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Abstract—The non-oscillatory central differencing scheme 

with the staggered version (STG) for solving a traffic flow 

model based on linear and non-linear velocity-density function 

is presented. This scheme is based on the staggered evolution of 

re-constructed cell averages and the scheme results in the 

second-order central differencing scheme, an extension along 

the lines of the first-order central scheme of Lax-Friedrichs 

(LxF) scheme. All numerical simulations presented in this 

paper are obtained by the finite difference method (FDM) and 

STG for the comparison of errors. The numerical results 

illustrate the effectiveness of the presented method. 

 

Index Terms—Central differencing scheme, non-linear 

velocity-density relation, staggered version 

 

I. INTRODUCTION 

OWADAYS, the fast growing number of vehicles on 

urban streets and roadways is related to economic and 

social implications, such as prevention of car crashes, 

pollution and energy control. Therefore, the traffic flow 

models have become attractive. In this paper, we consider a 

traffic flow model proposed by Lighthill and Whitham in 

1955, when they indexed the comparability of traffic flow 

on long crowded roads with flood movements in long rivers. 

A year later, Richards (1956) complemented the idea with 

the introduction of shock-waves on the highway, completing 

the so-called LWR model. It is based on a linear velocity-

density function. 

The LWR model based on linear velocity density relation 

was solved by the finite difference scheme such as 

Godunov’s scheme, upwind scheme and Lax-Friedrich 

(LxF) scheme [1]-[3]. Godunov’s scheme is the forerunner 

of all upwind schemes and subject to smaller numerical 

viscosity, but requires a Riemann solver as its building 

block, which is very difficult. Upwind schemes evaluate 

their cell averages over the same spatial cells at time step. 

On the other hand, it requires characteristic information 
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along the discontinuous interfaces of these spatial cells. 

There is the need to trace the  

 

characteristics fans (using Riemann solvers, field 

decomposition, etc.). The Lax-Friedrichs scheme is the 

other canonical first-order scheme, which is the forerunner 

of all central schemes. It is based on piecewise constant 

approximate solution. Unfortunately, the over numerical 

viscosity in the Lax-Friedrichs scheme yields a relatively 

poor solution.  

In order to increase the order of accuracy, Nessyahu and 

Tadmor [4] discovered a second order of accuracy that is 

better than Lax-Friedrichs scheme. The Nessyahu-Tadmor 

(NT) scheme replaces the piecewise constant approximation 

with van Leer’s MUSCL-type piecewise linear 

interpolation. This is followed by an exact evolution-LxF 

solver, which avoids using the time-consuming approximate 

Riemann solver. Thus, the NT scheme is called non-

oscillatory central differencing scheme, which retains the 

advantage of a simple, Riemann-solver-free recipe, and 

simultaneously gives high resolution comparable to the 

upwind results and Lax-Friedrichs results. 

Recently, Kabir et al [5] developed an LWR model 

changing linear velocity density relation to non-linear 

velocity density relation in an attempt to explain traffic 

phenomena. They used an explicit upwind difference 

scheme to solve this model. After that, Hasan et al [6] used 

Lax-Friedrichs scheme to solve the LWR model based on 

non-linear velocity density relation. They perform numerical 

experiments in order to verify some qualitative traffic flow 

behavior for various traffic parameters by decreasing the 

max velocity. However, the numerical viscosity of Lax-

Friedrichs scheme is considerably lower than the first-order 

upwind scheme. Unfortunately, this does not circumvent the 

difficulties with small time steps which arise with the LWR 

model based on non-linear velocity density relation. In 

addition, both upwind scheme and Lax-Friedrichs scheme 

give the first-order of accuracy.  
In this work, we present a non-oscillatory central 

difference scheme with the staggered version (STG) to solve 

a traffic flow model based on non-linear velocity-density 

function. The scheme can be viewed as natural extensions of 

the first-order Lax-Friedrichs scheme. The main idea of the 

central differencing scheme with the staggered version is the 

first interpolated by a piecewise polynomial function, in 

order to average the non-smooth parts of the computed 

solution.  In addition, this scheme also gives the second 

order of accuracy and without oscillation throughout the 

calculation.  
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II. GENERAL FEATURES OF THE MODEL 

The macroscopic model was the first order model 

developed by Lighthill, Whitham (1955) and Richards 

(1956), based on the assumption of mass density 

conservation, that is, the number of vehicles between any 

two points if there are no entrances or exits is conserved. 

