
On theFirst Hitting Time for a Class of Piecewise
Deterministic Markov Processes

Xiaowen Chong

Abstract—In this paper, we introduce the renewal measure
of the defective renewal sequence constituted by thex points of
a class of piecewise deterministic Markov processes (PDMPs).
And then we give the expression of the renewal measure. By
these together with the strong Markov property of the process,
the distribution on the first hitting time is explicitly obtained.
Finally, two special cases are considered.

Index Terms—First hitting time, Renewal measure, PDMPs,
Sequence ofx points.

I. I NTRODUCTION

PIECEWISE deterministic Markov processes (PDMPs)
was firstly introduced by Davis (1984). Here, we will

discuss a class of PDMPs that can be expressed as

U(t) = u +
∫ t

0

g(U(s))ds−
N(t)∑

i=1

Zi, (1)

where u denotes the initial value,g : R → R is a
continuously differentiable Lipschitz continuous function,
{N(t), t ≥ 0} is a Poisson process with parameterλ, and
{Zk, k ≥ 1} independent of{N(t), t ≥ 0}, are positive,
independent and identically distributed random variables
with common density functionp. Denote the sequence of
the jump times by{Sn, n ≥ 1} with S0 = 0.

As it can be seen from (1), between jump arrival epochs,
the process follows a deterministic path, described by a
measurable functionφ(t, x) that satisfies

{
dφ(t, x)

dt
= g(φ(t, x)), t > 0,

φ(0, x) = x.
(2)

Due to these better properties PDMPs has been widely
applied in different fields. In insurance literature, Dassios
and Embrechts (1989) showed in general how to use the
theory of PDMPs (see Davis (1984, 1993)) for solving
insurance risk problems. The model (1) was discussed by
many authors: such as Asmussen (1995, 2000) and Wang et
al. (2003). From Dassios and Embrechts (1989) or Embrechts
and Schmidli (1994), we can see that{U(t), t ≥ 0} is a
piecewise deterministic Markov process taking values inR
with extended generatorA satisfying

Af(x) = g(x)
d

dx
f(x) + λ

∫ ∞

0

(f(x− y)− f(x))p(y)dy,

where f belongs to the domainDA of the generatorA.
Denote byP (t, x,Γ) the transition function of the model
(1.1). Throughout this paper, it is assumed thatP (t, x,Γ)
has density functionp(t, x, y) for y < φ(t, x).
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Inspired by Wu et al. (2003), we study the first hitting
time of the model (1). The organization of this paper is as
follows. In section II, we introduce the renewal measure of
the defective renewal sequence constituted by thex points. In
section III, the expression of the renewal measure is derived.
Furthermore, the distribution function on the first hitting time
is obtained. In section IV, we consider the two special cases
on g(x).

II. T HE PRELIMINARY LEMMAS

Let (Ω, F, P ) be a complete probability space containing
all objects defined at the following. We firstly define the
sequence of the epochs that the process{U(t), t ≥ 0}
reaches a fixed levelx (x ∈ R) as the following: The first
hitting time is defined by

T x
1 = inf{t > 0 : U(t) = x} (T x

1 = ∞ if the set is
empty).

In general, fork = 2, 3, ..., recursively define

T x
k = inf{t > T x

k−1 : U(t) = x} (T x
k = ∞. if the set is

empty)

As shown in Fig. 1. By convention, letT x
0 = 0.

For everyt > 0, let

Nx
t = sup{k > 0, T x

k ≤ t} (Nx
t = 0 if the set is empty).

We see thatNx
t is the number ofx points beforet (and

including t). Therefore,{Nx
t , t ≥ 0} is a counting process

and Nx
∞ = sup{k > 0 : T x

k < +∞} (Nx
∞ = 0 if the set

is empty) is the total number of thex points of the process.
DenoteFt = σ{U(s), s ≤ t}, then each of{T x

k , k ≥ 1} is
Ft-stopping time. SetP x(x ∈ R) denote the probability of
{U(t), t ≥ 0} with initial value x generated on(Ω, F∞).

For k ≥ 1,

Sx
k =

{
T x

k − T x
k−1, T x

k−1 < ∞,
∞, otherwise,
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Fig. 1. The Waiting Time

Fig. 1. represents the waiting time from the time that the
process reaches the levelx for the(k−1)th time till the time
that it reaches the levelx again. For the process{U(t), t ≥
0} has strong Markov property, we can prove that{Sx

k , k ≥
1} are independent and that{Sx

k , k ≥ 2} is a sequence of
i.i.d. random variables. Therefore, we have that{Nx

t , t ≥
0} is a renewal process. Thek-th renewal epoch isT x

k =
k∑

n=1
Sx

n. Let Fx be the common distribution of{Sx
k , k ≥ 2},

andF x
u be the distribution ofSx

1 . The renewal measureGx
u

is then defined by

Gx
u(t) =

∞∑

k=1

Pu(T x
k ≤ t) =

∞∑

k=1

F x
u ∗ F (k−1)∗

x (t). (3)

So, we have

Gx
u(I) =

∞∑

k=0

F x
u ∗ F k∗

x (I), I ⊂ [0,∞),

where I denotes a general interval. Further setgx
u(.) and

fx
u (.) be respectively the density function ofGx

u and F x
u if

they exist.

