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Abstract—The lifetime difference of components in adjacent
parallel structures decreases as the number of components
belonging to each level of parallel structures increases. To
restore the system structure, we must differentiate the com-
ponents that belong to different levels of parallel structures.
Hence, detecting the small lifetime difference in components
is extremely important. A strengthened change point detection
model (SCPDM) for weak mean difference data (WMDD) is es-
tablished. The concept of WMDD usually means that the effect
of a large variance renders the mean difference nonsignificant
in two subsignals of a signal sample. Traditional change point
detection models become insensitive and ineffective for WMDD.
For WMDD that can be collected repeatedly, we perform
two enhanced operations that double the mean difference by
using the variance information and subsequently analyze the
asymptotic properties of the enhanced data. Then, we propose
SCPDM based on the asymptotic results. Finally, we compare
SCPDM with two other main change point detection models and
verify that SCPDM is superior to other models by simulation
analysis.

Index Terms—single change point detection, weak mean
difference, asymptotic analysis, enhanced operations, simulation

I. INTRODUCTION

THE change point is the location at which a certain
variable in a model suddenly changes [1]. The change

point often represents a qualitative change for the object of
focus. Historically, Page [2], [3] first proposed the study of
change points in the field of sample testing. To detect the
change points in a signal sample, the following several steps
are usually followed. First, an associated cost function [4]
is selected to measure the homogeneity of each subsignal.
Second, according to whether the number of change points
is fixed, a discrete optimization problem is solved to estimate
the location of the change point. In different change point
detection models, selecting a suitable cost function for a
signal sample is the most important step [5]. The first type of
change point detection model detects the mean change point.
Many classical change point detection models have been
proposed for various kinds of signals, and these models can
be divided into the following three types. First, for piecewise
independent and identically distributed (i.i.d.) signals, the
mean shift model was first established for normal random
signal samples with a piecewise constant mean and constant
variance [3], [6], [7], [8], [9]. Second, certain signals may
have mean shifts along with shifts of their variances. For
example, mean shift and scale shift models were established
for normal random signal samples with piecewise constant
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means and variances [10], [11]. Finally, the rate shift mod-
el has been proposed and studied for Poisson distribution
signals with piecewise constant rate parameters [12], [13].
The second type of change point detection model is suit-
able for signal samples with a linear dependence between
the variables and changes happening at certain unknown
instances, which are called structural changes [14], [15],
[16]. For this situation, several well-known models were
established, such as the autoregressive model [1], [17] and
multiple regression models[16], [18]. Other commonly used
change point detection models include kernel change point
detection[19], [20], [21], [22] and the Mahalanobis-type
metric [23]. Kernel change point detection can be performed
on the high-dimensional mapping of the original signal that
is implicitly defined by a kernel function. Certain machine
learning techniques may be involved in this kind of method,
such as a support vector machine or clustering [24], [25].
In addition, for certain clustering methods, the Mahalanobis-
type metric is usually used to replace the cost function in
the mean shift model [26], [27], [28].

In addition to the models mentioned above, several clas-
sical models based on algorithms have been proposed for
inferring change points, and these models mainly include
the following four types [10]. The first type is based on
the likelihood ratio. Csorgo and Horváth[29] established a
change point detection model under the assumption of a
multivariate Gaussian distribution. This model is mainly used
to analyze the change points for time series data. The second
type is based on the Bayes method. A number of researchers
have studied this type of model. Kander and Zacks [30]
studied the exponential family to establish a change point
detection model, while Gardner [31] established a model
based on the normal distribution. Later, the model was
extended to the large sample distribution theory, multivariate
normal distribution and general linear regression field [9],
[32], [33]. The third type is based on the maximum likeli-
hood. This kind of model employs the mature large sample
theory. For example, Fotopoulos et al. [34], [35] established
exact computable expressions, bounds and approximations
for certain analysis results. The last type is based on samples.
This kind of model focused on the nonparametric method,
which has a distribution-free advantage.

