
 

 

Abstract— Numerical methods are widely used for the numerical 

integration of initial value problems (IVPs) in ordinary differential 

equations (ODEs). Nevertheless, the block method is not normally 

used for the numerical integration of both 
thp and 

thp )1(  order IVPs. This paper focuses on the formulation of a 

self-starting method capable of obtaining the numerical solution of 

second and third-order IVPs. The method is formulated from 

continuous schemes obtained via collocation and interpolation 

techniques and applied in a block-by-block manner as a numerical 

integrator for second and third-order ODEs. The convergence 

properties of this method are discussed via zero-stability and 

consistency. Numerical examples are included and comparisons 

are made with existing methods in the literature. 
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I. INTRODUCTION 

The demand for the solution of Differential Equations (DEs) 

is on the increase as the quest for numerical methods has 

increasingly been of much interest to researchers because 

most of these DEs are difficult to solve or their analytical 

solutions do not exist. Although it is possible to 

integrate
thp  an initial value problem (IVP) using a 

numerical method but to use the same method to integrate 

two or more IVP
thp )1(  s of different has not been 

commonly reported. Thus, the focus of this paper is to 

develop a self-starting method for the numerical solution of 

the ODE of the form
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The solution of (1a) and (1b) for p ranging from p = 1(1)3 

has been extensively discussed by various researchers. 

Among them are [1]-[3] and [7]-[18].  

The block method approach which simultaneously generates 

approximations at different grid points within the interval of 
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integration without overlapping of sub-intervals has been 

reported to circumvent the setback commonly experience in 

reducing m>1 in (1a) to a system of first-order equations 

and the predictor-corrector approach, see [16]. Furthermore, 

this new method is superior to those mentioned above since 

it is equipped with handling both 
thp  and 

thp )1(   order 

IVPs. 

The aim of developing new methods has always been to 

improve on the efficiency and convergence of existing 

methods with the ultimate aim of reducing the error of 

approximation. Thus, in what immediately follows in 

Section 2, we derive the proposed method for direct 

integration of 
thp  and 

thp )1(   order IVPs in ODEs 

where p = 2. The basic properties of the method are 

discussed in Section 3, numerical examples are given to 

show the efficiency of the methods in Section 4 and the 

discussion of results is given in Section 5. Finally, the 

conclusion of the paper is discussed in Section 6. 

 

II. DERIVATION OF THE METHOD 

This section examines the derivation of a new block method 

that can solve the second and third-order initial value 

problems of ODEs.
 

Let the power series  
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be considered as an approximate solution to second and 

third-order ODEs of the form
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Interpolating (2) at 1,0, 


uxx
un

, the second derivative 

of (2) is collocated at 1,
2

1
,0, 


vxx

vn
 and collocating 

the third derivative of (2) at 1,
2

1
,0, 


wxx

wn
. 

Consequently, we have  
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In (5), Gaussian elimination is applied to find the unknown 

variables sa'  which are then substituted to (2) to produce a 

continuous implicit scheme of the form: 
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Equation (6) is differentiated once to give 
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The discrete scheme and its derivatives in (8) are 

derived by evaluating (6) at )1(
1
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at )1,
2

1
,0(1,

2

1
,0,   tixx in .  

)8(

22

22

22
21

1

2

1

3

1

2

1

2

2

1

1

2

1

1














































































































































n

n

n

n

n

n

n

n

n

n

n

n

g

g

g

Rh

f

f

f

Qhy

y

hh

hh

hh

y

y

y

y

 

for





























hhh

hhh

hhhQ

140

31

20

9

140

11
3360

37

60

11

3360

187
84

1

12

1

84

13
30

1

60

11

30

1

 

and




































hhh

hhh

hhhR

6720

101

105

2

6720

53
672

1

840

19

210

1
6720

11

105

2

6720

59
320

1
0

320

1

 

To get the block, (8) can be rewritten in the form  

3.0 

)9(][

][

1

103

1

102

1

0

1









NN

NNNNN

gEgEh

fDfDhyhByAAy
  

 

 

where 

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_02

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



 

,],[

,],[,],[

2

11

2

111

2

11

T

n
n

N

T

n
n

N

T

n
n

N

yyy

yyyyyy














,],[
2

1

T

n
n

N
fff





 

T

n
n

N

T

n
n

N

T

n
n

N

ggg

gggfff

],[

,],[ ,],[

1

2

11

2

11

2

11
















and

10100 ,,,,,, EEDDBAA are nxn   matrices. 

Therefore,
1A is multiplied by (9) and this gives
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III. PROPERTIES OF THE METHOD 

The basic properties of this method such as order, error 

constant, zero stability and consistency are analyzed below. 