This model could also describe the motion of cars along a 

road, provided a large-scale point of view is adopted so as 

to consider cars as small particles and their density as the 

main quantity to be looked.  The LWR model is given by 

 
0,

v

t x

 
 

 
        (1) 

where   is density, max0    , max (also called jam 

density) is the value at which cars are bumper to bumper 

and v  is  velocity. The velocity v  must be a given function 

of  to give 

  max

max

1 .v v





 
  

 
      (2) 

Equation (2) is based on linear velocity-density relation. 

If the velocity-density relationship is assumed to be non-

linear [4], then  

  max

max

1 , 1.

m

v v m





  
    
   

    (3) 

In this paper, we will set 2m  . Equation (3) becomes 

 
2

max

max

1v v





  
    
   

      (4) 

This model has the four desired properties: 

(1)   max 0v    

(2)    max0v v    

(3)  0
dv

d
  

(4)  
dq

d
 decreases as   increases, where q  is the flow 

rate. 

 

In this case the traffic flow can be computed by 
2

max

max

1q v v


 


  
     
   

            (5) 

The density wave velocity, 
2

max 2

max

3
1 ,

dq
v

d



 

 
  

 
       (6) 

yields both positive and negative wave velocities. The wave 

velocity decreases as the density increases (i.e.,
2

2
0

d q

d
 ). 

The maximum flow occurs when the density wave is 

stationary (density wave velocity equals zero). For this non-

linear velocity-density curve, the density at which the traffic 

flow is maximized, max

3


   and the speed is given by    

max

max

2

33
v v

 
 

 
. 

The maximum traffic flow is 

max

max max

2
,

3 3 3
q v




 
 

 
      (7) 

which occurs if bumper-to-bumper traffic moved at the 

maximum speed. 

  

Exact Solution of the Non-Linear PDE [5] 

The non-linear PDE is considered as an initial value 

problem (IVP) of the form 

2

max 2

max

1 0,v
t x

 




   
         

     (8) 

   0 0, .x t x         (9) 

The IVP of (8) and (9) can be solved with the method of 

characteristics as follows: 

The PDE in the IVP of (8) may be written as 

 
0.

q

t x

 
 

 
         (10) 

From chain rules, we can be written (10) as  

0,
dq

t d x

 



 
 

 
        (11) 

where 
2

max

max

1 .q v v


 


  
     
   

      (12) 

We substitute (12) into (11), then 
2

max

max

1 0.v
t x

  



   
    
    

      (13) 

From the derivative of  by t , we have 

0,
d dx

dt t x dt

   
  
 

       (14) 

where  
2

max 2

max

3
1 .

dx
v

dt





 
  

 
        (15) 

 

We can be solved (15), then  

 
2

max 02

max

3
1 ,x t v t x





 
   

 
      (16) 

where 
0x  is the constant.  

Equation (16) is known as the characteristics curve of the 

IVP of (8).  

Now from (14), we have 

0.
d

dt


           (17) 

We integrate (17) and then 

 , ,x t c            (18) 

where  c  is the constant. 

