GKP-BO
equations. It was proved that the solutions to a Cauchy
problem will not be smooth in time for t = 0 if they do
not satisfy the constraint (8). Numerically it was reported
in [10] that the solutions develop an infnite trench. This non-
regularity represented numerically when t → 0, presents a
problem as it delimits the manageable accuracy. To avoid
such problems, we consider initial data that are x-derivatives
of rapidly decreasing functions satisfying (8). In this paper,
we consider the following initial data

u0(x, y) = β exp (−(x2 + y2)), β is a constant. (9)

IV. DYNAMIC RESCALING

Equation (2) is symmetric under the following rescaling

ξ =
x− xm
L

, η =
y − ym
L

3
2

,
dτ

dt
=

1

L2
, U = L

1
pu.

(10)
with a dynamic rescaling L = L(t). Hence we write (2) as
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Uτ − a
(

1
pU + ξUξ + 3

2ηUη

)
− vξUξ − vηUη + UpUξ−

HUξξ = λ

∫ ξ

−∞
Uηηdz, (11)

with
a =

Lτ
L
, vξ =

xm,τ
L

and vη =
ym,τ
L

, (12)

where xm, ym are the locations of the minimum or the
maximum and the index τ denotes the τ -derivative.
Equation (11) can describe an asymptotic blow-up. It is
expected that when τ → ∞, the functions U, vη, vξ and a
become independent of τ (can be denoted by an upperscript
∞), so that (11) becomes

U∞τ − a∞
(

1
pU
∞ + ξUξ

∞ + 3
2ηUη

∞
)
− v∞ξ U∞ξ −

v∞η U
∞
η + (U∞)pUξ

∞ −HU∞ξξ = λ

∫ ξ

−∞
U∞ηηdz. (13)

In this case, there are two different scenarios, either an
algebraic or an exponential decay of the scaling factor L(τ).

In the algebraic case, we have L(τ) = C1τ
γ1 with a

constant C1. Thus γ1 < − 1
2 and a∞ = 0 give

L(t) ∝ (t∗ − t)
1

2+ 1
γ1 , (14)

where t∗ is the blow-up time. Then for v∞η = 0, (13)
reduces to an equation for the travelling wave solutions of
the GKP-BO type, in a moving frame which has a unique
nontrivial localized solution (7). Note that the constraint (8)
is automatically satisfied for inivial data with a symmetry
with respect to y or −y. Since the GKP-BO equation is
invariant under (10), we have v∞η = 0 .

For an exponential decay, we have L(τ) = C2 exp a∞

with C2 = const and a∞ < 0, such that (11) implies

L(t) ∝ (t∗ − t) 1
2 (15)

For the numerical implementation, L, vξ and vη have to be
chosen in a convenient way. A possible choice is to assume
that the single global minimum of U to be U0

η = U0
ξ = 0,

for ξ = η = 0. This implies(
U0
ξξ U0

ξη

U0
ξη U0

ηη

)(
vξ
vη

)
=(

(U0)pU0
ξξ −HU0

ξξ + λU0
ηη

(U0)pU0
ξη −HU0

ξξη + λU0
ηηη

)
. (16)

The coordinate transformation (10) yields

‖ u ‖22= L
−2
p + 5

2 ‖ U ‖22 . (17)

Thus the L2 critical case is p = 4
5 and we get

‖ ux ‖22= L
1
2−

2
p ‖ Uξ ‖22, (18)

which implies the invariance under (10) for p = 4/5. Since
the blow-ups in [3] are established for ‖ uy ‖22, we consider

‖ uy ‖22= L−(
1
2+

2
p ) ‖ Uη ‖22 . (19)

By fixing ||Uη|| to be constant, we get

a =
2p

(2 + p)(1 + p) ‖Uη‖

∫
R2

Up+1Uηηξdξdη. (20)

This will be chosen for the numerical implementation. The
quantity L(τ) and the physical time t can be computed by
the trapezoidal rule. The accuracy of the numerical solution
is controlled by (17) and the energy by

E[u] = 1

L
2
p
− 3

2

∫
R2 [− 1

2UξHU −
1

(p+1)(p+2)U
p+2+

λ

2
(∂−1ξ Uη)]dξdη. (21)

Note that the energy is invariant under the rescaling (10) and
the case p = 4

3 is energy critical.