3.1 Order 

Equation (10) derived is a discrete scheme belonging to the 

class of LMMs of the form  
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Following [4] and [8], we define the local truncation error 

associated with (11) by the difference operator  
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where )(xy  is an arbitrary function, continuously 

differentiable on [ a, b ].  

Expanding (11) in Taylor series about the point x , we 

obtain the expression 

)(

)('')(')(]);([

22

2

2

210

xyhC

xyhCxhyCxyChxyL

pp

p








 

where the 0C  ,  1C  , 2C 
pC 

2pC  are obtained as 

,
0

0 



k

j

jC  ,
1

1 



k

j

jjC  ,
!2

1

1

2

2 



k

j

jjC 

.

)2)(1(

)1(

!

1

1

3

1

2

1







































k

j

q

j

k

j

q

j

k

j

j

q

q

jqqq

jqqj

q
C





 

In the spirit of [11], (11) is of order  p  if 

01210  pp CCCCC  and 02 pC . 

The 02 pC  is called the error constant 

and )(22
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  is the principal local truncation 

error at the point nx . 

Thus, the block (10) is of order  6p  and error constant 
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3.2 Zero Stability of the Method 

The linear multistep method (10) is said to be zero-stable if 

no root of the first characteristic polynomial )(R has 

modulus greater than one and if every root of modulus one 

has multiplicity not greater than the order of the differential 

equation. 

To analyze the zero-stability of the method, we present (10) 

in vector notation form of column vectors  Treee 1 ,  

 Trddd 1 ,  Trnnm yyy  1 , 

   Trnnm ffyF  1  ,
 

   Trnnm ggyG  1 and matrices  )( ijaA   ,  

)( ijbB  . 

Thus, (10) forms the block formula 
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where  h  is a fixed mesh size within a block. 
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The first characteristic polynomial of the block hybrid 

method is given by   

)13()det()( 10 ARAR         
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substituting
0A  and  

1A  in (13) and solving for R , the 

values of R  are obtained as 0 and1. 

According to [6] and [7], the block method (10) is zero-

stable, since from (13), 0)( R , satisfy  1jR , 

1j  and for those roots with 1jR , the multiplicity 

does not exceed two. 

3.3 CONSISTENCY AND CONVERGENCE OF THE 

METHOD 

The linear multistep method (10) is said to be consistent if it 

has order 1p . Equation (10) is of order 6. 

According to the theorem of [5], the necessary and 

sufficient condition for a LMM to be convergent is to be 

consistent and zero stable. Since the method satisfies the 

two conditions hence it is convergent.  

 

 

IV NUMERICAL EXPERIMENTS 

In examining the efficiency of the newly developed block 

method, it is applied to the following second and third-order 

initial value problems of ordinary differential equations.
 

Problem1:

003125.0,
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Exact Solution: 
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Table Ia: Comparing the solutions of the exact and the new block for Problem 1 

 

 

 

 

 

 

 

 

 

 

 

Table Ib: Comparing the errors of the new block and existing methods for Problem 1 

X Exact Solution Numerical Solution 

0.1 1.050041729278491400 1.050041729285235300 

0.2 1.100335347731075300 1.100335347786803200 

0.3 1.151140435936466500 1.151140436133040400 

0.4 1.202732554054081600 1.202732554548837200 

0.5 1.255412811882994600 1.255412812926617300 

0.6 1.309519604203111900 1.309519606185874500 

0.7 1.365443754271397100 1.365443757799182000 

0.8 1.423648930193603500 1.423648936214441100 

0.9 1.484700278594054600 1.484700288613987300 

1.0 1.549306144334058600 1.549306160797821400 

X Error in the new method, 

k=1 

Error in[9], k=3 Error in [10], k=6 Error in [1], k=6 

 

0.1 6.743939E-012 5.850875E-13 9.577668E-10 0.1329867326E-09 

0.2 5.572787E-011 2.848832E-12 2.368709E-09 0.5872691257E-08 

0.3 1.965739E-010 6.328715E-12 3.732243E-09 0.1327845616E-07 

0.4 4.947556E-010 6.756392E-09 5.475119E-09 0.2317829012E-07 

0.5 1.043623E-009 1.380119E-08 1.142189E-08 0.3218793564E-07 

0.6 1.982763E-009 2.174817E-08 4.567944E-08 0.6871246012E-07 

0.7 3.527785E-009 1.073052E-07 2.055838E-06 0.1012728156E-06 

0.8 6.020838E-009 2.001340E-07 4.248299E-06 0.1231093271E-06 

0.9 1.001993E-008 3.088383E-07 6.660458E-06 0.2019286712E-06 

1.0 1.646376E-008 9.805074E-07 9.445166E-06 0.2990871645E-06 
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Problem 2: 01.0,1)0(,0)0(,  hyyyy  

