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On theFirst Hitting Time for a Class of Piecewise
Deterministic Markov Processes

Xiaowen Chong

Abstract—In this paper, we introduce the renewal measure  Inspired by Wu et al. (2003), we study the first hitting
of the defective renewal sequence constituted by the points of time of the model (1). The organization of this paper is as
a class of piecewise deterministic Markov processes (PDMPS). 105, In section I, we introduce the renewal measure of
And then we give the expression of the renewal measure. By he defecti ’I . db . |
these together with the strong Markov property of the process, € defective renewal sequence constitute wtbelr?ts. n
the distribution on the first hitting time is explicitly obtained. ~ Section Ill, the expression of the renewal measure is derived.
Finally, two special cases are considered. Furthermore, the distribution function on the first hitting time

Index Terms—First hitting time, Renewal measure, PDMPs, is obtained. In section IV, we consider the two special cases

Sequence ofr points. on g(x).

I. INTRODUCTION

IECEWISE deterministic Markov processes (PDMPs)
was firstly introduced by Davis (1984). Here, we will

discuss a class of PDMPs that can be expressed as Il. THE PRELIMINARY LEMMAS

N(t)

U(t) = u+ / oU$)ds— S 7, 1)

Let (2, F, P) be a complete probability space containing

where v denotes the initial valueg : R — R is a I obi G he followi first] b h
continuously differentiable Lipschitz continuous function?!l OPjects defined at the following. We firstly define the

{N(t),t > 0} is a Poisson process with parameferand Seduence of the epochs that the procgsst),t > 0}
{Z,k > 1} independent of{ N (t),t > 0}, are positive, re_a_ches_ a f|_xed I(_avezt (x € R) as the following: The first
independent and identically distributed random variabldWlting time is defined by

with common density functiop. Denote the sequence of

the jump times by{S,,,n > 1} with Sy = 0. TF =inf{t >0:U(t) =z} (TF¥ = cc if the set is
As it can be seen from (1), between jump arrival epochs, empty).
the process follows a deterministic path, described by a
measurable function(¢, z) that satisfies In general, fork = 2,3, ..., recursively define
do(t, )
{ a . I@ta), >0, @ TF=if{t>TF :U®l) =2} (TF = oc. if the setis
¢(0,z) = x. empty)

Due to these better properties PDMPs has been widely
applied in different fields. In insurance literature, DassicS shown in Fig. 1. By convention, l&fy” = 0.
and Embrechts (1989) showed in general how to use thegg, everyt > 0, let
theory of PDMPs (see Davis (1984, 1993)) for solving
insurance risk problems. The model (1) was discussed by
many authors: such as Asmussen (1995, 2000) and Wang¥f = sup{k > 0,7}y <t} (N =0 if the set is empty).
al. (2003). From Dassios and Embrechts (1989) or Embrechts
and Schmidli (1994), we can see thgt/(t),t > 0} is a We see thatVy is the number ofx points beforet (and
piecewise deterministic Markov process taking valuein including t). Therefore,{Ny",¢ > 0} is a counting process
with extended generatot satisfying and N3, = sup{k > 0 : T} < +oo} (N3, = 0 if the set
o is empty) is the total number of the points of the process.
Af(z) = g(x)if(x) + )\/ (flz—y) — f(2)p(y)dy, DenoteF;, = o{U(s),s < t}, then each of 77,k > 1} is
dx 0 F;-stopping time. SeP?(z € R) denote the probability of
where f belongs to the domaiDA of the generatord. {U(t),t > 0} with initial value = generated orf(2, Fi.).
Denote by P(t,x,T") the transition function of the model £ > 1,
(1.1). Throughout this paper, it is assumed tf4t, =, T') N
has density functiom(t, z,y) for y < ¢(¢, x).
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chongxiaowenbc@163.com). o0, otherwise,
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Ut) Proof Without loss of generality we can assume that
g(z) > 0. Note that X;- = =z, then X, is bounded in
s € [0,T). Sinceg(+) is a continuous function, there exists a
constantkK; depending only orf” and z, such that for any
0<s<T,|g(X,)| < K;. Hence, for anys € [0, 77,
. X, Xol =| [ gtxod < [ lo(Xpla < Ko s,
0 0
v [ X1 — Xo—g(@)T| = [Xp—Xo—g(Xe-)T]|
T
= 1 otx) - gxeyd
4 0
0 T
< [ 19t - glxela
0
T
0
. ey . T
Fig. 1. The Waiting Time < K/ K|l — t*]dl < KK, T?.
0