Since the characteristics through  ,x t also pass through 

 0 , 0x  and  ,x t c   is constant on this curve, we use the 

initial condition to write 

     0 0 0, ,0 .c x t x x          (19) 
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Equations (18) and (19) can be written as  

   0 0, .x t x          (20) 

The exact solution of (8) is calculated by using (16) and 

(20), then 

 
2

0 max 2

max

3
, 1 .x t x v t


 



  
     

  
         (21) 

III. THE CENTRAL DIFFERENCING SCHEME OF THE STAGGER 

VERSION 

Chintaganon and Yomsatientkul [7] presented that the 

central differencing scheme with the staggered version 

(STG) for solving the hyperbolic partial differential 

equations. 

The general form of the hyperbolic equation is given by  

 
0,

f uu

t x


 

 
         (22) 

where  f u  is the flux function. 

We discretized the x t  plane by choosing a mesh width 

h x   and a time step k t  , and defined the discrete 

mesh points  ,j nx t by 

, ..., 1,0,1,...

, 0,1,2,...

j

n

x jh j

t nk n

  

 
        (23) 

It will also be useful to define 

1

2

1

2

2

.
2

j
j

n
n

h
x x

k
t t





 

 

         (24) 

We develop the approximations 
n m

ju R  to the solution 

 ,j nu x t  at the discrete grid points. The pointwise values of 

the true solution will be denoted by 

 , .n

j j nu u x t           (25) 

We define the approximate solution 1nu   at time 1nt   by the 

averaging this exact solution at time 1nt  , 

 
11

1 1 1

2

1
, , .

j

j

x
n

n j j
xj

u u x t dx x x x
h



 


      (26) 

The integral form of the conservation law over a typical cell 

 1 1, ,j j n nx x t t 
    yields,                                                                           

      

  

1 1 1

1

1

1

, , ,

, .

j j n

j j n

n

n

x x t

n n j
x x t

t

j
t

u x t dx u x t dx f u x t dt

f u x t dt

  







 



  


 

                      (27)  

We divide (27) by h  and use (26), then 

 

     

1

1 1

1

1

2

1

1
,

1
, , .

j

j

n n

n n

x
n

n
xj

t t

j j
t t

u u x t dx
h

f u x t dt f u x t dt
h



 









  
  



 

 

 (28) 

At each time level we reconstructed  , nu x t  on the grid cell 

1j jx x x   to a piecewise linear approximation of the form 

           
1

, ,j j j jL x t u t x x u
h

        (29) 

where 

      
1

, .j ju u x x t O h
h x


   


      (30) 

We substituted (29) into (28), then 

   

     

1
1

2

1

2

1 1

1

1 1

2

1

1
, ,

1
, , .

j j

j
j

n n

n n

x
x

n

j j
x xj

t t

j j
t t

u L x t dx L x t dx
h

f u x t dt f u x t dt
h

 



 








 
   

  

  
  

 

 

   (31) 

The first two linear integrands on the right of (31) can be 

integrated exactly and the last two integrands on the right of 

(31) can be integrated approximately by the midpoint rule. 

We have 

   
1 1

1 2 2
1 1 1 1

2

1 1
,

2 8

n n
n n n

j j j j j j
j

u u u u u f u f u
 



  


    
          

     

                                 (32) 

where 

.
k

h
   

According to Taylor expansion and the conservation law, 

we have 
1

2 ,
2

n
n

j j ju u f


          (33) 

where 

    
1

, .j jf f u x x t O h
h x


   


      (34) 

In order to ensure that these schemes are also non-

oscillatory in the sense to be described below, our numerical 

derivatives ,j jf u  and 
1ju 
 should be satisfied by minmod 

limiters. It is defined as follows 

 

     

,

1
, ,

2

ju MinMod x y

sign x sign y Min x y

 

    

    (35) 

  where 

 

1, 0

0, 0

1, 0.

x

sign x x

x

 


 
 

        (36) 

 

IV. CONVERGENCE THEORY 

1) Upwind scheme  

Here, we consider the non-linear PDE in (11) as 

  0q
t x

 


 
 

 
         (37) 

By upwind scheme, we use Forward Time Backward Space 

(FTBS) scheme and, we have  

 
1

1
0

n n n n

j j j j
q

t x

   





  

  
   

      (38) 
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   1

1

n n n n

j j j j

t
q

x
    




  


     (39) 

    
 1

11n n n

j j jp p  

           (40) 

where 

       .
t

p q
x







          (41) 

By Fourier or Von Neumann Analysis, we can find the 

solution in the form of 

, 0, 1,..., 0, 1,...,n nk i mh

j e e i n            (42) 

where t nk , x mh ,  is a constant and   is a wave 

number. 

