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   Abstract—In this paper, based on concepts of  -convex sets,  -

convex functions and  -continuous, we establish the  -Orlicz 

theory which is a generalization to the Orlicz theory by relaxing 

the concepts of  -function, Young function, strong Young 

function and Orlicz function. In this theory, we introduce the 

definitions of  -Orlicz spaces, weak  -Orlicz spaces,  -Orlicz-

Sobolev spaces, weak  -Orlicz-Sobolev spaces,  -Orlicz-Morrey 

spaces and weak  -Orlicz-Morrey spaces,  -Orlicz-Lorentz 

spaces and weak  -Orlicz-Lorentz spaces. However, we consider 

their implicit properties based on the effect of the operator  .  

Index Terms— - -function,  -Young function,  -strong Young 

function,  -Orlicz function,  -Orlicz spaces,  -Orlicz-Sobolev 

space,  -Orlicz-Morrey Space ,  -Orlicz-Lorentz Spaces.  

 

I. INTRODUCTION 

 

IRNBAUM and Orlicz introduced the Orlicz spaces in 

1931 as a generalization of the classical Lebesgue spaces, 

where the function    is replaced by a more general convex 

function   [2]. The concept of  -convex sets and  -convex 

functions were introduced by Youness to generalize the 

classical concepts of convex sets and convex functions to 

extend the studying of the optimality for non-linear 

programming problems in 1999 [3]. Chen defined the semi- -

convex functions and studied its basic properties in 2002 [3]. 

The concepts of pseudo  -convex functions and  -

quasiconvex functions and strictly  -quasiconvex functions 

were introduced by Syau and Lee in 2004 [6]. The concept of 

Semi strongly  -convex functions was introduced by Youness 

and Tarek Emam in 2005 [8]. Sheiba Grace and Thangavelu 

considered the algebraic properties of  -convex sets in 2009 

[4].  -differentiable  convex functions was defined by 

Meghed, Gomma, Youness and El-Banna  to transform a non-

differentiable function to a differentiable function in 2013 [5]. 

Semi-  -convex function was introduced by Ayache and 

Khaled in 2015 [1].  

   The purpose behind this paper is to define the  - -

functions,  -Young functions,  -strong Young functions and 

 -Orlicz functions using the concepts of  -convex sets,  -

convex functions and  -continuous functions to generalize 

and extend the studying of the classical Orlicz theory via 

defining a new class of Orlicz spaces equipped by the 

luxemburg norms and generated by non-Young functions but 

 -Young functions with a map  , like  -Orlicz spaces, weak  
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 -Orlicz spaces,  -Orlicz-Sobolev spaces, weak  -Orlicz-

Sobolev spaces,  -Orlicz-Morrey space, weak  -Orlicz-

Morrey space,  -Orlicz-Lorentz spaces and weak  -Orlicz-

Lorentz spaces. 

   Contents of the paper. For our study, we present the 

definitions of  - -function,  -Young function,  -strong 

Young function and  -Orlicz function in section II. We 

consider the elementary properties of  - -functions,  -Young 

functions,  -strong Young functions and  -Orlicz functions 

and their relationships in section III and IV respectively. In 

section V, we state the definitions of  -Orlicz space, weak  -

Orlicz space,  -Orlicz-Sobolev space, weak  -Orlicz-                                                                                                                                             

Sobolev space,  -Orlicz-Morrey space, weak  -Orlicz-

Morrey space,  -Orlicz-Lorentz space and weak  -Orlicz-

Lorentz space. In addition, we study the implicit properties of 

these new spaces. 

 

II. PRELIMINARIES 
 

   The setting for this paper is n-dimensional Euclidean space 

      . Let   be a nonempty subset of    and         be 

a measure space.  A set   is said to be  -convex iff there is a 

map         such that                    for 

each            . A function        is said to be 

 -convex on a set   iff there is a map         such that 

  is an  -convex set and 

                                          

for each       and      . And   is called  -concave 

on a set   if  

                                          

for each       and       (see [6]). A function 

       is said to be  -continuous at     iff there is a 

map         such that for every    , there exists     

implies  

                     

whenever 

        

and   is said to be  -continuous on   iff   is  -continuous at 

every    . 
 