Exact Solution: 
xexy 1)(

 

Table IIa: Comparing the solutions of the exact and the new block for Problem 2 

 

 

Table IIb : Comparing the errors of the new block and existing methods for Problem 2 

 

 

X Exact Solution Numerical Solution 

0.1 -0.105170918075647710 -0.105170918285230290 

0.2 -0.221402758160169850 -0.221402760252888020 

0.3 -0.349858807576003180 -0.349858815418549070 

0.4 -0.491824697641270570 -0.491824717736273730 

0.5 -0.648721270700128640 -0.648721312697835510 

0.6 -0.822118800390509550 -0.822118877678934210 

0.7 -1.013752707470477500 -1.013752837854869500 

0.8 -1.225540928492468800 -1.225541134976360700 

0.9 -1.459603111156951200 -1.459603422838633400 

1.0 -1.718281828459047300 -1.718282281559109400 

X Error in new 

method, k=1 

Error in [10], k=5 Error in [13], k=5 

 

Error in [12], k=5 

 
0.1 2.095826E-010 2.508826E-13 2.004000000E-07 2.198000000E-05 

0.2 2.092718E-009 6.493175E-11 5.386000000E-07 6.070400000E-06 

0.3 7.842546E-009 1.683146E-09 8.840000000E-07 1.005100000E-05 

0.4 2.009500E-008 1.700635E-08 1.229700000E-06 1.402530000E-05 

0.5 4.199771E-008 1.025454E-07 1.575200000E-06 1.799340000E-05 

0.6 7.728842E-008 2.558711E-06 1.920400000E-06 2.161620000E-05 

0.7 1.303844E-007 5.273300E-06 2.506000000E-06 2.799300000E-05 

0.8 2.064839E-007 8.275935E-06 3.106000000E-06 3.456100000E-05 

0.9 3.116817E-007 1.161667E-05 3.705000000E-06 4.111400000E-05 

1.0 4.531001E-007 1.542187E-05 4.304000000E-06 4.765600000E-05 
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Problem 3: 1.0,5)0(,1)0(,3)0(  hyyyey x
 

Exact Solution: 
xexxy  222)(
 

Table IIIa: Comparing the solutions of the exact and the new block for Problem 3 

 

Table IIIb : Comparing the errors of the new block and existing methods for Problem 3 

 

 

X Exact Solution Numerical Solution 

0.1 
3.125170918075647700

 
3.125170918075638800

 

0.2 
3.301402758160169700

 
3.301402758160134200

 

0.3 
3.529858807576003300

 
3.529858807575920300

 

0.4 
3.811824697641270600

 
3.811824697641117900

 

0.5 
4.148721270700128200

 
4.148721270699882200

 

0.6 
4.542118800390508900

 
4.542118800390142000

 

0.7 
4.993752707470476600

 
4.993752707469958800

 

0.8 
5.505540928492466800

 
5.505540928491764200

 

0.9 
6.079603111156949100

 
6.079603111156023600

 

1.0 
6.718281828459044600

 
6.718281828457857200

 

X Error in new 

method, k=1 

Error in [1], k=5 Error in [14], k=5 

0.1 
8.881784E-015

 3.369305E-12 9.24352E-10 

0.2 
3.552714E-014

 2.160050E-11 8.3983E-10 

0.3 
8.304468E-014

 5.333245E-11 4.23997E-10 

0.4 
1.527667E-013

 9.988632E-11 3.58729E-10 

0.5 
2.460254E-013

 1.598988E-10 2.99872E-10 

0.6 
3.668177E-013

 2.511404E-10 3.90509E-10 

0.7 
5.178080E-013

 3.961489E-10 1.47048E-09 

0.8 
7.025491E-013

 5.926823E-10 2.49247E-09 

0.9 
9.254819E-013

 8.429168E-10 0.15695E-09 

1.0 
1.187495E-012

 1.144603E-09 3.54096E-09 
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Problem 4: 01.0,1)0(,0)0(,1)0(,0  hyyyyyyy  

  Exact Solution: xxy cos)(   

 

Table IV: Comparing the new block method with [15] for solving Problem 4 

 

 

 

 

 

 

Problem 5: Vanderpol’s oscillator Problem 

 1)0(,0)0(     ,coscos2 23  yyyyyyxxy  

 Exact Solution: xxy sin)(   

 

Table V: Comparison of the new method with [3] 

X Exact Solution Approximate solution Error in new 

method 

Error in [3] 

