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Abstract—Popularity of social networks like Facebook,
LinkedIn, Twitter, Instagram, WhatsApp is increasingly in-
creasing day by day. Social network scholars are very much
interested to capture the uncertainties of social network. The
neutrosophic set is a well known tool to handle and rep-
resent uncertainties in information due to indeterminateness
or incompleteness. The main approach of our study is to
investigate the neutrosophic approach to deal the uncertainties
that may exist in social network. In this work, we introduce a
neutrosophic model to present the social network using directed
neutrosophic graph. We call this directed neutrosophic social
network (DNSN). The centrality of actors play a very important
theatrical role in social network analysis. In this paper, we
introduce some centrality measures for DNSN, because DNSN
where arcs are associated with directed neutrosophic relation
would consist many information. We describe some new cen-
trality measures such as neutrosophic out degree centrality,
neutrosophic in degree centrality, neutrosophic out closeness
centrality and neutrosophic in closeness centrality DFSNs.
We also investigate about directed neutrosophic relation and
connectivity for DNSN. We also present the robustness and
validness of our proposed centrality measurement for DNSN by
describing this technique to some directed neutrosophic graph
and determine satisfactory results.

Index Terms—visual-servoing, tracking, biomimetic, redun-
dancy, degrees-of-freedom.

I. INTRODUCTION

In twenty first century, people are now connected more
even though online social networks with the smart mobile
phones in our daily life. It is basically a platform for
interconnecting with huge number of people in everywhere
in the world. We exchange information of several issues
and topics in social network which helps for e-commerce
and e-business, political and social campaigns, influential
players (researchers, engineers, employees, organizations,
etc.), future events, alumni, etc.

A simple social network consists of a collection of social
units ( social nodes or vertices) describing individual, groups,
companies, etc, which are interconnected by arcs (links or
edges) describing relationship between two social units. The
structure of social network with social units (actors) and
their relations are generally modeled as simple crisp graphs.
We usually refer this graph as sociogram in sociology.
In a sociogram, social units (nodes/actors) and relations
respectively are represented by nodes and arcs of a graph.
Graphs are naturally used to model the social network as
it is efficient and useful graphical method to describe how
objects (items or things) are either logically or physically
interconnected together. However, uncertainties may exist in
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description of any social unit and their relationship. Classical
graph is unable to model the uncertainties of the social
network properly. The fuzzy set is an useful technique to
the handle the uncertainties in information of any real life
problem.

In many cases, the social network can be represented by
fuzzy graph defined as fuzzy social network (FSN) usages
type-1 fuzzy set as edge weight. The degree of membership
of a type-1 fuzzy set [1], [2] is crisp (real number), which
is determined by human perception. There are several types
of uncertainties in the membership grade. It is very hard to
evaluate the proper membership grade of a fuzzy set. Neu-
trosophic set is able to handle and represent this uncertainty.

Smarandache [3] have described the idea of neutrosophic
set (NS). NS is used to deal and handle the uncertain
information in the real world problems due to incomplete-
ness, indeterminacy, impreciseness and inconsistency. It is
described by three member function: truth membership grade
(T (B)), an indeterminate membership grade (I(B)) and
a false membership degree (F (B)). The values of T (B),
I(B) and F (B) are independent and within the nonstandard
unit interval. The NS modeling is a well known method
for handing the uncertainties in real life scenarios because
NS can work not only inconsistent information and it can
also handle the incompleteness and indeterminacy of an
information [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17].

The analysis of social network is an important study for
mapping and determining of relations and position among
the connected social units. It helps to determine the signif-
icance of different social units (actors) in their network or
communications and it also describes their opportunities of
relationship. The less constraints of a social unit (person), the
social node will be in more favorable position to exchange
the information.

In the study of social network, a problem of finding the
significant social units of that social network have been
researched for a several years. For that purpose, the idea of
the centrality measure of a node appeared in a network. The
social network analysis assumes very closely related to the
ideas of centrality and ability as person in a social network.
It describes us that who is in the network, who works as
a leader in the network, who works as a mediator in the
network, who works almost isolated in the network, or who
appears central in the network.