Definition 1. A function             is called an  -

 -function if there exists  a map                   

such that for  -a.e.            is an  -convex and   is an   

-even,  -continuous,  -convex of   on                   

for any           

   
    

         

 
       

   

         

 
   

and for each                   is an  -measurable 

function of   on  .  

 

B 
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Remark 2. Every  -function is an  - -function if the map   

is taken as the identity map. But not every  - -function is an 

 -function. 
 

Examples 3. We cite examples of  - -function which is not 

 -function 

i. Let             be defined by            and 

let                   be defined as        
       . Then   is an  - -function but it is not an  -

function because, for  -a.e.            is concave of   

for         . 

ii. Let             be defined by                

          and let                   be 

defined by                . Then,   is an  - -

function but it is not an  -function since, for  -a.e. 

           is not even.   
 

Definition 4. A function             is called an  -

Young function if there exists a map             
      such that for  -a.e.          is an  -convex and   

is an  -convex of   on        

             
    

             

   
   

            

and for each                   is an  -measurable 

function of   on  . 
 

Remark 4. Every Young function is an  -Young function if 

the map   is taken as the identity map. But not every  -Young 

function is a Young function. 
 

Examples 5. We cite examples of  -Young function which is 

not Young function  

i. Let             be defined by               

and let                   be defined by        

      . Then,   is an  -Young function but it is not a 

Young function because for  -a.e.               
   . 

ii. Let             be defined by  

        
          
                 

  

and let                   be defined by        

         . So,   is an  -Young function but it is not a 

Young function because, for  -a.e.            is not 

convex because for        , 
   

     
 

    .  

 

Definition 6. A function             is called an  -

strong Young function if there exists a map           
        such that for  -a.e.           is an  -convex 

and   is an  -convex  -continuous of   on                 

      ,  

   
   

            

and for each                   is an  -measurable 

function of   on  . 
 

Remark 7. Every strong Young function is an  -strong Young 

function if the map   is taken as the identity map. But not 

every  -strong Young function is a strong Young function.  

 

Example 8. We cite examples of  -strong Young function 

which is not strong Young function 

i. Let             be defined by           
   

and let                   be defined by        

        . Then   is an  -strong Young function but it is 

not a strong Young function, where           
   is 

not convex because for             is not convex.  

ii. Let                 be defined by        
            and let                     
      be defined by             . Then   is an  -

strong Young function but it is not a strong Young 

function since for  -a.e.                        
   .  

 

Definition 9. A function             is called an  -

Orlicz function if there exists a map             
      such that for  -a.e.            is an  -convex and   

is an  -convex of   on                              

  for any           

    
   

             

  is left  -continuous at 

                         

and for each                   is an  -measurable 

function of   on  .  
 

Remark 10. Every Orlicz function is an  -Orlicz function if 

the map   is taken as the identity map. But not every  -Orlicz 

function is an Orlicz function.  
  

Examples 11. We cite examples of  -Orlicz function which is 

not Orlicz function 

i. Let             be defined by             

and let                   be defined by        

           . Then   is an  -Orlicz function but it is 

not an Orlicz function because for  -a.e.            
    .  

ii. Let             be defined by           
 

      

     and let                   be defined by 

            . Then   is an  -Orlicz function but it is 

not an Orlicz function because for  -a.e.           
     
 

III. ELEMENTARY PROPERTIES 
 

A. Properties of  - -Functions  
 

Theorem 12. Let                 be  - -functions 

with respect to                  . Then       

and         are  - -functions with respect to  . 
 

Theorem 13. Let             be a linear  - -

function with respect to                      . 

Then   is an  - -function with respect to       and       

  . 
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Theorem 14. Let             be a linear  - -

function with respect to                      . 

Then   is an  - -function with respect to       and        
 

Theorem 15. Let              for         be  -  

-functions with respect to                  . Then 

         is an  - -function with respect to  .  
 