Fig. 1. represents the waiting time from the time that the Theorem 3.2 Assume thay(z) > 0, we have
process reaches the levefor the (£ —1)th time till the time (1) Wheng(s, u) > z,
that it reaches the level again. For the procesd/(¢),t > .
0} has strong Markov property, we can prove thet{is > g5 (s) = { g9(@)p(s, u,x) }f 5>0, (4)
1} are independent and th&S7,k > 2} is a sequence of “ 0 it s=0;
ii.d. random variables. Therefore, we have tHaf* ¢ > (2) Wheno(s, u) < z,
0} is a renewal process. Theth renewal epoch 97 =

9u(s) = 0;

k
>~ Sr. Let F, be the common distribution ofS}, k > 2},

n=1 —

and F* be the distribution ofs?. The renewal measurg® () Wheno(s,u) = z, - _ _
is then defined by (@) If s >0, thenGZ(¢t) will jump at time s, that is,
GZ(t) =0, for 0 <t <s, G%(s)=e .

GEt)=Y PYUTF<t)= F*xFFD*). 3
ul®) ; (T <) ,;“ 2@ (b) If s =0, i.e., s =0,u =z, then

So, we have gu(s) =0.
- proof (1) Wheno(s,u) > z, we have
,;) gi(s)ds = > P"TF € (s,s+ds]) =Y P"TY € ds)
k=1

where I denotes a general interval. Further g&{(.) and h=t

fZ(.) be respectively the density function 6f2 and F* if - Zpu(Tg € ds,N(s,s+ ds] = 0)
they exist. pt

+ ZP“(T,? €ds,N(s,s+ds] >1).
k=1

I1l. M AIN RESULT

We now indicate in detail how the renewal measGtg.)
can be used to express the first hitting time. The crucial is
obtain GZ(.). We first present the following lemma, which i

I?a/ simply calculating, we obtain

PYTY € ds,N(s,s+ds] =0)

can be used to get the expression(f(.). =i
Lemma 3.1Let X, satisfy the ordinary differential equa- = PYU(s) <z,U(s+ds) >z, N(s,s+ds] =0).
tion
dXi Note thatTy. —e (s,s+ds] and 221 — 4(U/ (1)), for any

— =g(Xy), forary t € 0,71, s
dt (%) 0.7] t € (s,s + ds|. By Lemma 3.1, we have
whereg(-) be a continuously differentiable Lipschitz contin-

2
uous function. If there exists' € [0, T, such thatX,- = x, (Us +ds) = U(s) — g(z)ds)| < KK:d's.

then we have Hence, whens > 0, we get

|Xs — Xo| < Ki-s, forany se[0,T]. P“(U(s) < z,U(s+ds) > z,N(s,s + ds] = 0)

| X7 — Xo — g(z)T| < KK T?, = P%(z—g(z)ds + O(d?s) < U(s) < x,N(s,s+ ds] = 0)
where constanf; depends only o’ andz and constant = P“(z — g(@)ds + O(d*s) < U(s) < z)e **

K depends ony(-). = g(x)p(s,u, x)ds + O(d?s).