Among the research sub-directions of change point de-
tection, signal samples with a mean shift have always been
a research hot spot. Hawkins et al. [36] used the sample
variance without degrees of freedom to detect the change
point. In [37], the maximum likelihood estimation method
was utilized to analyze the change point to verify the type of
population distribution. Later, prior knowledge was involved
in establishing a change point detection model in [38]. In
[39], the change point location was determined by analyzing
the local information near a point, which involved complex
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distribution information that usually substituted for certain
approximate results. In recent years, some new methods have
also been proposed regarding change point detection. As
indicated in [40], an optimal algorithm was introduced to
determine the location of a change point. In [41], an adapted
algorithm was established by the polynomial maximization
method. In [42], partition models were set up to test the
existence of a mean shift and estimate the location of the
change point. In addition, lasso methods were established
and improved by many authors [43], [44], [45].

Weak mean difference data (WMDD) are representative
of a type of data in which the information of the mean
difference is reduced by a large variance. For example, as
shown in Fig. (1), when the mean difference significantly
exceeds the standard deviation, the location of the change
point is easily detected. If the standard deviation is too large
to cover the information of the mean difference, then the
accuracy of change point detection may be decreased, and
the location of the change point can hardly be detected by
current models.

An important example of WMDD originated in the re-
liability field. Assume that the resistance values of all the
components in Fig. (2) are equal. Jin et al. [46] pointed out
that components that are tested in a laboratory environment
differ in significant ways from those that have experienced
operations in fielded systems, as the fielded environment will
cause homogeneous components to suffer different degrees
of damage. As shown below, the voltages of components
belonging to adjacent parallel structures become closer as the
number of components belonging to the same level of parallel
structure increases, which means that the lifetime difference
in components belonging to adjacent parallel structures be-
comes extremely small. To restore the system structure, we
must differentiate the components that belong to different
levels of parallel structures. As is known, components in
the same level of parallel structures have homogeneous
lifetime data. Hence, detecting the weak lifetime difference
in components is extremely important to distinguish whether
components belong to the same level of parallel structure and
helps to establish a topology diagram of the system structure.

The difficulty of detecting change points for WMDD lies
in capturing the small differences between subsignals. To
solve this problem, we perform two enhanced operations to
increase the mean difference between subsignals by utilizing
the variance. In addition, we analyze the asymptotic proper-
ties of the enhanced data. Next, we propose a strengthened
change point detection model (SCPDM) according to the
asymptotic results. Finally, we compare the SCPDM with
two current models and verify that the SCPDM has a higher
efficiency in terms of change point detection for WMDD by
simulation analysis.

The paper is organized as follows. In II, the two enhanced
operations and their asymptotic properties are provided.
Based on asymptotic results, SCPDM is proposed. In Section
III, using simulation analysis, we verify the correctness of
theorem 2 and its remark. In addition, the SCPDM and the
other two detection models are compared. The paper con-
cludes with Section IV, which discusses the study findings
and future implications.

(a)

(b)

(c)

Fig. 1. Diagram of the difficulty in change point detection that is influenced
by various ratios between the variance and mean difference. The figures
represent points from two normal distributions, N(µ1, σ2) and N(µ2, σ2).
(a) σ = 0.1, |µ1 −µ2| = 1. (b) σ = 1, |µ1 −µ2| = 1. (c) σ = 10, |µ1 −
µ2| = 1.

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_27

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



Fig. 2. Variation in the mean difference between components in the
adjacent parallel structure. Because different components are subjected to
different voltage intensities, the degree of deterioration over the lifetime
varies by component; we can reflect the deterioration by the mean. When
the resistance of the component is 1, then as the branch increases, the voltage
experienced by the component is reduced.

II. METHODOLOGY

A. Two enhanced operations

Because the standard deviation is far larger than the mean
difference, it is unwise and inefficient to perform change
point detection for WMDD using traditional models. In fact,
compared with the information of the mean difference, the
variance is very remarkable and may supply more informa-
tion. Therefore, we consider utilizing the variance that char-
acterizes a type of disturbance information to analyze change
points by performing the following two enhancements.