Many social scientists have introduced many types of cen-
trality measurements in social network. Degree, betweenness
and closeness of a social unit are the most important issues
in the area of social network analysis. The degree centrality
of a social unit/individual/person is used to measure the level
of popularity and communicating activity, distinguishing the
centrality of a social unit based on the degree. The closeness
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centrality of a social unit is the sum of the lengths of
the shortest path between a social unit to other rest of the
social units. The lower value of closeness centrality is, the
higher the centrality value. Closeness centrality measures
the independency in communication and relationship or
bargaining between the social units. It is basically used to
measure the possibility of communicating with other social
units calculating on a minimal number of intermediate social
units. The betweenness centrality of social unit is centrality
measurement that finds the number of times that specific
social unit lies in the shortest path from the rest of the social
units. It measures the level of control of communication of
social unit. It is used to find the social unit who influences
the others units.

Centrality measurement is applied mainly in social net-
work analysis and also in behavioral sciences. However, it
is used in computer science, biology, politics, management,
chemistry, economics and so on. Stephenson and Zelen [8]
have introduced the the concept of centrality of a node
based on the shortest path between the nodes. They have
also introduced a measurement using the idea of data as it
is applied in the statistical estimation. This have used the
length of path among two the social units in their defined
measurement and the length of each and every path based
on the data consisted in it.

Bonacich [18], [19] have proposed an another idea of
centrality measurement of a social node. He has introduced
the centrality measurement of different social nodes by
applying the eigenvector. The eigenvector is linked with the
highest eigenvalue in the adjacent matrix. Brunelli et al. [20]
proposed an efficient and robust measurement of centrality.
Their defined centrality is calculated based on the level
influence of other social units according to their value of
eigenvector centrality. Sohn and Kim [21] have introduced a
robust technique to determine the zone of centrality measure
in an urbanized place. Kennarrec et al. [22] have proposed
a new type of centrality measurement. They have introduced
the the idea of the centrality of second order. It can be
calculated in a distributed way. Qi et al. [23] have introduced
a new type of centrality measure for weighted networks.
They have defined this centrality as Laplacian centrality mea-
sure. It measures the importance between local and global
characterization of a social node. The main disadvantage of
Laplacian centrality is that it cannot be used in directed social
networks. Pozo et al. [24] have proposed an another type of
centrality measures of a directed social network based on
the game theory. Landherr et a1. [25] have described the 5
types of centrality measurements. Those centrality measures
are based of three necessities for the centrality measures.

Since the social networks in real life scenarios are often
uncertain, the model of real life social network is very
difficult and always challenging. Fuzzy set is an useful tool
to deal the uncertainties in real world problems. The idea of
a fuzziness in social network and the techniques to analysis
those social networks have attracted many researchers in last
few years. Nair and Sarasarnma [26] used the fuzzy set
theory to analysis the social network. They have modeled
the undirected social network in fuzzy environment using
fuzzy graph where the social units are represented as actors
or nodes or vertices and the relationship between the social
units are represented as the edges or arcs or links. Liao and

Hu [27] have introduced the idea of undirected FSN and
described some properties of it. They have described some
fundamental definition and relevant theory for future study of
the FSN. Samanta et al. [28], [29], [30], [31], [32] have done
lots of researches in the domain of fuzzy social network.
Fan et al. [33] have presented the regular and structural
equivalence in an undirected fuzzy social networks. Liao
et a1. [34] have modified the idea of centrality measure to
the fuzzy environment. They have introduced the Definition
of three types of fuzzy centrality: degree, betweenness and
closeness in an undirected fuzzy social networks. Kundu and
Pal [35] have represented the social network with a set of
granules. They have used the fuzzy set for describing the
granular. They have defined this model as fuzzy granular
social network. Hu et a1. [36] have modified the conception
of centralization and centrality to the fuzzy environment.
They have described the closeness centrality and group
closeness centrality in an undirected FSNs. Hu et al. [37]
have extended the idea of fuzzy centrality in directed fuzzy
social network. They have introduced some new Definition
of fuzzy centrality measurement defined as in degree, out
degree centrality, in closeness and out closeness centrality in
fuzzy environment.