Theorem 16. Let             be an  - -function 

with respect to                           . 

Then   is an  - -function with respect to           and 

         . 

 

Theorem 17. Let         be a sequence of continuous  - -

functions defined on a compact set         with respect to 

                  such that         converges 

uniformaly to a continuous function            . 

Then   is an  - -function with respect to  .  

Proof. Assume that         is a sequence of continuous  - -

functions with respect to a map   such that      

uniformly on compact set         and   is continuous on 

       . Then            uniformaly on         

and for  -a.e.       

             
   

           

is even continuous convex of   on                    for 

any          

   
   

         

 
    

   
   
   

          

 
    

   
   

         

 
    

   
   
   

          

 
   

and for each                   is an  -measurable 

function of   on  .  

 

Theorem 18. Let   be a continuous  - -function defined on 

a compact set         with respect to a sequence of maps 
                            such that         

converges uniformaly to a map                  . 

Then   is an  - -function with respect to  .  

Proof. Suppose that   is a continuous  - -function with 

respect to a sequence of maps         such that      

uniformaly on a compact set        . Then       
     uniformaly on         and for  -a.e.       

             
   

           

is even continuous convex of   on                   

for           

   
   

         

 
    

   
   
   

          

 
    

   
   

         

 
    

   
   
   

          

 
   

and for each                   is an  -measurable 

function of   on  .   
 

Theorem 19. Let         be a sequence of continuous  - -

functions defined on a compact set         with respect to 

a sequence of continuous maps        ,              

        such that         converges uniformaly to a 

continuous function             and         

converges uniformaly to a continuous map           
       . Then   is an  - -function with respect to  .   

Proof. Assume that         is a sequence of continuous  - -

functions with respect to a sequence of continuous maps         

such that      uniformly and      uniformly on a 

compact set         and   and   are continuous on    
     . So             uniformaly on         and for 

 -a.e.      that 

             
   

            

is even continuous convex of   on                      

         

   
   

         

 
    

   
   
   

           

 
    

   
   

         

 
    

   
   
   

           

 
   

and for each                   is an  -measurable 

function of   on  .   
 

B. Properties of  -Young Functions 

 

Theorem 20. Let                 be  -Young 

functions with respect to                  . Then 

      and         are  -Young functions with respect 

to  . 
 

Theorem 21. Let             be a linear  -Young 

function with respect to                      . 

Then   is an  -Young functions with respect to       and 

       . 
 

Theorem 22. Let             be a linear  -Young 

function with respect to                      . 

Then   is an  -Young functions with respect to       and 

     . 
 

Theorem 23. Let                      be  -

Young functions with respect to                  . 

Then          is an  -Young function with respect to  .  
 

Theorem 24. Let             be an  -Young 

function with respect to                      
     . Then   is an  -Young function with respect to 

          and          .   

 

Theorem 25. Let         be a sequence of continuous  -

Young functions defined on a compact set         with 

respect to                   such that         

converges uniformaly to a continuous function           

  . Then   is an  -Young function with respect to  . 

Proof. Assume that         is a sequence of continuous  -

Young functions with respect to a map   such that      

uniformly on a compact set         and   is continuous on 

       . Then            uniformaly on         

and for  -a.e.        

             
   

           

is convex of   on        
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and for each                   is an  -measurable 

function of   on  .  

 

Theorem 26. Let             be a continuous  -

Young function defined on a compact set         with 

respect to a sequence of maps                      
     , such that         converges uniformaly to a map     

              . Then   is an  -Young function with 

respect to  . 

Proof. Suppose that   is a continuous  -Young function with 

respect to a sequence of maps         such that      

uniformaly on a compact set        . Then            

uniformaly on         and for  -a.e.       

             
   

           

is convex of   on        

             
    

             
   

   
    

              

   
   

             
   

   
   

             

and for each                   is an  -measurable 

function of   on  .  
 

Theorem 27. Let         be a sequence of continuous  -

Young functions defined on a compact set         with 

respect to a sequence of continuous maps              
               such that         converges 

uniformaly to a continuous function             and 
        converges uniformaly to a continuous map     
             . Then   is an  -Young function with 

respect to  . 