Q
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and Note that
ZP“(T,? € ds,N(s,s +ds] > 1) = O(d?s). @i(v) = /0 e dGE(s)
k=1 [e%s)
Then, = G [ G
9u(s) = g(z)p(s,u, ). (%) < v/ e "$Asds = é
0 v

When's =0, we get So that,when M > X\, we have

i (o]
x — u — u T -~ )\
9u(0)ds = E :P (T € (0,ds]) = E :P (137 € ds) G35 (v) :/ e "dGy(s) < — < 1, for any v > M.
0 U

k=1
_ Z PY(TF € ds, N(0,ds] = 0) By Theorem 3.2, we see that the expression of the renewal
pary ’ measureGy, can be derived once and x are fixed under
oo the hypothesis thag(z) > 0. Next, we explicitly obtain the
+ ZP“(T,;” € ds,N(0,ds] > 1) distribution on the first hitting time, which is expressed in
k=1 terms of G.
= O(d?s). Theorem 3.4Assume thay(x) > 0, we have
rence: Fi(s) = 3 (-1 (G2 * GLs).
9.(0) = 0. (6) n=0
Proof By (3) we have the following defective renewal

Combining (5) with (6), we obtain (4) immediately.
(2) wheng(s,u) < z, P*(T{ > s) = 1. This follows that
94(s) = 0. Ga(t) = FI(t) + F2  GI(t). )
(3) wheno(s,u) =z. (@) If 0 <t < s, theno(t,u) < z,
thus GZ(t) = 0. If ¢t = s, then there is no jump that occursTaking L — S transform on both sides of (7), we get
befores, that is .
R € C)

Fuw) = 1+ Gz(v)

From this together with Lemma 3.3, we obtain

equation:

Go(s) = PY(Ty = s) = P*(S1 > s) = e,

(b) Whens = 0,u = x, we have

Fi() =Y (-1)"Gi )G
g% (0)ds = ZP“ T € (0,ds]) ZB
oo Inverting ﬁf(v), we have
= PY(TE € (0,ds], N(0,ds] > 1) = O(d?s). -
bt Fi(s) = Y (=D)"(GI)™ * Gi(s).
Hence,g*(0) = 0. The proof is completed. n=0

For the development of the paper, let us take SOMeysing the similar argument as Theorem 3.2, the expression

as the foIIowmg Theorem 3.5Assume thay(z) < 0, we have
_ oo (1) Wheng(s,u) > z,
Gilo) = [ eacis),
0

Grw) = / e dGE (s),
0

Frw) = / ¢S dF(s).
0

it ={ e ek

(2) wheng(s,u) < z,

fils) =0
Lemma 3.3 There exists a constadt/, such that (3) wheng(s, u) = =,
S s If s > 0, then F%(t) assigns mass—** at points.
G2 (v) = ble 1 @ u
=(v) /0 edGL(s) <1, () If s =0, i.e., s = 0,u — , then
for anyv > M. £2(s) = 0.
Proof By Theorem 3.2 and its proof, we ha@ (0) = “
andT? > S,,. Hence, Proof: (1) When ¢(s,u) > z. Note thatg(:) is a
. continuous function and(z) < 0. So there exists a positive
G (¢ ZPI Te < 1) < Z (Sk < t) = AL. numbere > 0, such thaty(s) < 0 for anys € (z —¢,z +¢).
1 O Hence,U (t) decreases strictly at the neighborhood:ofrhe

Volume 50, Issue 2: June 2020



TAENG International Journal of Applied Mathematics, 50:2, [JAM_50 2 07

process{U (t),t > 0} will not recover to the levek once it In this case, the model (1) can be expressed as
arrives the levelz. So we have N(b)

ot | et — 5(t—S,)
fi(s)ds = P“(TF € (s,s+ds]) U(t) = ue Z Zie
= PU(IY €ds,N(s,s +ds] =0)
+ PY(Ty €ds,N(s,s+ds] > 1)
PY(U(s) > z,U(s+ds) <

it is the classical risk model with constant interest. And the
transition function is

N(s,s+ds] =0)+ O(d23) P(t,z,y) = Plae® + Z 2,505 < )
= P"(x <U(s) <z —g(x)ds + O(d’s),

N(s, s+ ds] = 0) + O(d?s) N(t) ) (e 1)

7 — P ZL (tfs1) > ot S
= PY%ax— g(x)ds + O(dzs) < U(s) < x)e—)\ds (; e > zre®t + 3 y)
+  O(d%s) N@ et 1)
= —g(@)p(s,u,z)ds + O(dQS)' = 1- P(Z Zieo(tfsi) < zedt + s Y)-
i=1

It follows that (8) immediately.