Now, we believe that t∗(t∗ ∈ {2, 3, ..., T}) is the
only abrupt location in sequence y1, ..., yT . For yt(t ∈
{2, 3, ..., T}), we first conduct an operation called enhanced-
I at t and obtain the enhanced-I sequence y

′

1, ..., y
′

T in (1).

y
′

1 = y1, y
′

i = min(yi−1, yi), i = 1, ..., t− 1,

y
′

t = yt, y
′

i = max(yi−1, yi), i = t+ 1, ..., T.
(1)

Then, we conduct a second operation, called enhanced-II at
t, and obtain the enhanced-II sequence y

′′

1 , ..., y
′′

T in (2).

y
′′

1 = y1, y
′′

i = max(yi−1, yi), i = 1, ..., t− 1,

y
′′

t = yt, y
′′

i = min(yi−1, yi), i = t+ 1, ..., T.
(2)

Intuitively, these kinds of enhancements utilize the vari-
ance information directly by taking a larger value or a
smaller value between adjacent samples. Variance indicates
the degree of fluctuation of the data, that is, in a set of data,
the data is either larger or smaller according to the size of the
variance centered on the mean. Therefore, when the first half
of a set of data takes a smaller value (larger value) between
adjacent samples, and the second half takes a larger value
(smaller value), the mean difference of the strengthened data
can well reflect the variance information.

To illustrate this, we generate normal random numbers
with different means and variances. Then, under both en-
hanced operations, the mean difference is calculated sepa-
rately, as shown in Table. (I). It can be seen that the mean
difference has nothing to do with the mean, and the mean
difference is close to the variance.

Now, we provide several symbolic explanations. For a sig-
nal sample y1, ..., yT , we perform the above two operations
at location t(t ∈ {2, 3, ..., T}), where µ

′

1(t, y
′
) indicates the

sample mean of y
′

1, ..., y
′

t−1; µ
′

2(t, y
′
) indicates the sample

mean of y
′

t, ..., y
′

T ; µ
′′

1 (t, y
′′
) indicates the sample mean of

y
′′

1 , ..., y
′′

t−1; and µ
′′

2 (t, y
′′
) indicates the sample mean of

y
′′

t , ..., y
′′

T . In addition, ◦ and • represent operations on the
homogeneous signal sample and the signal sample containing
a change point, respectively.

B. Asymptotic property of the enhanced sequence

We consider establishing a certain asymptotic property of
the enhanced sequence in the following theorem. First, we
point out that there are sufficient data for a signal sample.
In other words, we assume that there are sufficient data
before and after the location we are examining in a signal
sample. When we consider yt, the assumption shows that
there are sufficient data before yt. From the perspective of
mathematics, it corresponds to t → ∞. Likewise, the exis-
tence of sufficient data after yt corresponds to T − t→∞.
Furthermore, for a signal sample that has one change location
at t∗(t∗ ∈ {2, ..., T}), µ1 indicates the population mean of
the first subsignal, and µ2 indicates the population mean of
the second subsignal. σ2 indicates the constant population
variance. Generally, WMDD indicates that |µ2−µ1|

σ ≤ 1.
Theorem 1. Assume that y1, ..., yT are i.i.d., i.e., homo-
geneous with a constant variance σ2. The above two op-
erations are performed nc times independently at location
t(t ∈ {2, ..., T}). Then, we have the following asymptotic
property in (3).

P ( lim
nc,t,T−t→∞

1

nc

nc∑
i=1

(|◦µ
′

1i(t, y
′
)

− ◦µ
′

2i(t, y
′
)| − |◦µ

′′

1i(t, y
′′
)− ◦µ

′′

2i(t, y
′′
)|) = 0) = 1 (3)

where
◦
µ
′

1i(t, y
′
),
◦
µ
′

2i(t, y
′
),
◦
µ
′′

1i(t, y
′′
) and

◦
µ
′′

2i(t, y
′′
)|) rep-

resent the mean in the ith (i = 1, 2, ..., nc) test sample.
Proof. Because y1, ..., yT are independent and identical-
ly distributed, min(y1, y2), min(y2, y3),...,min(yT−1, yT )
are identically distributed. We use µmin for the mean
of min(yi, yj). Likewise, we use µmax for the mean of
max(yi, yj). Therefore, y