Proof. Assume that         is a sequence of continuous  -

Young functions with respect to a sequence of continuous maps 
        such that      and      uniformly on a 

compact set         and   and   are continuous on 

         Then             uniformaly on         

and for  -a.e.     

                             

is convex of   on        

             
    

             
   

   
    

               

   
   

             
   

   
   

              

and for each                   is an  -measurable 

function of   on  .  
 

C. Properties of  -Strong Young Functions  
 

Theorem 28. Let                 be  -strong Young 

functions with respect to                  . Then 

      and         are  -strong Young functions with 

respect to  . 
 

Theorem 29. Let             be a linear  -strong 

Young function with respect to                 
     . Then   is an  -strong Young function with respect to 

      and        . 
 

Theorem 30. Let             be a linear  -strong 

Young function with respect to                 
     . Then   is an  -strong Young function with respect to 

      and      . 

 

Theorem 31. Let                      be  -strong 

Young functions with respect to                  . 

Then          is an  -strong Young function with respect 

to  .  

 

Theorem 32. Let             be an  -strong Young 

function with respect to                          
   . Then   is an  -strong Young function with respect to 

          and          .     
 

Theorem 33. Let         be a sequence of continuous  -

strong Young functions defined on a compact set         

with respect to                   such that          

converges uniformaly to a continuous function           

  . Then   is an  -strong Young function with respect to  . 

Proof. Assume that         is a sequence of continuous  -

strong Young functions with respect to a map   such that    

   uniformly on a compact set         and   is 

continuous on        . Then            uniformaly 

on         and for  -a.e.       

             
   

           

is convex, continuous of   on      , 

             
   

                  

   
   

             
   

   
   

             

and for each                   is an  -measurable 

function of   on  .   

 

Theorem 34. Let             be a continuous  -

strong Young function defined on a compact set         

with respect to a sequence of maps                     

        such that         converges uniformaly to a map 

                 . Then   is an  -strong Young 

function with respect to  . 

Proof. Suppose that   is a continuous  -strong Young 

function with respect to a sequence of maps         such that 

     uniformaly on a compact set         and   is 

continuous on        . Then            uniformaly 

on         and for  -a.e.       

             
   

           

is convex continuous of   on      , 

             
   

                  

   
   

             
   

   
   

             

and for each                   is an  -measurable 

function of   on  .   

 

Theorem 35. Let         be a sequence of continuous  -

strong Young functions defined on a compact set         

with respect to a sequence of continuous maps              

               such that         converges 

uniformaly to a continuous function             and 
        converges uniformaly to a continuous map     
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             . Then   is an  -strong Young function 

with respect to  . 

Proof. Assume that         is a sequence of continuou  -

strong Young functions with respect to a sequence of 

continuous maps         such that      and      

uniformly on a compact set         and   and   are 

continuous on        . So,             uniformaly 

on         and for  -a.e.      

             
   

            

is convex continuous of   on      , 

              
   

                   

   
   

             
   

   
   

              

and for each                   is an  -measurable 

function of   on  .  
 

D. Properties of  -Orlicz Functions  
 

Theorem 36. Let                 be  -Orlicz 

functions with respect to                  . Then 

      and         are  -Orlicz functions with respect to 

 . 
 

Theorem 37. Let             be a linear  -Orlicz 

function with respect to                      . 

Then   is an  -Orlicz function with respect to       and 

     . 
 

Theorem 38. Let             be a linear  -Orlicz 

function with respect to                      . 

Then   is an  -Orlicz function with respect to       and 

       . 
 

Theorem 39. Let                      be  -

Orlicz functions with respect to                  . 

Then          is an  -Orlicz function with respect to  .  
 

Theorem 40. Let             be an  -Orlicz function 

with respect to                            . 

Then   is an  -Orlicz function with respect to           

and          . 
 

Theorem 41. Let         be a sequence of continuous  -

Orlicz functions with respect to                   

such that         converges uniformaly to a continuous 

function            . Then   is an  -Orlicz function 

withrespect to  . 