The stability characteristics can be studied using just this 

form for the error with no loss in generality. To find out 

how each error varies in steps of time, substitute (42) into 

(40), we have 
     1 1

1 .
n k i m hi mh nk i mh nke e p e e pe e

     
         (43) 

After simplification (43), we have 

 1 cos sinke p p h ip h            (44) 

   

   

   

  

   

 

2 2 2

2

2 2 2 2

2 2 2

2

2

2

2

1 cos sin

1 2 1 cos

cos sin

1 2 2 cos 2 cos

1 2 1 cos 2 1 cos

1 1 cos 2 2

1
1 1 cos 2 2 2

2

1 4 1 sin .

ke p p h p h

p p p h

p h p h

p p p h p h p

p h p h

h p p

h p p

p p h

  



 

 

 







   

   

 

     

    

   

   

  

  (45) 

The condition for stability is given by 
2

1.ke           (46) 

We can use (45) and the condition (46), we get  

  21 4 1 sin 1p p h           (47) 

 4 1 0.p p             (48) 

The equation (48) implies that 0p  and 1p  . Therefore, 

the necessary condition for stability of FTBS scheme will be 

true which the following inequality (49) holds 

  1
t

q
x




 


          (49) 

The characteristic speed,  q   must be positive. It is 

evident that               

 
2

max 2

max

3
1 0.

n

j
v





 
  
 
 

        (50) 

Here, 
maxv  is essentially positive.  

Therefore, we have 

 
2

2

max

3
1 0

n

j


           (51) 

max 3 .n

j            (52) 

Equation (52) is the physical constraints.  

The physical constraints can be rewritten as  

 max 0max , 3.jc x c             (53) 

In addition, we also find that 

  max .n

jq v            (54) 

Then the necessary condition for the stability of FTBS 

scheme becomes   

max 1.
t

v
x





          (55) 

 

2) The second-order central differencing scheme with    

      the staggered version (STG) 

We consider the non-oscillatory high-resolution central 

differencing approximations of the scalar conservation law 

(22). The CFL condition to guarantee the Total Variation 

Diminishing (TVD) property of the STG scheme based on 

the minmod limiter. We recall that TVD is a desirable 

property in the current setup, for it implies no spurious 

oscillations in our approximate solution. 

A necessary condition is 

 max 0.32,j
j

a u           (56) 

where 
t

x






 and the flux numerical derivative f   are 

chosen by 

  .j j jf a u u            (57) 

The numerical derivative  
ju   is chosen by 

1 1
, .

n n n n

j j j j

j

u u u u
u MinMod

x x

 
      

   

     (58) 

See [4] for details. 

For a traffic flow model based on non-linear velocity-

density function, the following (8), we have a flux function 

as follow: 

 
2

max 2

max

1f v


 


 
  

 
       (59) 

and 

 
2

max 2

max

3
1 .ja v






 
  

 
        (60) 

Therefore, the sufficient condition of a traffic flow model 

based on non-linear velocity-density function is shown in 

below  

max 0.32.
t

v
x





         (61) 

 

V. NUMERICAL EXPERIMENTS 

This section presents the examples of continuous initial 

condition and discontinuous initial condition [8] of the 

traffic flow model based on non-linear velocity density 

relation (8). 