′

1, y
′

2, ..., y
′

t−1 are identically dis-
tributed according to the distribution of min(yi, yj),∀i 6=
j, i, j ∈ {1, 2, ..., T}. According to the law of large numbers,
we have the following:

◦
µ
′

1i(t, y
′
)→ µmin a.s. t→∞ (4)

Likewise, we have the following:

◦
µ
′

2i(t, y
′
)→ µmax a.s. T − t→∞ (5)

As a result, we have the following in (6):

◦
µ
′

1i(t, y
′
)− ◦µ

′

2i(t, y
′
)→ µmin − µmax

a.s. t, T − t→∞ (6)

On the other hand, in (7):

◦
µ
′′

1i(t, y
′′
)→ µmax ta.s. →∞
◦
µ
′′

2i(t, y
′′
)→ µmin Ta.s. − t→∞ (7)

Consequently, we have the following result in (8):
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◦
µ
′′

1i(t, y
′′
)− ◦µ

′′

2i(t, y
′′
)→ µmax − µmin

a.s. t, T − t→∞ (8)

In addition, f(x, y) = |x| − |y| is a continuous function,
and thus a.s. (almost sure) convergence can be preserved
under the transformation of this function; therefore, we have
the following (9):

|◦µ
′

1i(t, y
′
)− ◦µ

′

2i(t, y
′
)| − |◦µ

′′

1i(t, y
′′
)− ◦µ

′′

2i(t, y
′′
)|

→ |µmin − µmax| − |µmax − µmin| = 0

a.s. t, T − t→∞ (9)

Thus, because the process is independently performed nc
times, |◦µ

′

1i(t, y
′
)− ◦µ

′

2i(t, y
′
)| − |◦µ

′′

1i(t, y
′′
)− ◦µ

′′

2i(t, y
′′
)|(i =

1, ..., nc) can be viewed as independently and identically
distributed. According to the law of large numbers, we have
the following (10):

1

nc

nc∑
i=1

(|◦µ
′

1i(t, y
′
)− ◦µ

′

1i(t, y
′
)| − |◦µ

′′

1i(t, y
′′
)− ◦µ

′′

1i(t, y
′′
)|)

→ 0 a.s. t, T − t→∞, nc →∞ (10)

Remark 1. Theorem 1 demonstrates that, when y1, ..., yT
are homogeneous and the above two operations are per-
formed nc times independently at any location t(t ∈
({2, ..., T})), the value of 1

nc

nc∑
i=1

|◦µ
′′

1i(t, y
′
) − ◦µ

′′

2i(t, y
′
)| −

|◦µ
′′

1i(t, y
′′ − ◦µ

′′

2i(t, y
′′
)| fluctuates at approximately 0.

Next, we will give the asymptotic property when there
is only one change point among the signal samples. We
will present the asymptotic results about the position of the
change point.

Theorem 2. Assume that the independent y1, ..., yT has
only one change point t∗ with a constant variance σ2. At
t∗, the above two enhanced operations are independently
performed nc times. Then, we have the following asymptotic
property:

(1) if |µ1−µ2|
σ > 1, then we have (11):

P ( lim
nc,t∗,T−t∗→∞

1

nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)

− •µ
′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)||

− (|◦µ
′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|+ |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|))

= 0) = 1 (11)

The meanings of
◦
µ
′

1i(t
∗, y

′
),
◦
µ
′

2i(t
∗, y

′
),
◦
µ
′′

1i(t
∗, y

′′
) and

◦
µ
′′

2i(t
∗, y

′′
) are the same as in theorem 2.