Neutrosophic set [38], [39], [40] is a well known and
popular theory which one can deal the natural phenomenon
of imprecision and uncertainty in real world problem. Neu-
trosophicness is extended version of fuzziness to handle the
uncertainty. The main objective of this work is to introduce
a model of social network using directed weighted neutro-
sophic graph which will be very simple to model and analysis
in real life scenarios.

To the best our information, there exists no study on social
network using neutrosophic graph. In this study, we propose
a model to express the social network based on directed
neutrosophic graph. We define this social network as directed
neutrosophic social network (DNSN). The centrality of social
unit acts a significant role to analysis in social network.
Some new centrality measures are introduced for DNSN,
because DNSN where link between social units are joined
with directed neutrosophic relation would consist several
information. We describe some new centrality measures such
as neutrosophic out degree centrality, neutrosophic in degree
centrality, neutrosophic out closeness centrality and neutro-
sophic in closeness centrality in DFSNs. We also investigate
about directed neutrosophic relation and connectivity for
DNSN. We also present the validness and robustness of our
proposed centrality measure for DNSN by describing this
technique to some directed neutrosophic graph and determine
satisfactory results.

II. PRELIMINARIES

Definition 1: The neutrosophic set is described by three
membership functions;: TB(m), IB(m) and FB(m). Here,
TB(m), IB(m) and FB(m) are true, indeterminate and
false membership functions which are always in the interval
]−0, 1+[ respectively.
−0 ≤ sup TB(m)) + sup IB(m) + sup FB(m) ≤ 3+ (1)

Here, ξ represents an universal set and B represents a
neutrosophic set [3] on the universal set ξ.
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Definition 2: Let B represents the single valued neutro-
sophic sets (SVNs) [41] B on the ξ is described as following

B = {〈m : TB(m), IB(x), FB(m)|m ∈ ξ〉} (2)

The functions TB(m) ∈ [0, 1], IB(m) ∈ [0, 1] and FB(m) ∈
[0, 1] are defined as degree of truth membership, degree of
indeterminacy membership and degree of falsity membership
of x in A, satisfy the following condition:
−0 ≤ sup TB(m) + sup IB(m) + sup FB(m) ≤ 3+ (3)

Definition 3: Let B = {〈TB(m), IB(x), FB(m)|〉} is a
SVN, The score function S [42] of SVN B is computed
using the value of truth membership (TB(m)), indeterminacy
membership (IB(x)) and falsity membership (FB(m)) and
it is calculated as follow:

S(B) =
1 + p · q

2
p = 1 + (TB(m)− 2IB(m)− FB(m)) (4)
q = (2− TB(m)− FB(m))

III. PROBLEM FORMULATION

In simple social networking analysis, we have used for
binary relations in which a two social units is either con-
nected or disconnected. However, the relationship between
two social units is generally vague in nature. Many re-
searchers have used fuzzy set and fuzzy graph to describe this
vagueness. However, we cannot model the uncertainties due
inconsistent information and indeterminate information about
any real life problem using fuzzy graph. The neutrosophic
set theory, proposed by Smarandache [43] is desirable for
handling this type of uncertainties and imprecision’s related
with information relating several parameters.

Definition 4: An undirected neutrosophic social net-
work is described as an undirected neutrosophic rela-
tionship structure G̃un =

(
X, Ỹun

)
, where X =

{x1, x2, ..., xn} is a nonempty set of social units, and

Ỹun =

 ỹ11 · · · ỹ1n
...

. . .
...