(2) when¢(s,u) < . It is impossible that the process Since, forany z > 0, we have

arrives the level: at times. So N(t) s
. P () Zie'TPV <)
fa(s) =0; ;
(3) wheng(s,u) = z. (@) If s > 0, Since P*(T = s) = L - 5(t—S:) 7. — —
PY(S; > s) = e~*. Hence F%(t) assigns mass~** at ZP(Z@ Zi <z|N(t) =n)P(N(t) =n)
point s. Can
(b) If s =0,i.e.,s=0,u=uz,thenthe process isimpossible _— -t Z P( Z =80 7, < 2N (t) = )ﬂ
to recover the levek. So f(s) = 0. This completes the =1 n
proof. —At
m = M Z P( Ze“t Uin) 7, < &) 20 W)
In the case whergy(z) = 0, the distribution on the first n=1 =1
hitting time is given in the following Theorem. M LN NS s e_)‘t(/\t)”
Theorem 3.6Assume thay(z) = 0, for anys > 0, we  — ¢~ T ZP(Ze Zi <) a7
have =t =t
1 w— where {U, ...,U,} independent of Z;,: > 1}, are inde-
Fy(s) = { 0’ other\;vise pendent and identically distributed random variables with
’ ' Uniform distributionU(0,t), andUy.,, < Uz < ... < Upip,
IV. EXAMPLES are the order statistics ofU; : 1 < i < n}. Note that

: . L {e(t=Uk) > ii.d.
In this section, we will give two examples and obtau{e Zy,k 2 1} are iid., then

explicitly the solutions to the first hitting time in two special - S(t—Us) .-
cases. From the theorems of section lll, it is clear that the P(Z Zi <w) = F"(z),
expression for the hitting time can be derived omcand z =t

are fixed, in which the key is to find the transition densityhere ( ) = LGSy < x) =

(t—v)

function p(t, z, y) for y < ¢(t, ). Therefore, we only need L f" p(y)dydv is the common distribution
to give the transition function, which are showed in thﬁmcﬂon of {5t=Ux) 7z, | > 1}. Therefore

following. N

Example 4.1Let g(z) = ¢ > 0. S(t—S, g e M )\t -
In this case, the model (1) reduced to the classical ridk( Z Zie"") <z) = Z — ().
model =1 n=t

N@) 3 51-5) assi
Ult) = u+ et — Z . It is obvious that random varlablvfz1 Zie assigns

masse~* at pomt zero and when > 0,2 > 0, it has

And the density function of the transition functiondensity function Z L(\t)" n*(z), where f,(z) is the
(t) n:

P(t,z,y)=Plx+ct— > Z;<y)is density function Oth(x).
=t Hence,P(t,z,y) assigns mass~* at pointy = ze%t +
Ot n c(e‘”—l) . . . . . .
p(t,z,y) = > Anﬂ”) P (z+ct—y), y<z+ct, s—, andits transition density function is given
y 4y - n=1 o ,
07 Yy > x4+ ct, Z - (At) fn*( (,(6 5_1) y)7
n=1
where p"™*(z) denotes the:-fold convolution of p(z) with st L (et —1)
i i i ; : t,x,y) = < welt + 2
itself. It is obvious thatP(t, =, y) assigns mass~** at point p(t, ) 0 Yy 5
y=x + ct. ’ St c(eM—l)
Example 4.2Let g(z) = dx + c. Yy >xe’ + =—5—.
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