(2) if |µ1−µ2|
σ ≤ 1, then we have (12):

P ( lim
nc,t∗,T−t∗→∞

1

nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)

−•µ
′

2i(t
∗, y

′
)|−|•µ

′′

1i(t
∗, y

′′
)−•µ

′′

2i(t
∗, y

′′
)||) = 2|µ2−µ1|) = 1

(12)

Proof. (1) First, we prove the first part. The following
formula is clear when µ1 < µ2, in (13)

|•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |◦µ

′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|

→ (µ2 − µ1)→ a.s. t∗, T − t∗ →∞ (13)

Because |µ1−µ2|
σ > 1, an incorrect enhanced operation

cannot reverse the direction of the mean difference; therefore,
we have the following (14):

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)|+ |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|

→ (µ2 − µ1)→ a.s. t∗, T − t∗ →∞ (14)

Therefore,

|•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)|

− (|◦µ
′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|+ |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|)

→ 0 a.s. t∗, T − t∗ →∞ (15)

Likewise, when µ1 > µ2, we have the following two
relationships in (16) and (17):

|•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)|

+ |◦µ
′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|

→ (µ1 − µ2)→ a.s. t∗, T − t∗ →∞
(16)

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)|

− |◦µ
′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|

→ (µ1 − µ2)→ a.s. t∗, T − t∗ →∞
(17)

Therefore,

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)| − |•µ

′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)|

− (|◦µ
′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|+ |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|)

→ 0 a.s. t∗, T − t∗ →∞ (18)

In summary, we have the following in (19):

||•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)||

− (|◦µ
′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|+ |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|)

→ 0 a.s. t∗, T − t∗ →∞ (19)

Thus, because the process is independently performed

nc times, ||•µ
′

1i(t
∗, y

′
) − •

µ
′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
) −

•
µ
′′

2i(t
∗, y

′′
)|| − (|◦µ

′

1i(t
∗, y

′
) − ◦µ

′

2i(t
∗, y

′
)| + |◦µ

′′

1i(t
∗, y

′′
) −

◦
µ
′′

2i(t
∗, y

′′
)|) can be viewed as being independent and iden-

tically distributed. According to the law of large numbers,
we have the following in (20):
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1

nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)−•µ

′

2i(t
∗, y

′
)|−|•µ

′′

1i(t
∗, y

′′
)−•µ

′′

2i(t
∗, y

′′
)||

−(|◦µ
′

1i(t
∗, y

′
)−◦µ

′

2i(t
∗, y

′
)|+|◦µ

′′

1i(t
∗, y

′′
)−◦µ

′′

2i(t
∗, y

′′
)|))→ 0

a.s. t∗, T − t∗, nc →∞ (20)

Proof. (2) The following formula in (21) is clear when
µ1 < µ2,

|•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |◦µ

′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|

→ (µ2 − µ1)→ a.s. t∗, T − t∗ →∞ (21)

Due to |µ2−µ1|
σ ≤ 1, the enhanced operation can reverse

the mean difference, and thus we have the following in (22):

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)| − |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|

→ −(µ2 − µ1)→ a.s. t∗, T − t∗ →∞ (22)

Likewise, when µ1 > µ2, we have the following two
relationships in (23)and (24):

|•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |◦µ

′

1i(t
∗, y

′
)− ◦µ

′

2i(t
∗, y

′
)|

→ −(µ1 − µ2)→ a.s. t∗, T − t∗ →∞
(23)

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)| − |◦µ

′′

1i(t
∗, y

′′
)− ◦µ

′′

2i(t
∗, y

′′
)|

→ (µ1 − µ2)→ a.s. t∗, T − t∗ →∞ (24)

Thus, in (25)

||•µ
′

1i(t
∗, y

′
)− •µ

′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)||

→ 2|µ2 − µ1| a.s. t∗, T − t∗ →∞ (25)

Because the process is independently performed nc times,

||•µ
′

1i(t
∗, y

′
) − •µ

′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
) − •µ

′′

2i(t
∗, y

′′
)||(i =

1, ..., nc) can be viewed as being independently and identi-
cally distributed. Therefore, we have the following in (26):

1

nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)−•µ

′

1i(t
∗, y

′
)|−|•µ

′′

1i(t
∗, y

′′
)−•µ

′′

1i(t
∗, y

′′
)||

→ 2|µ2 − µ1| a.s. t, T − t, nc →∞ (26)

Remark 2. For (13), (14), (21) and (22), we provide the
four schematic diagrams, as shown in Fig. (5). to illustrate
the establishment of the four formulas. The black lines in
the figure represent original data at different mean levels,
whereas the red lines indicate enhanced data at different
mean levels.
Remark 3. For WMDD, theorem 2 demonstrates that when
y1, ..., YT has a change at t∗(t∗ ∈ 2, ..., T ) and if the above
two operations are performed nc times independently at

t∗(t∗ ∈ 2, ..., T ), then the value of 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
) −