Proof. Assume that         is a sequence of continuous  -

Orlicz functions with respect to a map   such that      

uniformly on a compact set         and   is continuous on 

       . Then            uniformaly on         

and for  -a.e.       

             
   

           

 is convex of   on         

             
   

              

   
   

             
   

   
   

              

              for any                    is left 

continuous at 

                          

and for each                   is an  -measurable 

function of   on  .  
 

Theorem 42. Let             be a continuous  -

Orlicz function defined on a compact set         with 

respect to a sequence of maps                      
      such that         converges uniformaly to a map     

              . Then   is an  -Orlicz function with 

respect to  . 

Proof. Suppose that   is a continuous  -Orlicz function with 

respect to a sequence of continuous maps         such that 

     uniformaly on a compact set         and   is 

continuous on        . Then            uniformaly 

on         and for  -a.e.       

             
   

           

 is convex of   on        

             
   

              

    
   

              
   

   
   

              

              for any         and           is 

left continuous at 

                          

and for each                   is an  -measurable 

function of   on  .  
 

Theorem 43. Let         be a sequence of continuous  -

Orlicz functions defined on a compact set         with 

respect to a sequence of continuous maps              
              such that         converges uniformaly 

to a continuous function             and         con 

verges uniformaly to a continuous map             
     . Then   is an  -Orlicz function with respect to  . 

Proof. Assume that         is a sequence of continuous  -

Orlicz functions with respect to a sequence of continuous 

maps         such that      and      uniformly on a 

compact set         and   and   are continuous on    
       Then             uniformaly on         and 

for  -a.e.       

             
   

            

is convex of   on        

             
   

               

    
   

              
   

   
   

               

              for any        ,      is left 

continuous at 

                          

and for each                   is an  -measurable 

function of   on  .  

  

IV. RELATIONSHIPS BETWEEN  -CONVEX 

FUNCTIONS 
 

   In this section, we generalize the theorems in [9] to consider 

the relationships between  - -functions,  -Young functions, 

 -strong Young functions and  -Orlicz functions.  
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Theorem 44. If   is an  - -function, then   is an  -strong 

Young function.   
Proof. Assume             is an  - -function with  

a map                    So, for  -a.e.      

          is convex continuous of   on       satisfying  

                 
         

 
    

because 

   
    

         

 
  . 

 Letting    , we get 

               
         

 
   

         

 
     

By the squeeze theorem for functions, we get             

     because   is continuous at     and           

   for any        . Moreover, 

                
         

 
   

because  

   
   

         

 
  .  

Taking     , we have that 

                    
That is, 

   
   

           . 

Furthermore, for each                   is an  -

measurable function of   on   which completes the proof.  

                         

Remark 45. The converse of theorem 44 is not correct. That 

is, an  -strong Young function may not be an  - -function. 

For example, Let the function             be defined 

as           
   with the map             

      defined by             . Then   is an  -strong 

Young function but it is not an  - -function because for  -

a.e.      

   
   

    

 
    . 

 

Theorem 46. If   is an  -strong Young function, then   is an 

 -Orlicz function. 

Proof. Suppose that             is an  -strong Young 

function with a map                    Then for  -

a.e.               is convex continuous of   on       

satisfying                         for any         

because                 and  

   
   

            

and           is left continuous at       because  

   
   

             

Moreover, for each                   is an  -measurable 

function of   on  . Hence,   is an  -Orlicz function.   

                         

Remark 47. The converse of theorem 46 is not correct. That 

is, not every  -strong Young function is an  -Orlicz function. 

For instance, let the function             be defined 

as  

        
           
           

  

with a map                   defined by        
     . Then   is an  -Orlicz function but it is not an  -strong 

Young function because, for  -a.e.                .  

Theorem 48. If   is an  -Orlicz function, then   is an  -

Young function.     

Proof. Assume that             is an  -Orlicz 

function with a map                  . Then, for 

 -a.e.               is convex of   on       satisfying 

                                 , 

   
   

             

and           is left continuous at     We only need to 

show that  

   
    

             

In other words, we need to prove that  

                                 

For arbitrary    , consider  

                       . 