ỹn1 . . . ỹnn

 is a undirected neutrosophic

relationship on X .
Several neutrosophic relationships are directional. A neu-

trosophic relationship is directional if there exists some ties
from one social actor to mother node.

Definition 5: A directed neutrosophic social network is
described as a neutrosophic relationship structure G̃dn =(
X, Ỹdn

)
, where X = {x1, x2, ..., xn} is a non-empty set

of social units, and Ỹdn =

 ỹ11 · · · ỹ1n
...

. . .
...

ỹn1 . . . ỹnn

 is an

undirected neutrosophic relationship on X .
We have described two types of neutrosophic social net-

work: undirected and directed. The main conceptual dif-
ference between two type of neutrosophic social networks
is considered in directed neutrosophic social network and
undirected neutrosophic relation is considered in undirected
neutrosophic social network. Due to this reason, ẽxy is and
ẽyx are equal in undirected neutrosophic social network.
However, ẽxy is and ẽyx are not always equal in directed
neutrosophic social network.

IV. THE NEUTROSOPHIC DEGREE CENTRALITY
ANALYSIS OF DIRECTED NEUTROSOPHIC SOCIAL

NETWORK

In this section, we present measurement of neutrosophic
in degree centrality, neutrosophic out-degree centrality and
neutrosophic degree centrality, respectively, in DNSN.

Definition 6: Let G̃dn =
(
V, Ẽdn

)
be a DNSN and the

single valued neutrosophic set (SVNS) is used to represent
the arc lengths of G̃dn. The sum of the lengths of the arcs that
are adjacent to a social node vx is calculated which is noting
but a SVNS. The neutrosophic value of node vx, d̃I (vx), is
calculated as follows.

d̃I (vx) =
n∑

y=1,y 6=x

ẽyx (5)

The symbol
∑

refers to an addition operation of SVNS
and ẽyx denotes a SVNS associated with the arc (i, j).
d̃I (vx) =

(
dTI (vx) dII (vx) , dFI (vx)

)
is an another SVNS

which represents the neutrosophic in degree centrality
(NIDC) of node vx. The score value of the corresponding
SVNS is determined and this score value is called as the
NIDC of the node vx.

d̃sI (vx) =
1 + p · q

2
p =

(
dTI (vx)− 2dII (vx)− dFI (vx)

)
(6)

q =
(
2− dTI (vx)− dFI (vx)

)
Here, d̃sI (vx) represents the NIDC of node vx.

Definition 7: Let G̃dn =
(
V, Ẽdn

)
be a DNSN and the

SVNS is used to represent the arc lengths of G̃dn. The sum of
the lengths of the arcs that are adjacent from a social node vx
is calculated which is noting but a SVNS. The neutrosophic
value of node vx, d̃O (vx), is calculated as follows.

d̃O (vx) =
n∑

j=1,j 6=i

ẽyx (7)

The symbol
∑

refers to an addition operation of SVNS
and ẽyx denotes a SVNS associated with the arc (i, j).
d̃O (vx) =

(
dTO (vx) dIO (vx) , dFO (vx)

)
is an another SVNS

which represents the NIDC of node vx. The score value of
the corresponding SVNS is determined and this score value
is called as the NIDC of the node vx.

d̃sO (vx) =
1 + p · q

2
p =

(
dTO (vx)− 2dIO (vx)− dFO (vx)

)
(8)

q =
(
2− dTO (vx)− dFO (vx)

)
Here, d̃sO (vx) represents the neutrosophic out degree cen-
trality of node vx.

Definition 8: Let G̃dn =
(
V, Ẽdn

)
be a DFSN and the

SVNS is applied to describe the edge weights of G̃dn. The
sum of NIDC and NODC of node vx is called neutrosophic
degree centrality (NDC) of vx. The NDC of node vx, d̃ (vx),
is described as follows.

d̃ (vx) = d̃sI (vx) + d̃sO (vx) (9)

Here, d̃ (vx) is the NDC of node vx.
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These three types of degree can be used to reflect the
communication ability of a node in DNSN. The NIDC of any
node can be applied to describe the receptivity or popularity
and the NODC of any node can be applied to measure of
expansiveness.