•
µ
′

1i(t
∗, y

′
)|− |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

1i(t
∗, y

′′
)|| will reach the value

2|µ2 − µ1|. Furthermore, by theorem 1, we know that at

any non-change location, 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)− •µ

′

1i(t
∗, y

′
)|−

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

1i(t
∗, y

′′
)|| will become 1

nc

nc∑
i=1

(||◦µ
′

1i(t
∗, y

′
)−

◦
µ
′

1i(t
∗, y

′
)| − |◦µ

′′

1i(t
∗, y

′′
) − ◦µ

′′

1i(t
∗, y

′′
)||. Because the data

exemplify the weak mean difference, this value will still
approximate zero. Therefore, if the above two operations
are performed nc times independently at any non-change

location, then the value of 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)− •µ

′

1i(t
∗, y

′
)|−

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

1i(t
∗, y

′′
)|| will be less than the value 2|µ2−

µ1|. The latter finding is verified in Section 3 in detail.

C. SCPDM

For WMDD, the different asymptotic properties in theorem
1 and theorem 2 are important information for judging
whether there is a change point and the location of the change
point. Consequently, we propose a model for detecting the
change point in WMDD by sampling repeatedly in this
section.

Assume that there is only one change point whose location
is t∗(1 < t∗ ≤ T ) in y1, ..., yT . To obtain a better estimate of
t∗, we should establish a contrast function [5] to measure the
goodness-of-fit of the signal sample. First, at t(t = 2, ..., T ),
the above two enhanced operations are performed nc times.
The following contrast function is established in (23):

t̂∗(y) = argmax
1

nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
)

− •µ
′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
)− •µ

′′

1i(t
∗, y

′′
)|| (23)

According to theorem 2, the value of ||
•
µ
′

1
t
−
•
µ
′

2
t
|−|

•
µ
′′

1
t
−
•
µ
′′

2
t
||

is expected to be large when t∗ is well-estimated.
During the establishment of the SCPDM, solving

this discrete optimization problem becomes clear. We

need only to calculate 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
) − •µ

′

2i(t
∗, y

′
)| −

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

1i(t
∗, y

′′
)|| at (t=2,...,T) and to make t̂∗(y) =

argmax 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
) − •µ

′

2i(t
∗, y

′
)| − |•µ

′′

1i(t
∗, y

′′
) −

•
µ
′′

1i(t
∗, y

′′
)||. Details are elaborated in the next section, where

we perform several simulation studies to estimate t∗ under a
normal distribution with various kinds of parameters.

III. VALIDATION OF THE METHODOLOGY

In this section, we will perform simulation analysis in two
parts. In the first part, we verify the correctness of theorem
2 and remark 2. In the second part, we perform several
simulation studies to estimate the potential location of change
points under a normal distribution with different parameters
and compare the SCPDM with two current models to verify
that the SCPDM has a higher efficiency than those of the
other models for WMDD.

A. Verifying the correctness of the theorem

To verify the correctness of theorem 2, we generate
random numbers based on the normal distribution, and the
parameter settings are shown in the caption of each figure.
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Fig. 3. The illustration of formula (13), (14), (21) and (22). (a) illustrates formula (13); (b) illustrates formula (14); (c) illustrates formula (21); The
process from (d) to (e) illustrates formula (22)

For the public parameters, we set T = 1000, t∗ = 501, and
nc = 1000. Both the number of data in the first half and
the number in the second half are all 500, which can be
considered large. Therefore, it can be seen as the case of
t∗ →∞ and T − t∗ →∞. For |µ1−µ2|

σ > 1, the asymptotic
result should be near 0. We carry out two sets of simulation
analyses. As shown in Fig. (4), simulated results agree with
theoretical results.