If     , then             for all         . Taking 

       , then               for all       . 

That is, 

   
    

            

If     , then             for all     and there exists 

       such that                 That is, for all 

              such that               . If 

            , then              for       and if 

            , then for         where      

           
 

    that 

                                    
 

 
   

because   is  -convex of   on      . Taking        , 

we get, for         

                                     

because           is increasing of   on        Furthermore, 

for each                   is an  -measurable function 

of   on  . Hence,   is an  -Young function.  
                              

Remark 49. The converse of theorem 48 is not correct. That 

is, not every  -Young function is an  -Orlicz function. For 

example, let the function                 be defined 

as 

                  
 
          

                                

  

with a map                           defined by 

                 . Then   is an  -Young function but 

it is not an  -Orlicz function because           is not left 

continuous at       where 

   
   

                                 

 

Corollary 50.  - -function   -strong Young function   -

Orlicz function   -Young function. 
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Corollary 51.  - -function   -strong Young function   -

Orlicz function   -Young function. 

 
 

V. MAIN RESULTS 
   

   In this section, we are going to study a class of Orlicz spaces 

equiped by  -luxemburg norms and generated by  -Young 

functions and then we establish their inclusion properties. 
   

Lemma 52. Let             be an increasing  -

Young function with respect to                 
      such that, for  -a.e.    ,                . Then, 

for  -a.e.                          . 

 

Lemma 53. Let                 be  -Young 

functions with respect to                   such 

that, for  -a.e.                    . So, for   -a.e.      

                        

 

A.  -Orlicz Spaces and Weak  -Orlicz Spaces 

   Let             be an  -Young function with 

respect to a map                  . The  -Orlicz 

space generated by   is defined by 

                                 

                  
 

      
        

 
        

and the weak  -Orlicz space generated by   is  

                                           

                        
 

                   

     

where     is the set of all  -measurable functions   from   to 

   such that            is a Banach space and 

                            
 

Example 54. We have seen from example 8-i  that        
       is an  -Young function with respect to the map 

            . Then the  -Orlicz space and the weak  -

Orlicz space generated by                 are equipped 

with the norm 

                  
 

     
         

 
         

     

for all                 and  

                        
 

                     

for all                     . 

If                  , we get  

                                         

                
 

 
 

 
 
 

         
 

       

 
 

 

for all              and  

                                 

                                                                     

                     
 

                 

Example 55. Let             be defined as 

        
          
        

  

with respect to                   such that 

        

      
                          

               
                 

  

Then, for  -a.e.    , that 

           
                            
            
            

  

is an  -Young function and the obtained spaces are 

           and                 for      . 

 

Theorem 56. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                              

and  

                                         

 

Theorem 57. If                 are  -Young 

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                              

and  

                                         

 

Theorem 58. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                                   

and if         is compact, then 

                                    

Proof. Let                  and let   be an increasing  -

Young function. Then, by Lemma 52, we have 

                                          

                  
     

        
 

   

       
        

 
     

   
 

       
        

 
        

Since   is arbitrary, we have  

   
 

                       

and                       with 

                        

Let                       and assume that         is 

compact. Then 
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That is,                   with                       .  

 

Theorem 59. If                 are  -Young  

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                   

and if         is compact, then 

                                    

Proof. Let                 . Then 

                                          

   
     

        
 

   

       
        

 
      

   
 

       
        

 
         

Since   is arbitrary, we have  

   
 

                       

and                       with 

                        

Let                       and assume that         is 

compact. Then 

  
 

       
        

 
    

    
 

                     

                        
 

                        

That is,                  with                       .  

 

B.  -Orlicz-Sobolev Space and Weak  -Orlicz-Sobolev 

Space 

   Let             be an  -Young function with 

respect to                    The  -Orlicz-Sobolev 

space                 generated by      is 

               

                     

                          

                    

     

 

for all                   and the weak  -Orlicz-Sobolev 

space is  

                         

                          

                              

                              

     

 

for all                       . 