Definition 9: Let G̃dn =
(
V, Ẽdn

)
be DNSN. The mean

of NIDC is the average of neutrosophic in-degree centrality
of all the nodes of G̃dn and it is called as neutrosophic
in-degree mean centrality of neutrosophic social network.
The neutrosophic in-degree mean centrality is calculated as
follows.

d̄I =

n∑
x=1

d̃sI (vx)

n
(10)

Definition 10: Let G̃dn =
(
V, Ẽdn

)
be DNSN. The mean

of NODC of graph G̃dn is the average of neutrosophic out-
degree centrality of all the nodes of G̃dn and it is called
as neutrosophic out-degree mean centrality of the social
network. The neutrosophic out-degree mean centrality is
determined as follows.

d̄O =

n∑
x=1

d̃sO (vx)

n
(11)

Let G̃dn =
(
V, Ẽdn

)
be a DSFN. The d̄sI and d̄sO are

neutrosophic in-degree mean centrality and neutrosophic out-
degree mean centrality of G̃dn respectively, then d̄sI = d̄sO.

One might also be interested in variability of the fuzzy in-
degree centralities and fuzzy out-degree centralitics. Unlike
the mean fuzzy in-degree centralities and the mean fuzzy
out-degree centralities, the variance of the fuzzy in-degree
centralities is not necessarily the same as the variance of the
fuzzy out-degree centralities.

Definition 11: The average of the squared differences
from neutrosophic in-degree mean centrality is called as the
neutrosophic in degree variance centrality. The neutrosophic
in degree variance centrality, σ2

d̃I
, is determined as follows.

σ2
d̃I

=

n∑
i=1

[
d̃I (vx)− d̄I

]2
n

(12)

The square root of the neutrosophic in degree variance cen-
trality is called the neutrosophic in degree standard deviation
centrality. The neutrosophic in degree variance centrality
provides a rough concept of variability of the neutrosophic
in-degree centrality, while the standard deviation can give
more concrete to provide the exact from the the neutrosophic
in-degree centrality.

Definition 12: The average of the squared differences
from neutrosophic out-degree mean centrality is called as the
neutrosophic out degree variance centrality. The neutrosophic
out degree variance centrality, σ2

d̃O
, is determined as follows.

σ2
d̃O

=

n∑
i=1

[
d̃O (vx)− d̄O

]2
n

(13)

The square root of the neutrosophic out degree variance cen-
trality is called the neutrosophic in degree standard deviation
centrality.

σ2
d̃I

and σ2
d̃O

measures quantify how unequal the actors
in a DFSN are with respect to initiating gr receiving fuzzy
relations. These measurements are simple efficient statistical
method for describing how centralized a social unit is in
DNSN.

In the DNSN, NIDC is used to measure of the popularity
of a social unit, and NODC is measurement of ability
influence of a social unit. Based on the value of NIDC and
NODC, there are 4 types of social units in a DNSN.

1. The social unit is an isolate social unit, if d̃I (vx) =
d̃O (vx) = 0.

2. The social unit only has neutrosophic relation starting
from vx, then it is called as transmitter social unit if
d̃I (vx) = 0, d̃O (vx) > 0.

3. The social unit only has neutrosophic relation termi-
nating at vx, then it is called as receiver social unit if
and only if d̃I (vx) > 0, d̃O (vx) = 0.

4. The social unit has fuzzy relation both to and from
it, then it is called as carrier of ordinary social unit if
d̃I (vx) > 0, d̃O (vx) > 0.