When |µ1−µ2|
σ ≤ 1, as shown in Fig. (5), we carry out

four sets of simulation analyses.
To verify the correctness of remark 2, when |µ1−µ2|

σ ≤ 1,

at t(t = 400, ..., 600), 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y

′
) − •µ

′

2i(t
∗, y

′
)| −

|•µ
′′

1i(t
∗, y

′′
)− •µ

′′

2i(t
∗, y

′′
)||) is calculated, and the results are

shown in Fig. (6).
It can be seen from Fig. (6) that when t is near t∗ = 501,

1
nc

nc∑
i=1

(||•µ
′

1i(t, y
′
) − •µ

′

2i(t, y
′
)| − |•µ

′′

1i(t, y
′′
) − •µ

′′

2i(t, y
′′
)||)

reaches a maximum value, which is approximately 2|µ2−µ1|.
The simulation result is consistent with theorem 2.

B. Model comparison

When |µ1−µ2|
σ ≤ 1, to verify that the SCPDM’s estimation

of t∗ is better than that of the other models, we present
certain simulation results based on traditional models,
including the least squares model and Bayes method [47].
We generate random samples y1, ..., yT based on the normal
distribution, and the parameter settings are shown in the
corresponding figure; we set the public parameters, namely,
T = 1000, t∗ = 500, and nc = 1000. For the three models
with the same parameter settings, we repeat the same

operation 1000 times, compute the estimation results of t∗

and regard the frequency of each t̂∗ as the probability of
being a real change point, which reflects the accuracy of
each model. The results are shown in Fig. (7), Fig. (8) and
Fig. (9).

When |µ1−µ2|
σ > 1, i.e., the parameters are set to be σ =

0.5 and |µ1 − µ2| = 1 for 1000 repeated tests, the least
squares model results in Pr(t̂∗ ∈ [499, 503]) = 0.942 and
Pr(t̂∗ = 501) = 0.661, and the Bayes model results in
Pr(t̂∗ ∈ [499, 503]) = 0.87 and Pr(t̂∗ = 501) = 0.61. Both
methods have a high accuracy for change point detection.

By setting different parameters, the detection accuracy of
the change point interval, i.e., Pr(t̂∗ ∈ [499, 503]), and change
point location, i.e., Pr(t̂∗ = 5.1), of the three models are
compared in Table. (II), Table. (III), Table. (IV) and Table.
(V).

When |µ1−µ2|
σ ≤ 1, the type of data is WMDD, and we

consider Pr(t̂∗ ∈ [499, 503]). When the parameters are set
to σ = 1 and |µ1 − µ2| = 0.1, the accuracy of the SCPDM
is 42% higher than that of the least squares model and 43%
higher than that of the Bayes model. When the parameters
are set to σ = 1 and |µ1 − µ2| = 0.7, the accuracy of the
SCPDM is 54% higher than that of the least squares model
and 60.7% higher than that of the Bayes model. When the
parameters are set to σ = 1 and |µ1−µ2| = 1, the accuracy
of the SCPDM is 31% higher than the accuracy of the least
squares model and 41.1% higher than the accuracy of the
Bayes model. When the parameters are set to σ = 10 and
|µ1−µ2| = 1, the accuracy of the SCPDM is 31% higher than
the accuracy of the least squares model and 41.1% higher
than the accuracy of the Bayes model. When the parameters
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(a) (b)

The value ofFig. 4. 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y
′
)− •

µ
′

2i(t
∗, y
′
)|− |•µ

′′

1i(t
∗, y
′′
)− •

µ
′′

2i(t
∗, y
′′
)||− (|◦µ

′

1i(t
∗, y
′
)− ◦

µ
′

2i(t
∗, y
′
)|+ |◦µ

′′

1i(t
∗, y
′′
)− ◦

µ
′′

2i(t
∗, y
′′
)|))

for 500 repetitions. (a) σ = 0.1, |µ1 − µ2| = 0.5. (b) σ = 1, |µ1 − µ2| = 5.

(a) (b)

(c) (d)

The value ofFig. 5. 1
nc

nc∑
i=1

(||•µ
′

1i(t
∗, y
′
)− •

µ
′

2i(t
∗, y
′
)|− |•µ

′′

1i(t
∗, y
′′
)− •

µ
′′

2i(t
∗, y
′′
)||)−2|µ2−µ1| for 500 repetitions. (a) σ = 1, |µ1−µ2| = 0.1.