If                  , we get the  -Sobolev space  

                             

                    

                     

equipped with the norm 

                

     

 

 
 

 

for all              and the weak  -Sobolev space  

                                             

                                              

     

                        

     

 

for all                    . 

 

Theorem 60. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                                  

and  

                                             

 

Theorem 61. If                 are  -Young 

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                  

and  

                                             

 

Theorem 62. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.   ,                 . Then  

                                       

and if         is a compact set, then    

                                        

 

Theorem 63. If                 are  -Young 

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                       

and if         is a compact set, then 

                                        

 

C.  -Orlicz-Morrey Space and Weak  -Orlicz-Morrey 

Space 

   Let             be an  -convex function with 

respect to                   and let         
      be a function such that      is almost decreasing and 

       is almost increasing and let   denote the ball 

                    . The  -Orlicz-Morrey space is  
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and the weak  -Orlicz-Morrey space is  

                                              

                  
 

     

       
 

                   

       
     

If                  , then 

                              

                                                                    

          
 

  
 

       
  
 

        
 

   

 
 

  

                                        

                       

               
 

   
 

          

       
  

If         , we get   

                               

                                         

If                   and          , we get the 

Morrey space 

                                               

          
 

  
 

  
  
 

        
 

   

 
 

 

and the weak Morrey space is 

                                       

                       

               
 

   
 

          

  
  

 

Theorem 64. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                                  

and  

                                             

 

Theorem 65. If                 are  -Young 

function with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                  

and  

                                             

 

Theorem 66. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                                       

and if         is a compact set, then 

                                        

Proof. Let                    and let   be an increasing 

 -Young function. By Lemma 52, we have 

                    

       
 

                    

       
 

 
 

       
  
 

       
        

 
        

Since   is arbitrary, then 

   
   

                    

       
   

and                         with 

                          . 

Let                         and         be a compact 

set. Then 

 

       
  
 

       
        

 
      

   
   

                    

       

    
   

                    

       
    

So,                    with 

                      .  

 

Theorem 67. If                 are  -Young 

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                       

and if         is compact set, then 

                                        

Proof. Let                   . Then 

                    

       
 

                    

       
 

 
 

       
  
 

       
        

 
        

Since   is arbitrary, we have 

   
   

                    

       
   

and                         with 

                          . 

Let                         and         be a compact 

set. Then 

 

       
  
 

       
        

 
      

   
   

                    

       

    
   

                    

       
    

So,                    with  

                      .  

 

D.  -Orlicz-Lorentz Spaces 

IAENG International Journal of Applied Mathematics, 50:1, IJAM_50_1_28

Volume 50, Issue 1: March 2020

 
______________________________________________________________________________________ 



 
 

   Let                 be an  -convex function with 

respect to                           and let    

            be a weight function and              
 

 
. 

The  -Orlicz-Lorentz space is: 

                                

                                        

 

 

     

and the weak  -Orlicz-Lorentz space is   

                                          

                                               

                        
for all          . 

If        for        , then  

                              

                                        

If              for      , we get the Lorentz space 

                             

and the weak Lorentz space 

                                       

And if                 and                  

 ,  then  

                           

                                     

 

Theorem 68. If             is an increasing  -Young 

function with respect to                       such 

that, for  -a.e.    ,                 . Then  

                                

and 

                                           

 

Theorem 69. If                 are  -Young 

functions with respect to                   such 

that, for  -a.e.    ,                      . Then  

                                

and 

                                           

 

VI. CONCLUSION 
 

   We have shown that the non  -functions, non Young 

functions, non strong Young functions and non Orlicz 

functions can be transferred using the  -convex theory  to  -

 -functions,  -Young functions,  -strong Young functions 

and  -Orlicz functions respectively. We also have shown that 

the Orlicz spaces can be generated by non-Young functions 

but  -Young functions with an appropriate map   to extend 

and generalize studying the classical Orlicz theory. Moreover, 

we have considered the inclusion properties of  -Orlicz 

spaces based on effects of the map  . 
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