V. THE NEUTROSOPHIC CLOSENESS CENTRALITY OF
DNSN

Definition 13: Let G̃dn =
(
V, Ẽdn

)
be a DNSN. The

neutrosophic in-closeness centrality (NICC) of a node vx is
a measurement of the closeness from all the node (excluding
the node vx) to the node vx in a neutrosophic graph. The
NICC of a node is determined as the inverse of the sum of
the neutrosophic weight of the shortest routes between the
social unit and rest of the social units in the neutrosophic
graph. If d̃(vx, vy) is the neutrosophic length from the node
vy to node vx in a neutrosophic graph, we determine the sum
(neutrosophic addition operation) of the neutrosophic lengths
between the node vx and the rest of all the nodes that are in
same row(component). It is calculated as follows.

D̃ (vy, vx) =
n∑

j=1,y 6=x

d̃ (vy, vx) (14)

D̃ (vy, vx) is a SVNS. The score of D̃ (vy, vx) is computed
by using (). The NICC is the inverse of the sum of the neu-
trosophic connected intensity from all the nodes (excluding
vx) to vx. The NICC of vx is computed as follows.

C̃CI (vx) =
1

D̃ (vy, vx)
(15)

Definition 14: Let G̃dn =
(
V, Ẽdn

)
be a DNSN. The

neutrosophic out-closeness centrality (NOCC) of a node vx
is a measurement of the closeness from vx to all the nodes in
a neutrosophic graph. The NOCC of a node is determined as
the inverse of the sum of the neutrosophic cost of the shortest
paths between the social unit and rest of the social units in the
neutrosophic graph. If d̃(vx, vy) is the neutrosophic distance
from the node vx to node vy in a neutrosophic graph, we
determine the sum (neutrosophic addition operation) of the
neutrosophic lengths between the node vx and the rest of all
the nodes that are in same row(component). It is calculated
as follows.
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D̃O (vx, vy) =
n∑

j=1,y 6=x

d̃ (vx, vy) (16)

D̃O (vy, vx) is a SVNS. The score of D̃O (vx, vy) is com-
puted by using (). The NOCC is the inverse of the sum of
the neutrosophic connected intensity from the node vx to the
rest of all other nodes. The NOCC of vx is computed as
follows.

C̃CO (vx) =
1

D̃O (vy, vx)
(17)

Definition 15: The sum of value of NOCC and NICC of
node vx is called neutrosophic closeness centrality of vx. The
neutrosophic closeness centrality of vx can be calculated

C̃DC (vx) = C̃CI (vx) + C̃CO (vx) (18)

Definition 16: Let G̃dn =
(
V, Ẽdn

)
be DNSN. The mean

of NICC is the average of neutrosophic in-degree centrality
of all the nodes of G̃dn and it is called as neutrosophic
in-closeness mean centrality of neutrosophic social network.
The neutrosophic in-closeness mean centrality is calculated
as follows.

C̄CI =

n∑
x=1

C̃CI (vx)

n
(19)

Definition 17: Let G̃dn =
(
V, Ẽdn

)
be DNSN. The mean

of NOCC is the average of neutrosophic out-degree centrality
of all the nodes of G̃dn and it is called as neutrosophic
in-closeness mean centrality of neutrosophic social network.
The neutrosophic out-closeness mean centrality is calculated
as follows.

C̄CO =

n∑
x=1

C̃CO (vx)

n
(20)

In some real life scenarios, we have to determine the NICC
or NOCC of a social network. The mean value of NICC and
NOCC are always same, however the deviation of the NICC
and NOCC may not be same.

Definition 18: The standard deviation of the NICC, which
we represent by σC̃CI

is determined as

σC̃CI
=

√√√√ n∑
i=1

[
C̃CI (vx)− d̄CI

]2
n

(21)

The square of the standard deviation of the NICC is called
the neutrosophic in degree variance centrality.