For the numerical experiments, the error is measured by 

mean absolute error (MAE) and it is defined by    

1 ,

n

i

i

e

MAE
n




         (62) 
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where 
ie  is the difference between 

e and
n . In this 

context, 
e is the exact solution and

n is the numerical 

solution computed by upwind scheme (FTBS) and STG 

scheme.  

 

A. Continuous Initial Condition 

A traffic flow model based on non-linear velocity density 

relation is investigated by comparing the results with 

numerical solutions in upwind scheme (FTBS), STG 

scheme and exact solutions. We study the behavior of 

solutions of non-linear velocity density relation as follows, 

2

max 2

max

1 0.v
t x

 




   
         

      (63) 

We consider the exact solution (21) with the initial 

condition  0

1

2
x x  , we have 

   
2

2

0 0 max 2

max

1 3
, 1

2
x t x x v t


 



  
      

  
 

   
2

2 max

max 2

max

1 3
,

2 2

v t
x t x v t





    

 2max

max2

max

3 1
1

2

v t
x v t



 
   

 
 

 

 max

max

2

max

2, .
3

1
2

x v t

x t
v t








 
 

 

        (64) 

Equation (64) is the exact solution of (63). 

In this problem, we can use the left-hand boundary and the 

right-hand boundary by following below equations 

 

 max

max

2

max

2,
3

1
2

a

a

x v t

x t
v t








 
 

 

        (65) 

and   

 

 max

max

2

max

2, ,
3

1
2

b

b

x v t

x t
v t








 
 

 

       (66) 

where 
ax  is the start of distance and 

bx  is the final distance.  

We simulated the situation on Pracha Uthit road, 

Bangkok, Thailand. The maximum velocity that the law of 

Thailand permits is 80 km/hour. On the other hand, the 

maximum velocity of cars that can move in the morning is 

about 40 km/hour. Thus, we consider these two cases for the 

numerical experiments.  

All numerical experiments of problem A1 and A2 were 

performed in the maximum density 
max 250  vehicles/km 

following by the physical constraints (53). 

We assumed the grid spacing with a step size 

100x h   meters 0.5 for space and 1t k   minute 

=0.001 for time to satisfy the necessary condition of both 

FTBS scheme and STG scheme. 

 

Problem A1: Let us choose  the  maximum  speed  which  

is 

max 80v  km/hour. We performed the numerical experiment 

for 6 minutes. Table I presents the mean absolute error 

between exact and numerical solution of upwind scheme 

(FTBS) and STG scheme.  

 
TABLE I 

MEAN ABSOLUTE ERROR OF FTBS AND STG FOR PROBLEM  A1 

x  t  MAE of FTBS MAE of STG 

0.500 0.00100 8.7  103 2.0  103 

0.250 0.00050 8.1  103 5.4  104 

0.100 0.00020 4.4 103 1.4  104 

0.025 0.00005 3.0  103 3.9  105 

 

The   density  of   cars   and   velocity  of    cars   in   domain 

 [0 km, 10 km] are shown in Fig. 1 and Fig. 2 respectively. 

The numerical results as shown in the figures are obtained 

by STG schemes.  

 
Fig. 1.  Density of cars for 6 minutes in 10 km highway for Problem A1 

with 0.5x  and 0.001.t   

 
Fig. 2.  Velocity of cars for Problem A1 with 0.5x  and 0.001.t   
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Problem A2 : In this case, we reduced  half of the 

maximum speed to 
max 40v  km/hour but maintained 

density 
max 250   vehicles/km. We performed the 

numerical experiment for 6 minutes. Table II presents the 

mean absolute error between the exact and numerical 

solution of upwind scheme (FTBS) and STG scheme. 
 

TABLE II 

MEAN ABSOLUTE ERROR OF FTBS AND STG FOR PROBLEM A2 

x  t  MAE of FTBS MAE of STG 

0.500 0.00100 4.4  103 2.0  103 

0.250 0.00050 4.1  103 5.4  104 

0.100 0.00020 3.5  103 1.4  104 

0.025 0.00005 2.0  103 3.9  105 

   

The   density  of   cars   and   velocity  of    cars   in   domain  

[0 km, 10 km] are shown in Fig. 3 and Fig. 4 respectively. 