III. M AIN RESULT

We now indicate in detail how the renewal measureGx
u(.)

can be used to express the first hitting time. The crucial is to
obtain Gx

u(.). We first present the following lemma, which
can be used to get the expression ofGx

u(.).
Lemma 3.1Let Xt satisfy the ordinary differential equa-

tion
dXt

dt
= g(Xt), for any t ∈ [0, T ],

whereg(·) be a continuously differentiable Lipschitz contin-
uous function. If there existst∗ ∈ [0, T ], such thatXt∗ = x,
then we have

|Xs −X0| ≤ K1 · s, for any s ∈ [0, T ].
|XT −X0 − g(x)T | ≤ KK1T

2,

where constantK1 depends only onT and x and constant
K depends ong(·).

Proof Without loss of generality we can assume that
g(x) > 0. Note that Xt∗ = x, then Xs is bounded in
s ∈ [0, T ]. Sinceg(·) is a continuous function, there exists a
constantK1 depending only onT andx, such that for any
0 ≤ s ≤ T , |g(Xs)| ≤ K1. Hence, for anys ∈ [0, T ],

|Xs −X0| = |
∫ s

0

g(Xl)dl| ≤
∫ s

0

|g(Xl)|dl ≤ K1 · s.

|XT −X0 − g(x)T | = |XT −X0 − g(Xt∗)T |

= |
∫ T

0

g(Xl)− g(Xt∗)dl|

≤
∫ T

0

|g(Xl)− g(Xt∗)|dl

≤
∫ T

0

K|Xl −Xt∗ |dl

≤ K

∫ T

0

K1|l − t∗|dl ≤ KK1T
2.

Theorem 3.2Assume thatg(x) > 0, we have
(1) Whenφ(s, u) > x,

gx
u(s) =

{
g(x)p(s, u, x) if s > 0,
0 if s = 0; (4)

(2) Whenφ(s, u) < x,

gx
u(s) = 0;

(3) Whenφ(s, u) = x,
(a) If s > 0, thenGx

u(t) will jump at time s, that is,

Gx
u(t) = 0, for 0 ≤ t < s, Gx

u(s) = e−λs.

(b) If s = 0, i.e., s = 0, u = x, then

gx
u(s) = 0.

proof (1) Whenφ(s, u) > x, we have

gx
u(s)ds =

∞∑

k=1

Pu(T x
k ∈ (s, s + ds]) =

∞∑

k=1

Pu(T x
k ∈ ds)

=
∞∑

k=1

Pu(T x
k ∈ ds,N(s, s + ds] = 0)

+
∞∑

k=1

Pu(T x
k ∈ ds,N(s, s + ds] ≥ 1).

By simply calculating, we obtain
∞∑

k=1

Pu(T x
k ∈ ds,N(s, s + ds] = 0)

= Pu(U(s) < x, U(s + ds) ≥ x,N(s, s + ds] = 0).

Note thatT x
Nx

s+ds
∈ (s, s+ ds] and dU(t)

dt = g(U(t)), for any
t ∈ (s, s + ds]. By Lemma 3.1, we have

|U(s + ds)− U(s)− g(x)ds)| ≤ KK1d
2s.

Hence, whens > 0, we get

Pu(U(s) < x, U(s + ds) ≥ x,N(s, s + ds] = 0)
= Pu(x− g(x)ds + O(d2s) ≤ U(s) < x, N(s, s + ds] = 0)
= Pu(x− g(x)ds + O(d2s) ≤ U(s) < x)e−λds

= g(x)p(s, u, x)ds + O(d2s).
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and
∞∑

k=1

Pu(T x
k ∈ ds,N(s, s + ds] ≥ 1) = O(d2s).

Then,

gx
u(s) = g(x)p(s, u, x). (5)

Whens = 0, we get

gx
u(0)ds =

∞∑

k=1

Pu(T x
k ∈ (0, ds]) =

∞∑

k=1

Pu(T x
k ∈ ds)

=
∞∑

k=1

Pu(T x
k ∈ ds,N(0, ds] = 0)

+
∞∑

k=1

Pu(T x
k ∈ ds,N(0, ds] ≥ 1)

= O(d2s).