0.1 0.099833416646828155       0.099833416316099016      3.307291E-010 4.16719627E-13 

0.2 0.198669330795061220            0.198669328479548270 2.315513E-009 3.54860749E-12 

0.3 0.295520206661339600            0.295520200499645890 6.161694E-009 9.0472212E-12 

0.4 0.389418342308650520            0.389418330384836750 1.192381E-008 1.650241042E-11 

0.5 0.479425538604203010            0.479425519259765230 1.934444E-008 2.544360932E-11 

0.6 0.564642473395035370            0.564642445640541220 2.775449E-008 3.535590072E-11 

0.7 0.644217687237691020           0.644217651157492410 3.608020E-008 4.570838971E-11 

0.8 0.717356090899522680            0.717356047921081210 4.297844E-008 5.598981142E-11 

0.9 0.783326909627483300            0.783326862546561360 4.708092E-008 6.574464284E-11 

1.0 0.841470984807896390            0.841470937523322140 4.728457E-008 7.460291389E-11 

 

 

 

X Exact Solution Numerical Solution Error in new method, k=1 Error in [15], k=3    

 

0.1 0.999950000416665260       0.999950000414032480      2.632783E-012 1.9990E-07 

0.2 0.999800006666577760       0.999800006605354950      6.122280E-011 1.9560E-07 

0.3 0.999550033748987540       0.999550033315882550      4.331050E-010 1.3651E-07 

0.4 0.999200106660977920       0.999200104881007410      1.779971E-009 2.5210E-07 

0.5 0.998750260394966280       0.998750255022231250      5.372735E-009 1.3039E-06 

0.6 0.998200539935204190       0.998200526636915390      1.329829E-008 3.0280E-06 

0.7 0.997551000253279590       0.997550971585185910      2.866809E-008 3.3453E-06 

0.8 0.996801706302619440       0.996801650474031580      5.582859E-008 1.2405E-06 

0.9 0.995952733011994270       0.995952632438632860      1.005734E-007 1.3290E-06 

1.0 0.995004165278025820       0.995003994920954820      1.703571E-007 1.7180E-05 
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Problem 6: We consider the second-order system equations                                                
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Table VI: Result generated when the new method was applied to system of second order ODEs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t- values Exact Solution Numerical Solution 2y  Error 

1.2583141                 0.999921147578931800 0.999921117529356310 3.004958E-008 

1.2633141                 0.999683345819422750 0.999683285585503570 6.023392E-008 

1.2683141                 0.999284741752009320 0.999284651012086630 9.073992E-008 

1.2733141                 0.998723501579551810 0.998723380268963120 1.213106E-007 

1.2783141                 0.997997811695503390 0.997997659663992120 1.520315E-007 

1.2833141                 0.997105879715436850 0.997105696969847740 1.827456E-007 

1.2883141                 0.996045935521627570 0.996045722087244840 2.134344E-007 

1.2933141            0.994816232320477560 0.994815988276771760      2.440437E-007 

1.2983141      0.993415047712551740       0.993414773263781360      2.744488E-007 

t- values Exact Solution Numerical Solution  1y  Error 

1.2583141 -0.012557811291468633 -0.012557811291308991 1.596414E-013 

1.2633141                 -0.025163626354015697 -0.025163626353447266 5.684307E-013 

1.2683141                 -0.037815405612265290 -0.037815405667311876 5.504659E-011 

1.2733141                 -0.050511062082270429 -0.050511062224706874 1.424364E-010 

1.2783141            -0.063248461253903210 -0.063248461592840324      3.389371E-010 

1.2833141                 -0.076025420991302939 -0.076025421591992062 6.006891E-010 

1.2883141      -0.088839711451837056            -0.088839712475807853 1.023971E-009 

1.2933141      -0.101689055024075960       -0.101689056571485010      1.547409E-009 

1.2983141      -0.114571126285240580       -0.114571128569164710      2.283924E-009 

1.3033141            -0.127483551978623600 -0.127483555135529060      3.156905E-009 
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V. DISCUSSION OF RESULTS 

Tables I – IV above show the tabular display of the 

numerical solutions on the implementation of the newly 

developed method. It is evident that the block method is 

more efficient in terms of error when compared with 

existing methods in spite of high step number k 

considered.  

 

VI. CONCLUSION 

In this paper, the derivation of the new block method for 

solving second and third-order ordinary differential 

equations directly is examined. The method is of order six 

which shows that it is consistent. The major advantage of 

the method over the existing numerical methods is its 

ability to solving effectively two different orders of 

differential equations namely second and third-order 

ordinary differential equations. To prove the efficiency of 

the new method, it is applied to some differential 

equations of order two and three, the results generated 

outperform the existing methods in terms of error as 

shown in Tables I – IV.  
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