The numerical results as shown in the figures are obtained 

by STG schemes.   

 

 

Fig. 3.  Density of cars for 6 minutes in 10 km highway for Problem A2 

with 0.5x  and 0.001.t   

 

 
Fig. 4.  Velocity of cars for Problem A2 with 0.5x  and 0.001.t   

 

 

Table I, II show the mean absolute errors. We can see that 

the mean absolute error decreases as the grid sizes x and 

t decrease. Moreover, the error of STG scheme is less than 

that of FTBS scheme. Therefore, the numerical results as 

shown in the figures are obtained by STG. The density of 

cars is presented in Fig. 1 and Fig. 3. We found that the 

density of cars would increase and the density of the cars at 

10 kilometers would be approximately 220 cars similar to 

the two cases. If the velocity is reduced by half, the 

following velocity will also fall by half.  

 

B. Discontinuous Initial Condition 

Let us consider the initial condition 

 
, 0

,0
, 0.

l

r

x
x

x







 


          (67) 

Case 1: 
max0 l r      

In this case, there is a unique entropy shock wave solution 

given by 

 
,

,
, ,

l

r

x st
x t

x st







 


       (68) 

where  

 2 2

max 2

max

1
1 2 .l l r rs v    



 
    

 
    (69) 

Case 2: 
max0 r l      

In this case, the solution is usually known as a rarefaction 

wave solution given by 

 

 

     

 

,

,

, ,

l l

l r

r r

x f t

w f t x f t

x f t

 

    

 




   




    (70) 

where  w  is a smooth function and 
x

t
  . It is defined 

by 

 
2

max

max

1 .
3

w
v

 


 
  

 
       (71) 

More generally, for arbitrary flux function in (70) is defined 

by 

 
2

max 2

max

3
1 l

lf v





 
   

 
        (72) 

and 

 
2

max 2

max

3
1 .r

rf v





 
   

 
       (73) 

In these problems, we can use ghost cells to cause the 

numerical method to compute the correct flux at the right-

hand boundary. We carry extra cells 1,...,j j k   where k  

is the width of the finite difference stencil, and set 

1 , 1 .n n

j j j k      Similarly, at a nonreflecting boundary 

on the left, we can set the ghost cell values to the solution in 

the first cell inside the domain. 

We simulated the situation on Pracha Uthit road, 

Bangkok, Thailand. The maximum velocity that the law of 
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Thailand permits is 80 km/hour and it was performed in the 

maximum density 
max 250  vehicles/km. 

We assumed the grid spacing with the step size 

100x h   meters 0.5 for space and 1t k   minute 

=0.001 for time.  

Problems B1 and B2 were examples of traffic flow, 

which were moving cars on the right followed by empty 

road behind. We called the position of traffic jam at 0x  . 

We obtained a shock wave moving to the right with positive 

speed. 

 

Problem B1: Let us consider the initial condition 

 
0, 0

,0
180, 0.

x
x

x



 


       (74) 

This situation we obtain the velocity from (4), 

 
80,

38.528, .

x st
v

x st



 


        (75) 

The exact solution of this problem is a shock wave of the 

form discussed in (68) and (69). The numerical solutions are 

shown in Fig. 5 and Fig. 6. 

 
Fig. 5.  Density of cars in 10 km highway for Problem B1 with 

0.5x  and 0.001.t    

 
 Fig. 6.  Velocity of cars in 10 km highway for Problem B1 with 

0.5x  and 0.001.t   

 

 

Problem B2: Let us consider the initial condition 

 
40, 0

,0
180, 0.

x
x

x



 


       (76) 

The corresponding numerical solutions are shown in Fig. 7 

and Fig. 8. 