Hence,

gx
u(0) = 0. (6)

Combining (5) with (6), we obtain (4) immediately.
(2) whenφ(s, u) < x, Pu(T x

1 > s) = 1. This follows that
gx

u(s) = 0.
(3) whenφ(s, u) = x. (a) If 0 ≤ t < s, thenφ(t, u) < x,

thusGx
u(t) = 0. If t = s, then there is no jump that occurs

befores, that is

Gx
u(s) = Pu(T x

1 = s) = Pu(S1 > s) = e−λs.

(b) Whens = 0, u = x, we have

gx
u(0)ds =

∞∑

k=1

Pu(T x
k ∈ (0, ds])

=
∞∑

k=1

Pu(T x
k ∈ (0, ds], N(0, ds] ≥ 1) = O(d2s).

Hence,gx
u(0) = 0. The proof is completed.

For the development of the paper, let us take some
Laplace-Stieltjes (L−S) transforms, which can be expressed
as the following:

Ĝx
u(v) =

∫ ∞

0

e−vsdGx
u(s),

Ĝx
x(v) =

∫ ∞

0

e−vsdGx
x(s),

F̂ x
u (v) =

∫ ∞

0

e−vsdF x
x (s).

Lemma 3.3 There exists a constantM , such that

Ĝx
x(v) =

∫ ∞

0

e−vsdGx
x(s) < 1,

for any v ≥ M .
Proof By Theorem 3.2 and its proof, we haveGx

x(0) = 0
andT x

n ≥ Sn. Hence,

Gx
x(t) =

∞∑

k=1

P x(T x
k ≤ t) ≤

∞∑

k=1

P x(Sk ≤ t) = λt.

Note that

Ĝx
x(v) =

∫ ∞

0

e−vsdGx
x(s)

= Gx
x(s)e−vs|∞0 + v

∫ ∞

0

e−vsGx
x(s)ds

≤ v

∫ ∞

0

e−vsλsds =
λ

v
.

So that,whenM > λ, we have

Ĝx
x(v) =

∫ ∞

0

e−vsdGx
x(s) ≤ λ

v
< 1, for any v > M.

By Theorem 3.2, we see that the expression of the renewal
measureGx

u can be derived onceu and x are fixed under
the hypothesis thatg(x) > 0. Next, we explicitly obtain the
distribution on the first hitting time, which is expressed in
terms ofGx

u.
Theorem 3.4Assume thatg(x) > 0, we have

F x
u (s) =

∞∑
n=0

(−1)n(Gx
x)n∗ ∗Gx

u(s).

Proof By (3) we have the following defective renewal
equation:

Gx
u(t) = F x

u (t) + F x
u ∗Gx

x(t). (7)

Taking L− S transform on both sides of (7), we get

F̂ x
u (v) =

Ĝx
u(v)

1 + Ĝx
x(v)

.

From this together with Lemma 3.3, we obtain

F̂ x
u (v) =

∞∑
n=0

(−1)nĜx
u(v)[Ĝx

x(v)]n.

Inverting F̂ x
u (v), we have

F x
u (s) =

∞∑
n=0

(−1)n(Gx
x)n∗ ∗Gx

u(s).

Using the similar argument as Theorem 3.2, the expression
on the first hitting time is explicitly obtained wheng(x) < 0.

Theorem 3.5Assume thatg(x) < 0, we have
(1) Whenφ(s, u) > x,

fx
u (s) =

{ −g(x)p(s, u, x) if s > 0,
0 if s = 0; (8)

(2) whenφ(s, u) < x,

fx
u (s) = 0;

(3) whenφ(s, u) = x,
(a) If s > 0, thenF x

u (t) assigns masse−λs at points.
(b) If s = 0, i.e., s = 0, u = x, then

fx
u (s) = 0.

Proof: (1) When φ(s, u) > x. Note that g(·) is a
continuous function andg(x) < 0. So there exists a positive
numberε > 0, such thatg(s) < 0 for anys ∈ (x−ε, x+ε).
Hence,U(t) decreases strictly at the neighborhood ofx. The
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process{U(t), t ≥ 0} will not recover to the levelx once it
arrives the levelx. So we have

fx
u (s)ds = Pu(T x

1 ∈ (s, s + ds])
= Pu(T x

1 ∈ ds,N(s, s + ds] = 0)
+ Pu(T x

1 ∈ ds,N(s, s + ds] ≥ 1)
= Pu(U(s) > x, U(s + ds) ≤ x,

N(s, s + ds] = 0) + O(d2s)
= Pu(x < U(s) ≤ x− g(x)ds + O(d2s),

N(s, s + ds] = 0) + O(d2s)
= Pu(x− g(x)ds + O(d2s) ≤ U(s) < x)e−λds

+ O(d2s)
= −g(x)p(s, u, x)ds + O(d2s).