Definition 19: The standard deviation of the NICC, which
we represent by σC̃CI

is determined as

σC̃CI
=

√√√√ n∑
i=1

[
C̃CI (vx)− d̄CI

]2
n

(22)

The square of the standard deviation of the NICC is called
the neutrosophic in degree variance centrality.
σC̃CI

and σC̃CO
describe the measurement how unequal

the nodes in a DNSN are with respect to starting or obtaining
indirect and direct neutrosophic relationship. The NICC
and NOCC are simple but also very efficient statistics for
describing how centralized a DNSN is.

The value of NICC describes not only the popularity of
a social unit in DNSN, but also measures the popularity of
the social unit by indirectly neutrosophic relation. The value
of NOCC measures not only a social unit directly influence
but it can also describe indirect influence of the social node.

VI. NEUTROSOPHIC BETWEENNESS CENTRALITY

Betweenness centrality is an important measurement in
social network analysis, network data model and computer
network. In many real life scenarios, the distance between
the social units not only play significant property in social
network analysis. It is also very useful to find the social units
with higher number of times works as a simple bridge in a
shortest path from a social unit to an another unit. Those
types of social unit can control the flow of data in a social
network. Betweenness centrality is used to determine the
potential of a social unit for control of data communica-
tion in social network. Here, we introduce the concept of
betweenness centrality of a node in DNSN.

Definition 20: Betweenness centrality is a measure the
betweenness of a social unit in a DNSN and it determines of
centrality in a DNSN based on shortest paths. Betweenness
centrality is the total number of times a social unit works as
a bridge of a neutrosophic shortest path between two social
units. We define this betweenness centrality as neutrosophic
betweenness centrality (NBC). The NBC of social unit vx is
computed as follows.

CNBC(vx) =
∑

s6=vx 6=d

σsd(vx)

σsd
(23)

σst(vx) represents the total number of those neutrosophic
shortest paths that pass node vx and σst is used to represent
the number of neutrosophic shortest paths between source
node s and destination node d.

VII. NEUTROSOPHIC DECAY CENTRALITY

Neutrosophic decay centrality (NDC) is a measurement of
the closeness of a social unit to the other rest of the social
units in a DNSN. The NDC of social unit is calculated based
on the distance and a new parameter called the neutrosophic
decay parameter δ(0 < δ < 1). The NDC of a node vx for
a specific value of the δ is computed as follows.

NDCδ(vx) =
∑
vx 6=vy

δd̃(vx,vy) (24)

VIII. CASE STUDY

Let G̃d7 =
(
V, Ẽd7

)
is a directed neutrosophic graph. It is

used to model a Whatsapp group of family members, where
V = {v1, v2, ..., v7} denotes a set of 7 family members,
Ẽd7 denotes directed neutrosophic relation between the 7
members. We have got the neutrosophic communication
relations among 7 members and this social network is shown
in Fig. 2. An undirected neutrosophic graph can be used to
represent this social network. It is shown in in Fig. 1. In an
undirected neutrosophic social network, edges are generally
an absent or present in an undirected neutrosophic relation
with no another data attached.

We compute the NIDC, NODC and NDC of the member
using (6), (8) and (9). We have shown those three NDC in
Table II.
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m1

m2 m3

m4 m5m6

m7

1.0,0.4,0.1 0.8,0.3,0.1

0.9,0.3,0.2 0.8,0.2,0.3 1.0,0.4,0.1

0.9,0.3,0.1

0.9,0.4,0.1

0.9,0.3,0.3

Fig. 1. Undirected Neutrosophic social network

m1

m2 m3

m4 m5m6

m7

1.0,0.4,0.1 0.8,0.3,0.1

0.9,0.3,0.2 0.8,0.2,0.3 1.0,0.4,0.1

0.9,0.3,0.1

0.9,0.4,0.1

0.9,0.3,0.3

Fig. 2. Directed Neutrosophic social network

TABLE I
THE NEUTROSOPHIC DEGREE CENTRALITY OF RESEARCH TEAM

Members NIDC NODC NDC
m1 0.00 1.100 1.100
m2 0.545 0.555 1.100
m3 0.555 0.535 1.090
m4 0.555 0.500 1.055
m5 0.545 0.500 1.045
m6 0.000 0.600 0.600
m7 0.000 0.500 0.500