 
Fig. 7.  Density of cars in 10 km highway for Problem B2 with 

0.5x  and 0.001.t 

 

Fig. 8.  Velocity of cars in 10 km highway for Problem B2 with 

0.5x  and 0.001t  . 

 

From the numerical results, the empty road behind did not 

influence moving cars to the right. The solution was a shock 

with positive propagation speed, located at the end of the 

queue of cars; drivers braked and entered the congested 

region, where the car velocity smoothly decreased. 

Suppose that traffic is lined up behind a red traffic light. 

We called the position of traffic light 0x   since the cars 

were bumper to bumper behind the traffic light. Assume that 

the cars are lined up indefinitely and of course, are not 

moving. If the light stops the traffic long enough, then we 

may also assume that there is no traffic ahead of the light.  
Problems B3-B5 were examples of traffic flow that was 

similarly to red light situation. In the situation, cars start 

moving as light turns green. This means that cars located to 

the left are initially stationary but can begin to accelerate 

once the cars in front of them begin moving. The exact 

solution of these problems are a rarefaction wave of the 

form discussed in (70)-(73). 

 

Problem B3: Let us consider the initial condition 
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 
180, 0

,0
0, 0.

x
x

x



 


        (77) 

The corresponding numerical solutions are shown in Fig. 9 

and Fig. 10. 

 
Fig. 9.  Density of cars in 10 km highway for Problem B3 with 

0.5x  and 0.001t  . 

 
Fig. 10.  Velocity of cars in 10 km highway for Problem B3 with 

0.5x  and 0.001t  . 

 

Problem B4: Let us consider the initial condition 

 
180, 0

,0
145, 0.

x
x

x



 


        (78) 

The corresponding numerical solutions are shown in Fig. 11 

and Fig. 12. 

 

 
Fig. 11.  Density of cars in 10 km highway for Problem B4 with 

0.5x  and 0.001t  . 

 
Fig. 12.  Velocity of cars in 10 km highway for Problem B4 with 

0.5x  and 0.001t  . 

          
Problem B5: Let us consider the initial condition 

 
250, 0

,0
0, 0.

x
x

x



 


        (79) 

The corresponding numerical solutions are shown in Fig. 13 

and Fig. 14. 

 

Fig. 13.  Density of cars in 10 km highway for Problem B5 with 

0.5x  and 0.001t  . 
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 Fig. 14.  Velocity of cars in 10 km highway for Problem B5 with 

0.5x  and 0.001t  . 

 

From the numerical results, these problems described a 

traffic light controlling a junction. Since, behind the light a 

lot of cars arrived during the red light period. If the traffic 

light turned green, the cars behind the light accelerated until 

they reached the velocity fitting to the traffic situation 

ahead. We knew the flow at the traffic light, the number of 

cars passing per hour is
max max

2

3 3
v

t



. For a one-minute 

light, using  
max 250   vehicles/km and 

max 80v  km/hour, 

the number of cars of Problems B3-B5 would be about 128 

cars.  

 

VI. CONCLUSION 

The traffic flow model based on non-linear velocity-

density function, which is a quasi-linear first order partial 

differential equation, was used to predict the density and 

velocity profiles at the certain points of a highway 10 km 

after 6 minutes. 

We found that the numerical solutions obtained by the 

upwind scheme (FTBS) and STG scheme converge to the 

exact solution and mean absolute errors tend to zero when 

the grid sizes x and t  decrease. Moreover, the error of 

STG scheme was less than upwind scheme (FTBS). 

Therefore, the numerical results as shown in the figures 

were obtained by STG scheme. 

Numerical simulations could verify the qualitative 

behavior of different flow variables in our models and the 

outcome of different situations of the model was presented. 

All problems of the numerical solutions for non-linear 

velocity density function were solved by STG scheme. The 

results showed that the density of cars increased while the 

velocity of cars decreased. 

 

. 
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