V. NUMERICAL DISCRETISATION

In this section, the GKP-BO equations (2) is numeri-
cally discretised. Due to the periodicity, the Fourier spectral
methods are the most convenient approaches for space-
variable approximations, we refer to [1] and [12] for more
details on these methods. For the integration of the resulting
semi discrete stiff systems, a fourth order exponential time
differencing (ETD) scheme is applied.
The 2d Fourier transform is defined by:

û(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

e−i(kxx+kyy)u(x, y)dxdy. (22)

Equation (2) is equivalent in Fourier space to

ût = N(û) + Mû, (23)

where N(û) = −ikx
ûp+1

p+1 , and M = −i sgn(kx)k2x + λ
ik2y
kx

.
For the numerical approximation of (23), we use a discrete
Fourier transform that will be computed by a FFT. For the
time integration, it was shown in [9] and [14] that the ETD
schemes are most efficient for the KP-BO equations (see [6]).
Here we use a modified version of these methods, namely
the exponential time-differencing fourth order Runge Kutta
(ETDRK4) scheme, which is suited for stiff systems. This
explicit method is very appropriate as it can avoid a pollution
of the Fourier coefficients and allows us to use small time
steps to maintain the numerical stability.

The ETDRK4 schemes are based on ETD methods
combined with the fourth-order Runge–Kutta time-stepping.
The basic idea in the ETD is to integrate (23) exactly
over a time step of length h with respect to t. If we write
û(tn) = ûn, and û(tn+1) = ûn+1, then we get

ûn+1 = eMhûn +

∫ h

0

eM(h−σ)N(û(tn + σ), tn + σ)dσ.

Hence the ETDRK4 schemes are given as follows: if we set

an = ûnE2 + (E2 − I)N(ûn, tn)M−1,

bn = ûnE2 + (E2 − I)N(an, tn + h/2)M−1,

cn = ânE2 + (E2 − I)(2N(bn, tn +
h

2
)−N(ûn, tn))M−1,

φ1 = (M2h2 − 3Mh+ 4)E1 −Mh− 4,

φ2 = (Mh− 2)E1 +Mh+ 2,

φ3 = (−Mh+ 4)E1 −M2h2 − 3Mh− 4;
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so that

ûn+1 = ûnE1 + h−pM−p−1[φ1N(ûn, tn)

+ 2φ2(N(an, tn + h/2) +N(bn, tn + h/2))

+ φ3N(cn, tn + h)];

with E1 = ehM and E2 = ehM/2.

The following computations are carried out with the
number of Fourier modes Nx and Ny , that should be high
enough in order to achieve a good precision, and a space
computational domain large enough, to ensure periodicity
of the solution. Note that the number of Fourier modes
depends on the size of the domain, and will increase for the
high wave numbers when a blow-up occurs.

A. Numerical experimentations

In order to control the accuracy of the computations, we
compute E(t) by the FFT and define

∆ =

∣∣∣∣E(t)

E(o)
− 1

∣∣∣∣ . (24)

It was reported in [9] that ∆ overestimates the numerical
precision. This does not evidently make sense if the
numerical spatial resolution is not of the same order; i.e.
if the Fourier coefficients û(kx, ky) do not decrease to the
same magnitude, for large numbers kx and ky . Therefore we
shall use equation (24) and Fourier coefficients as reliable
indicators for the accuracy tests.

1- L2-critical case: in this part, we study the solutions
of equation (2) with λ = 1 for p = 4

5 . This nonlinearity is
not very relevant for applications, but it is mathematically
interesting. Here we consider the problem with different
initial data.
We first study the GKPI-BO using initial data (9) with
β = 1 such that the inital energy is positive. The calculation
is performed on [−5, 5]2 with Nx = Ny = 29 and a
time step ∆t = 0.0005. The relative computed energy
is conserved up to 10−8 after 1000 iterations. From the
results shown in Fig.2., there is no ascertainment of a
blow-up, and this is even more obvious from the norms
shown in Fig.2. (bottom), both ‖u‖∞ and ‖uy‖2 appear
to be monotonically decreasing. The situation is not
different for initial data with negative energy, i.e. if we set
u0(x, y) = 12exp(−(x2 + y2)), use the same computation
domain and Nx = 210, Ny = 210 and a smaller time step for
numerical stability reason, ∆t = 0.00001. As can be seen
in Fig.3., ‖u‖∞ decreases monotonically and after a some
time it increases then decreases, whereas the ‖uy‖2 appears
to increase without showing any blow-up and the relative
computed energy reached 10−6 after 10000 iterations. Note
that in this case even the corresponding Fourier coefficients
tend to increase (see Fig.3. top right).