It follows that (8) immediately.
(2) when φ(s, u) < x. It is impossible that the process

arrives the levelx at times. So

fx
u (s) = 0;

(3) whenφ(s, u) = x. (a) If s > 0, SincePu(T x
1 = s) =

Pu(S1 > s) = e−λs. HenceF x
u (t) assigns masse−λs at

point s.
(b) If s = 0, i.e., s = 0, u = x, then the process is impossible
to recover the levelx. So fx

u (s) = 0. This completes the
proof.

In the case whereg(x) = 0, the distribution on the first
hitting time is given in the following Theorem.

Theorem 3.6Assume thatg(x) = 0, for any s ≥ 0, we
have

F x
u (s) =

{
1, u = x,
0, otherwise.

IV. EXAMPLES

In this section, we will give two examples and obtain
explicitly the solutions to the first hitting time in two special
cases. From the theorems of section III, it is clear that the
expression for the hitting time can be derived onceu andx
are fixed, in which the key is to find the transition density
function p(t, x, y) for y < φ(t, x). Therefore, we only need
to give the transition function, which are showed in the
following.

Example 4.1Let g(x) = c > 0.
In this case, the model (1) reduced to the classical risk

model

U(t) = u + ct−
N(t)∑

i=1

Zi.

And the density function of the transition function

P (t, x, y) = P (x + ct−
N(t)∑
i=1

Zi ≤ y) is

p(t, x, y) =





∞∑
n=1

e−λt(λt)n

n! pn∗(x + ct− y), y < x + ct,

0, y > x + ct,

wherepn∗(x) denotes then-fold convolution ofp(x) with
itself. It is obvious thatP (t, x, y) assigns masse−λt at point
y = x + ct.

Example 4.2Let g(x) = δx + c.

In this case, the model (1) can be expressed as

U(t) = ueδt +
c(eδt − 1)

δ
−

N(t)∑

i=1

Zie
δ(t−Si),

it is the classical risk model with constant interest. And the
transition function is

P (t, x, y) = P (xeδt +
c(eδt − 1)

δ
−

N(t)∑

i=1

Zie
δ(t−Si) ≤ y)

= P (
N(t)∑

i=1

Zie
δ(t−Si) ≥ xeδt +

c(eδt − 1)
δ

− y)

= 1− P (
N(t)∑

i=1

Zie
δ(t−Si) < xeδt +

c(eδt − 1)
δ

− y).

Since, forany x > 0, we have

P (
N(t)∑

i=1

Zie
δ(t−Si) < x)

=
∞∑

n=0

P (
n∑

i=1

eδ(t−Si)Zi < x|N(t) = n)P (N(t) = n)

= e−λt +
∞∑

n=1

P (
n∑

i=1

eδ(t−Si)Zi < x|N(t) = n)
e−λt(λt)n

n!

= e−λt +
∞∑

n=1

P (
n∑

i=1

eδ(t−Ui:n)Zi < x)
e−λt(λt)n

n!

= e−λt +
∞∑

n=1

P (
n∑

i=1

eδ(t−Ui)Zi < x)
e−λt(λt)n

n!
,

where {U1, ..., Un} independent of{Zi, i ≥ 1}, are inde-
pendent and identically distributed random variables with
Uniform distributionU(0, t), andU1:n ≤ U2:n ≤ ... ≤ Un:n

are the order statistics of{Ui : 1 ≤ i ≤ n}. Note that
{e(t−Uk)Zk, k ≥ 1} are i.i.d., then

P (
n∑

i=1

eδ(t−Ui)Zi < x) = Fn∗
t (x),

where Ft(x) = P (eδ(t−U1)Z1 ≤ x) =
1
t

∫ t

0

∫ xe−δ(t−v)

0
p(y)dydv is the common distribution

function of {eδ(t−Uk)Zk, k ≥ 1}. Therefore

P (
N(t)∑

i=1

Zie
δ(t−Si) < x) = e−λt +

∞∑
n=1

e−λt(λt)n

n!
Fn∗

t (x).

It is obvious that random variable
N(t)∑
i=1

Zie
δ(t−Si) assigns

masse−λt at point zero and whent > 0, x > 0, it has

density function
∞∑

n=1

e−λt(λt)
n

n! fn∗
t (x), where ft(x) is the

density function ofFt(x).
Hence,P (t, x, y) assigns masse−λt at pointy = xeδt +

c(eδt−1)
δ , andits transition density function is given

p(t, x, y) =





∞∑
n=1

e−λt(λt)
n

n! fn∗
t (xeδt + c(eδt−1)

δ − y),

y < xeδt + c(eδt−1)
δ ,

0,

y > xeδt + c(eδt−1)
δ .
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