TABLE II
THE NEUTROSOPHIC DEGREE CENTRALITY OF RESEARCH TEAM

Members NICC NOCC NCC
m1 0.0000 0.9569 0.9569
m2 0.9569 1.8181 2.7750
m3 0.9569 1.8300 2.7869
m4 0.9478 1.8300 2.7750
m5 1.8300 2.0000 3.8300
m6 0.0000 1.6600 1.6600
m7 0.0000 2.0000 2.000

m1 and m2 are the top two social units of this DNSN.
The total information of these seven members based on 3
centrality measurements are shown in Table II. From the
Table II, we find that m3 and m4 obtain the two maximum
values of NIDC. It indicates that several other members
consider m3 and m4 as a friend. While m1, m6 and m7

have got the three lowest values (=0.00) of neutrosophic in-
degree centrality. It describes that members (m1, m6 and
m7) are not received friendship by other members. Based on
, The member m1 has got the highest value of neutrosophic
out-degree centrality and m1, m6 and m7 have got the
three lowest values of neutrosophic out-degree centrality. It
indicates that m1 appoints lots of others as members, but m1,
m6 and m7 have less influence on other members. The m1

and m2 have got the highest value of NDC which indicates
that m1 and m2 are joined with other social units with very
high influence.

Using the 15 and 17, the NICC and NOCC of this
DNSN are computed. We have listed the values based on
all closeness centrality technique in Table 2. From the Table
2, we find that m5 obtains the highest value of the NICC.
The member m5 has very well social relation and maximum
acceptance presents in the fact that indirect friendly relation-
ship is taken into circumstance. The member m5 has got the
maximum value of NOCC. It indicates that the member m5

nominates many others as members.

IX. CONCLUSION

In this work, we introduce the idea of undirected and
directed neutrosophic graph. We propose a method to model
the social network using directed neutrosophic graph. We
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define this social network as DNSN. We have modified the
centrality theory to DNSN to analysis to this social network.
First, we introduce some new centrality measurement for
DNSN: NIDC, NODC and NDC. The NODC is used to
measure of expansiveness of a social unit and the NIDC
is used to measure of popularity of a social unit. In this
work, we assume the sociometric relationship between the
members, a member with a high NODC is one unit who
has linked with other units as friends. A social unit with
a low NODC nominates very less social units as friends.
A social unit with a high NIDC is a social unit whom
many others member (social units) nominate this social unit
as a friend and a social unit with a low value of NIDC
is preferred by few others social units. In this work, we
introduce some other new types of centrality measurement
for DNSN: NICC, NOCC and NCC. The main difference
between NCC and NDC presents in the fact that undirected
neutrosophic relation is chosen into consideration. We have
also discussed the mean of NIDC and mean NODC for the
DNSN. In DNSN, the mean NIDC and NODC are equal. We
have introduced the idea of the neutrosophic betweenness
centrality of social unit of a DNSN. We have defined the
NDC of a social unit in a DNSN. The idea of variance
of the NIDC, NODC, NICC and NOCC of DNSN are
also proposed in this study. These measurement are very
simple and efficient statistical analysis for describing how
centralized a social unit is in a DNSN.

Centrality analysis is a well known and efficient method
for social network analysis. This measurement concept is
used to find the central position in the social network.
We extend the idea of centrality analysis for DNSN. One
simple numerical example of directed as well as undirected
weighted neutrosophic graph to model one small social
networks. We call it as DNSN. Due to the small size of
the social network, it is very easy and useful to realize
the significant of the DNSN. Therefore, in future work, we
have to represent a high density social network using the
directed weighted neutrosophic graph. We need to analysis
this social network. Despite the requirement for future work,
the introduced model described in this work is an significant
initial contributions to neutrosophic graph and social network
under neutrosophic environment.
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