(b) σ = 1, |µ1 − µ2| = 0.7. (c) σ = 1, |µ1 − µ2| = 1. (d) σ = 10, |µ1 − µ2| = 1.
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(a) (b)

(c) (d)

(e)

Fig. 6. The value of 1
nc

nc∑
i=1

(||•µ
′

1i(t, y
′
)− •
µ
′

2i(t, y
′
)|−|•µ

′′

1i(t, y
′′
)− •
µ
′′

2i(t, y
′′
)||) at location t. (a) σ = 1, |µ1−µ2| = 0.1. (b) σ = 1, |µ1−µ2| = 0.7.

(c) σ = 1, |µ1 − µ2| = 1. (d) σ = 10, |µ1 − µ2| = 1. (e) σ = 1, |µ1 − µ2| = 0.4.

are set to σ = 1 and |µ1 − µ2| = 0.4, the accuracy of
the SCPDM is 62.6% higher than the accuracy of the least
squares model and 70.1% higher than the accuracy of the
Bayes model.

When |µ1−µ2|
σ ≤ 1, we consider Pr(t̂∗ = t∗). When the

parameters are set to σ = 1 and |µ1−µ2| = 0.1, the accuracy
of the SCPDM is 9.1% higher than that of the least squares
model and 9.5% higher than that of the Bayes model. When
the parameters are set to σ = 1 and |µ1 − µ2| = 0.7, the
accuracy of the SCPDM is 27.7% higher than that of the
least squares model and 32.1% higher than that of the Bayes
model. When the parameters are set to σ = 1 and |µ1 −
µ2| = 1, the accuracy of the SCPDM is 25% higher than the
accuracy of the least squares model and 33.6% higher than
the accuracy of the Bayes model. When the parameters are
set to σ = 10 and |µ1−µ2| = 1, the accuracy of the SCPDM
is 9.2% higher than the accuracy of the least squares model
and 9.5% higher than the accuracy of the Bayes model. When
the parameters are set to σ = 1 and |µ1 − µ2| = 0.4, the

accuracy of the SCPDM is 23.2% higher than the accuracy of
the least squares model and 28.8% higher than the accuracy
of the Bayes model.

IV. CONCLUSIONS AND FUTURE STUDY

This paper focuses on detecting the change points for
weak mean difference data. We perform asymptotic analysis
and establish a strengthened change point detection model.
According to theorem 2 (2), the enhanced sequence uses
significant variance information so that the weak mean dif-
ference increases from |µ1−µ2| to 2|µ1−µ2|, which makes
the change point easier to detect and increases the accuracy
of change point detection. In addition, for WMDD, the
traditional methods can be improved by adding the sample
capacity to the sequence. Meanwhile, for the same amount of
data, the SCPDM greatly increases the efficiency of change
point detection by repeatedly detecting sequences with the
same data structure. Furthermore, repeated measurements
are possible for the lifetime data of components at the
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(a) (b)

(c) (d)

(e)

Fig. 7. Probability of each location becoming a change point in the least squares model. (a)σ = 1, |µ1−µ2| = 0.1.(b)σ = 1, |µ1−µ2| = 0.7.(c)σ =
1, |µ1 − µ2| = 1.(d)σ = 10, |µ1 − µ2| = 1.(e)σ = 1, |µ1 − µ2| = 0.4.

same location. Hence, compared with traditional methods,
the SCPDM can effectively detect change points. Although
the accuracy of change point detection has been improved,
this paper also has several limitations. First, we only discuss
that y1, ..., yT are independent with a normal distribution
and there exists only a single change point. Second, the
reason why the relationship between |µ1−µ2| and σ has an
important influence on the accuracy of change point detection
is not discussed in depth. We define the ratio boundary of
WMDD based on only experience and simulations. In a
future study, we will extend the SCPDM to other distribution
types and multiple point detection. In addition, for theorem 2,
we will reprove the theorem by introducing the relationship
between |µ1 − µ2| and σ.
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