2- L2-supercritical case: we seek solutions of (2) with
λ = 1 considering two cases:
case 1: we take p = 1 with positive energy. More
exactly, with the initial data u0(x, y) = 3exp(−(x2 + y2)),
The calculation is performed with [−20, 20] × [−5, 5],
Nx = Ny = 210 and ∆t = 0.0001. The relative computed

energy is conserved up to 10−11 and in this situation there
is no blow-up (see Fig.4.). The norms for this solution
shown in Fig.4. (bottom) indicate that ‖u‖∞ decreases
monotonically and after a some time it increases then starts
to decrease again, whereas ‖uy‖2 appears to increase. these
results are qualitatively the same as the ones for the critical
case (Fig.3. bottom).
However if we take u0(x, y) = 12exp(−(x2 + y2)) i.e.
subject to a negative energy, on [−5, 5]2 with Nx = 212,
Ny = 210 and a very small timestep ∆t = 0.000001, we
get a blow-up (see Fig.5.). The relative computed energy
reaches a value arround 10−2.
case 2: for p = 2 and initial data (9) with β = 1,
Nx = Ny = 210, h = 0.0001, Lx = 10, Ly = 4, after 1000
iterations, we get a ∆ of an order better than 10−9, i.e.
there is no blow-up, as can be seen in Fig.6. that the initial
hump has been completely radiated away.
The situation is completely different if β = 6, when
the initial energy becomes negative. The calculation is
performed for Lx = Ly = 5, Nx = 211, Ny = 212 with
5000 iterations. As can be seen in Fig.7., that the initial
minimum appears to blow-up in a point after getting more
and more peaks, the code breaks down when ∆ ' 10−3.
We have to point out that the numerical experimentations
were explored for both λ = 1 and λ = −1. Here we present
the results for λ = 1 (see Fig.2. - Fig.7. ) and λ = −1
(see Fig.8. - Fig.11.). Note that the obtained results are
qualitatively similar for both λ = 1 and λ = −1.

VI. CONCLUSION

In this work, we studied the GKP-BO equations’s solutions
for p = 4

5 , p = 1 and p = 2. The numerical results
are resumed in the figures Fig.2. - Fig.7., for λ = 1 and
Fig.8. - Fig.11. for λ = −1, where we plot the solution,
its corresponding Fourier coefficients, ‖u‖∞ and ‖uy‖2 to
visualise the blowing up behavior according to each case.
We remarque that the two cases λ = 1 and λ = −1 lead to
similar qualitative results but with a slight difference in the
plotted curves and conclude that:
1- If p = 4

5 , no blow-up occurs. This is shown in Fig.2. and
Fig.3. for λ = 1 and in Fig. 8. and Fig.9. for λ = −1 and by
‖u‖∞ which increases monotonically and after a some time
it increases.
2- For p = 1 and p = 2, if we take initial data with positive
energy, we get almost the same situation as for the critical
case (see Fig.4.& Fig.5. for λ = 1 and Fig.10. for λ = −1 ).
However for a negative initial energy we can exhibit a blow-
up and this can be seen in Fig.6. and Fig.7. for λ = 1 and
in Fig.11. for λ = −1.

Hence the blow-up phenomenon’s behaviour depends on
both an initial data satisfying the constraint (8) and the
energy’s sign (> 0 or < 0), and this is quite relevant so
that when the energy is positive we get no blow-up, whereas
for the negative case a blow-up occurs.
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Fig. 2. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = 1 with p = 4

5
and u0(x, y) =

exp(−(x2 + y2)).

Fig. 3. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = 1 with p = 4

5
and u0(x, y) =

12exp(−(x2 + y2)).

Fig. 4. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = 1 with p = 1 and u0(x, y) =
3exp(−(x2 + y2)).

Fig. 5. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = 1 with p = 1 and u0(x, y) =
12exp(−(x2 + y2)).
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Fig. 6. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = 1 with p = 2 and u0(x, y) =
exp(−(x2 + y2)).

Fig. 7. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = −1 with p = 2 and u0(x, y) =
6exp(−(x2 + y2)).

Fig. 8. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = −1 with p = 4

5
and u0(x, y) =

exp(−(x2 + y2)).

Fig. 9. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = −1 with p = 4

5
and u0(x, y) =

12exp(−(x2 + y2)).
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Fig. 10. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = −1 with p = 1 and u0(x, y) =
3exp(−(x2 + y2)).

Fig. 11. From top to bottom and left to right, the solution, its Fourier
coefficients, ‖u‖∞ and ‖uy‖2 for (1), λ = −1 with p = 1 and u0(x, y) =
12exp(−(x2 + y2)).
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